JP2938605B2 - Method of manufacturing preform for single mode optical fiber - Google Patents

Method of manufacturing preform for single mode optical fiber

Info

Publication number
JP2938605B2
JP2938605B2 JP8309891A JP8309891A JP2938605B2 JP 2938605 B2 JP2938605 B2 JP 2938605B2 JP 8309891 A JP8309891 A JP 8309891A JP 8309891 A JP8309891 A JP 8309891A JP 2938605 B2 JP2938605 B2 JP 2938605B2
Authority
JP
Japan
Prior art keywords
optical fiber
base material
preform
porous glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8309891A
Other languages
Japanese (ja)
Other versions
JPH04295025A (en
Inventor
弘一 塩本
弘行 小出
秀夫 平沢
収 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8309891A priority Critical patent/JP2938605B2/en
Publication of JPH04295025A publication Critical patent/JPH04295025A/en
Application granted granted Critical
Publication of JP2938605B2 publication Critical patent/JP2938605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はシングルモ−ド光ファイ
バ用母材の製造方法、特には長手方向に安定した比屈折
率差を有するシングルモ−ド光ファイバ製造用のガラス
母材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a single-mode optical fiber preform, and more particularly to a method for manufacturing a single-mode optical fiber preform having a stable relative refractive index difference in the longitudinal direction. Things.

【0002】[0002]

【従来の技術】シングルモ−ド光ファイバ用母材の製造
は四塩化けい素などの気体状ガラス原料と四塩化ゲルマ
ニウムなどのド−プ剤とを酸水素火炎バ−ナ−に導入
し、ついでこの火炎加水分解で発生したガラス微粒子を
担体上に堆積し、これを軸方向に成長させて多孔質ガラ
ス母材を作る、いわゆるVAD 法で製造し、ついでこれを
高温で脱水、焼結して透明ガラス化することによって製
造されている。
2. Description of the Related Art A single-mode optical fiber preform is manufactured by introducing a gaseous glass material such as silicon tetrachloride and a doping agent such as germanium tetrachloride into an oxyhydrogen flame burner. The glass microparticles generated by this flame hydrolysis are deposited on a carrier and grown in the axial direction to produce a porous glass base material, which is manufactured by the so-called VAD method, and then dehydrated and sintered at a high temperature. It is manufactured by vitrification.

【0003】[0003]

【発明が解決しようとする課題】しかして、このVAD 法
で製造されたシングルモ−ド光ファイバ用母材には引上
げ速度の変動のために比屈折率差(△n)がロッド内で大
きくバラ付くという不利がある。これはガラス微粒子の
堆積、成長で一定直径の多孔質ガラス母材が得られるよ
うに成長しつつある多孔質ガラス母材は徐々に上方に引
上げられるのであるが、多くの場合、多孔質ガラス母材
の製造初期や後期では引上げ速度が定常部または直胴部
の引上げ速度に比較して変化し易く、またその他の要因
で作業中に引上げ速度が変化することもある。
However, the base material for single-mode optical fiber manufactured by the VAD method has a large relative refractive index difference (Δn) in the rod due to fluctuations in the pulling speed. There is a disadvantage of sticking. This is because the growing porous glass preform is gradually pulled upward so that a porous glass preform having a constant diameter can be obtained by deposition and growth of glass fine particles. In the early and late stages of production of a material, the pulling speed is more likely to change than the pulling speed of the steady portion or the straight body portion, and the pulling speed may change during work due to other factors.

【0004】このように引上げ速度が変化するとこれを
脱水、焼結して得られるガラス母材の比屈折率差(△n)
が変化し、このために比屈折率差(△n)の一定な安定し
たガラス母材を得ることが難しく、一本のガラス母材か
ら目的とする屈折率をもつ部分の割合が60%以下にもな
るという欠点がある。
[0004] When the pulling speed changes in this way, the relative refractive index difference (△ n) of the glass base material obtained by dehydrating and sintering it.
And it is difficult to obtain a stable glass base material having a constant relative refractive index difference (△ n), and the ratio of a portion having a desired refractive index from one glass base material is 60% or less. There is a disadvantage that it also becomes.

【0005】そのため、この引上げ速度の安定化につい
ては大気圧による原料ガス供給量の変動を補正する方法
が提案されており、本発明者らもクラッド用バ−ナ−に
供給する水素量を制御する方法を提案している(特願平
2−38039号明細書参照)が、この引上げ速度を完全に
一定にすることは難しいし、これを一定することができ
てもこれを常法にもとづいて一定温度で脱水処理、焼結
すると得られる光ファイバ用母材はその比屈折率差(△
n)が図4に示したように母材のスタ−ト部とエンド部だ
けが高いものとなり、均一のものにはならないという問
題点があり、光ファイバ用母材の長手方向の比屈折率差
(△n)が一定でなく、安定性に欠けたものになり、歩留
りもわるくなるという不利がある。
To stabilize the pulling speed, a method has been proposed to correct the fluctuation of the supply amount of the raw material gas due to the atmospheric pressure. The present inventors also control the amount of hydrogen supplied to the cladding burner. (Refer to Japanese Patent Application No. 2-38039), it is difficult to make the pulling rate completely constant, and even if it can be made constant, it is determined based on the ordinary method. The optical fiber preform obtained by dehydration treatment and sintering at a constant temperature at
n), as shown in FIG. 4, there is a problem that only the start portion and the end portion of the preform are high and are not uniform, and the relative refractive index in the longitudinal direction of the preform for an optical fiber is long. There is a disadvantage that the difference (△ n) is not constant, lacks stability, and reduces the yield.

【0006】[0006]

【課題を解決するための手段】本発明はこのような不利
を解決したシングルモ−ド光ファイバ用母材の製造方法
に関するもので、これはゲルマニウムド−プしたガラス
微粒子をタ−ゲット基材に堆積し、これを軸方向に引上
げて多孔質ガラス母材を作製し、ついでこれを高温で脱
水、焼結して光ファイバ用母材の製造する方法におい
て、多孔質ガラス母材の脱水処理温度を多孔質ガラス母
材のスタ−ト部とエンド部でその中間部よりも高温度に
設定することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a method of manufacturing a preform for a single-mode optical fiber which has solved the above disadvantages. This method uses a germanium-doped glass fine particle as a target substrate. In a method of producing a porous glass preform by depositing and pulling it up in the axial direction to produce a porous glass preform, and then dehydrating and sintering this at a high temperature, a dehydration treatment temperature of the porous glass preform is produced. Is set at a higher temperature at the start and end portions of the porous glass base material than at the intermediate portion.

【0007】すなわち、本発明者らは比屈折率差(△n)
が長手方向で一定であるシングルモ−ド光ファイバ用母
材の製造方法について種々検討した結果、VAD 法で作ら
れたゲルマニウムド−プされた多孔質ガラス母材を一定
温度で脱水処理したのち焼結すると前記したように母材
のスタ−ト部とエンド部で比屈折率差が高くなるが、こ
の脱水処理に当って多孔質ガラス部材のスタ−ト部とエ
ンド部における処理温度をその中間部における処理温度
よりも高くすればこの比屈折率差(△n)分布が母材の長
手方向で安定したものになるということを見出し、この
処理方法、処理温度についての研究を進めて本発明を完
成させた。以下にこれをさらに詳述する。
That is, the present inventors have determined the relative refractive index difference (Δn).
As a result of various studies on a method for manufacturing a single-mode optical fiber preform in which the longitudinal direction is constant, a germanium-doped porous glass preform made by the VAD method was dehydrated at a constant temperature and then fired. As described above, the relative refractive index difference between the start portion and the end portion of the base material increases as described above, but in this dehydration process, the processing temperature at the start portion and the end portion of the porous glass member is set to an intermediate value. It was found that if the temperature was higher than the processing temperature in the part, the relative refractive index difference (△ n) distribution would be stable in the longitudinal direction of the base material. Was completed. This will be described in more detail below.

【0008】[0008]

【作用】本発明は比屈折率差(△n)が長手方向で一定で
安定した値を有するシングルモ−ド光ファイバ用母材の
製造方法に関するものである。
The present invention relates to a method for manufacturing a single-mode optical fiber preform having a specific refractive index difference (Δn) that is constant and stable in the longitudinal direction.

【0009】本発明における光ファイバ用母材の製造は
基本的には公知のVAD 法で行なわれる。したがって、こ
れは1本のコア用酸水素火炎バ−ナ−と複数個のクラッ
ド用酸水素火炎バ−ナ−を用いて、このコア用酸水素火
炎バ−ナ−には四塩化けい素とド−プ剤としての四塩化
ゲルマニウムとからなる原料ガスと酸素ガス、水素ガス
を導入し、四塩化けい素と四塩化ゲルマニウムの火炎加
水分解で発生した酸化ゲルマニウムでド−プされたシリ
カガラス微粒子をタ−ゲット基材上に堆積させて軸方向
にコア部を成長させ、クラッド用酸水素火炎バ−ナ−に
四塩化けい素、酸素ガス、水素ガスを供給して四塩化け
い素の火炎加水分解で発生したシリカガラス微粒子をこ
のコア部上に堆積成長させてクラッド部を形成させて多
孔質ガラス母材を作り、ついでこれを高温で脱水、焼結
させればよい。
The production of the optical fiber preform in the present invention is basically performed by a known VAD method. Therefore, this uses one core oxyhydrogen flame burner and a plurality of cladding oxyhydrogen flame burners, and this core oxyhydrogen flame burner has silicon tetrachloride. Silica glass fine particles doped with germanium oxide generated by flame hydrolysis of silicon tetrachloride and germanium tetrachloride by introducing a raw material gas consisting of germanium tetrachloride as a doping agent, oxygen gas, and hydrogen gas Is deposited on a target substrate to grow a core portion in the axial direction, and silicon tetrachloride, oxygen gas and hydrogen gas are supplied to an oxyhydrogen flame burner for cladding to produce a silicon tetrachloride flame. Silica glass fine particles generated by hydrolysis are deposited and grown on the core to form a clad, thereby producing a porous glass base material, which is then dehydrated and sintered at a high temperature.

【0010】しかし、この場合における多孔質ガラス母
材の脱水処理工程について種々しらべたところ、この脱
水処理は通常 Cl2などのハロゲンガスの存在下で行なわ
れるのであるが、この多孔質ガラス母材の脱水処理を例
えば Cl2ガスを含むHeガス雰囲気中で図3に示したよう
な一定温度の加熱ゾ−ンに一定速度で通過させて行なう
と、多孔質ガラス母材中にド−プされている結晶性の酸
化ゲルマニウム(GeO2)の一部が Cl2ガスと反応して GeC
l4となって一定量揮発するが、多孔質ガラス母材のスタ
−ト側とエンド側ではこの結晶性のGeO2の多い非定常部
が生じるために、図4に示したようにその後の焼結工程
で得られる光ファイバ用母材の長手方向の比屈折率差
(△n)がそのスタ−ト部およびエンド部で高い不均一な
ものになるということが見出された。
However, various studies have been made on the dehydration process of the porous glass base material in this case. The dehydration process is usually performed in the presence of a halogen gas such as Cl 2. Is carried out at a constant speed through a heating zone having a constant temperature as shown in FIG. 3 in a He gas atmosphere containing Cl 2 gas, for example, and the resultant is doped into the porous glass base material. Some of the crystalline germanium oxide (GeO 2 ) reacts with Cl 2 gas to
l 4 a certain amount of volatilization becomes, but porous glass preform Star - for a lot of GeO 2 in the crystallinity in the up side and the end side unsteady portion occurs, subsequent as shown in FIG. 4 It has been found that the relative refractive index difference (Δn) in the longitudinal direction of the optical fiber preform obtained in the sintering step becomes high and nonuniform at its start portion and end portion.

【0011】この場合、この GeCl4の揮発は脱水工程に
おける雰囲気中の Cl2ガスの濃度、脱水処理温度、処理
速度のおのおのによって相違するし、雰囲気中の Cl2
濃度、処理速度を一定とした場合には処理温度が高いほ
ど GeCl4の揮発の程度が大きくなることも見出されてい
るので、この多孔質ガラス母材の脱水処理において非定
常部の発生し易い多孔質ガラス母材のスタ−ト部とエン
ド部における処理温度を図1に示したように他の部分に
おける処理温度よりも高いものとすれば GeCl4の揮発量
が多くなってこの非定常部がなくなり、その後の焼結工
程で得られる光ファイバ用母材の比屈折率差(△n)が図
2に示したように均一で一定の安定したものになるとい
うことが確認された。
[0011] In this case, the concentration of Cl 2 gas in the atmosphere in this GeCl 4 volatiles the dehydration step, the dehydration treatment temperature, to differ by each of the processing speed, the concentration of Cl 2 in the atmosphere, and a constant processing speed It has been found that the higher the processing temperature, the greater the degree of volatilization of GeCl 4 becomes. If the processing temperature in the start part and the end part is higher than the processing temperature in the other parts as shown in FIG. 1, the amount of GeCl 4 volatilized increases, and this unsteady part disappears, and the subsequent firing It was confirmed that the relative refractive index difference (Δn) of the optical fiber preform obtained in the binding step was uniform, constant and stable as shown in FIG.

【0012】なお、この多孔質ガラス母材の脱水処理工
程における多孔質ガラス母材のスタ−ト部とエンド部に
おける処理温度は上記したように他の部分より高くする
ことが必要とされるのであるが、この温度が他の部より
10℃未満だけ高いときには効果がなく、50℃より高い温
度とすると遂に△n が両端で低くなりすぎるので、これ
は他の部分よりも10〜50℃高いものとすることが必要と
されるが、この好ましい温度は20〜40℃の範囲とするこ
とがよい。
Since the processing temperature at the start portion and the end portion of the porous glass preform in the step of dehydrating the porous glass preform needs to be higher than the other portions as described above. But this temperature is higher than other parts
There is no effect when the temperature is higher than 10 ° C, and when the temperature is higher than 50 ° C, △ n becomes too low at both ends, so it is necessary that the temperature be higher by 10 to 50 ° C than other parts. The preferred temperature is preferably in the range of 20 to 40 ° C.

【0013】[0013]

【実施例】つぎに本発明の実施例、比較例を示す。 実施例、比較例 コア用酸水素火炎バ−ナ−に四塩化けい素30.0cc/分、
四塩化ゲルマニウム3.5 cc/分、酸素ガス3.0 リツトル
/分、水素ガス1.0 リツトル/分を供給すると共に、ク
ラッド用酸水素火炎バ−ナ−に四塩化けい素 400cc/
分、酸素ガス10.0リツトル/分、水素ガス8.0 リツトル
/分を供給し、この火炎加水分解で発生した酸化ゲルマ
ニウムでド−プされたコア用ガラス微粒子および酸化ゲ
ルマニウムを含まないクラッド用ガラス微粒子を基材の
先に設置した20rpm で回転している合成石英ガラス棒に
堆積し、その軸方向に成長させてコア部、クラッド部か
らなる多孔質ガラス母材を作り、この多孔質ガラス母材
を引上げ装置を用いて0.65±0.005mm/分の一定速度で引
上げて、直径100mm 、長さ800mm の多孔質ガラス母材を
作った。
Next, examples of the present invention and comparative examples will be described. Examples, Comparative Examples Silicon tetrachloride 30.0 cc / min. For oxyhydrogen flame burner for core,
3.5 cc / min of germanium tetrachloride, 3.0 liter / min of oxygen gas and 1.0 liter / min of hydrogen gas are supplied, and 400 cc / min of silicon tetrachloride is supplied to the oxyhydrogen flame burner for cladding.
And oxygen gas at 10.0 liters / minute and hydrogen gas at 8.0 liters / minute to supply core glass fine particles doped with germanium oxide generated by the flame hydrolysis and cladding glass fine particles containing no germanium oxide. It is deposited on a synthetic quartz glass rod rotating at 20 rpm installed at the tip of the material, grown in the axial direction to make a porous glass base material consisting of a core part and a clad part, and this porous glass base material is pulled up Using a device, the porous glass base material having a diameter of 100 mm and a length of 800 mm was produced by pulling up at a constant speed of 0.65 ± 0.005 mm / min.

【0014】ついで、この多孔質ガラス母材を Cl2ガス
を10容量%含有するHeガス雰囲気中で、炉内の温度を図
1に示したように設定した長さ2,000mm の石英ガラス製
炉芯管を用いて、5.0mm/分の速さで脱水、ついでさらに
1,600 ℃に昇温して、焼結処理を行ない、外径40mm、 長
さ400mm の光ファイバ用母材を作ったところ、このもの
の長さ方向の比屈折率差(△n)は図2に示したように長
手方向全般にわたって均一な値を示した。
Then, the porous glass base material is placed in a He gas atmosphere containing 10% by volume of Cl 2 gas in a quartz glass furnace having a length of 2,000 mm and a furnace temperature set as shown in FIG. Using a core tube, dehydrate at a speed of 5.0 mm / min.
The temperature was raised to 1,600 ° C and sintering was performed to produce an optical fiber preform with an outer diameter of 40 mm and a length of 400 mm. The relative refractive index difference (△ n) in the longitudinal direction of the preform was shown in Fig. 2. As shown, the value was uniform throughout the longitudinal direction.

【0015】しかし、比較のために上記における石英ガ
ラス製炉芯管の温を図3に示したようにしたほかは上
記した実施例と同じ条件で脱水、焼結を行なって光ファ
イバ用母材を作り、このものの長さ方向の比屈折率(△
n)分布をしらべたところ、これは図4に示したように
そのスタ−ト部とエンド部だけ比屈折率(△n)の大き
いものであった。
[0015] However, quartz temperature of the glass furnace core tube addition was as shown in FIG. 3 is dehydrated under the same conditions as in the above example, the mother for an optical fiber subjected to sintering in the above for comparison The material is made, and the relative refractive index (の 長
n) When the distribution was examined, it was found that the relative refractive index (Δn) was large only in the start portion and the end portion as shown in FIG.

【0016】[0016]

【発明の効果】本発明は比屈折率差(△n)が長手方向で
均一で、安定しているシングルモ−ド光ファイバ用母材
の製造方法に関するものであり、これは前記したように
公知のVAD 法で多孔質ガラス母材を作り、ついでこれを
高温で脱水、焼結してなる光ファイバ用母材の製造方法
において、多孔質ガラス母材の脱水処理温度を多孔質ガ
ラス母材のスタ−ト部とエンド部でその中間部より高温
度に設定することを特徴とするものである。
The present invention relates to a method for producing a single-mode optical fiber preform in which the relative refractive index difference (Δn) is uniform and stable in the longitudinal direction, which is known as described above. In a method for producing a preform for optical fiber, a porous glass preform is prepared by a VAD method, and then dehydrated and sintered at a high temperature. The temperature of the start part and the end part is set higher than that of the intermediate part.

【0017】これによればその後の焼結処理により得ら
れる光ファイバ用母材の長手方向における比屈折率差
(△n)が従来法ではスタ−ト部とエンド部で大きくな
り、均一とならなかったのが、長手方向全般にわたって
一定で均一の安定化したものになるという有利性が与え
られる。
According to this, the relative refractive index difference (Δn) in the longitudinal direction of the optical fiber preform obtained by the subsequent sintering process becomes large between the start portion and the end portion in the conventional method, and becomes uniform. The absence of this provides the advantage of being constant and uniform stabilized throughout the longitudinal direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による多孔質ガラス母材の脱水、焼結工
程における処理温度変化を示すグラフである。
FIG. 1 is a graph showing a change in processing temperature in a dehydration and sintering step of a porous glass base material according to the present invention.

【図2】本発明で得られた光ファイバ用母材の長手方向
における比屈折率差(△n)分布図である。
FIG. 2 is a distribution diagram of a relative refractive index difference (Δn) in a longitudinal direction of a preform for an optical fiber obtained by the present invention.

【図3】従来法による多孔質ガラス母材の脱水、焼結工
程における処理温度変化を示すグラフである。
FIG. 3 is a graph showing a change in processing temperature in a dehydration and sintering step of a porous glass base material according to a conventional method.

【図4】従来法で得られた光ファイバ用母材の長手方向
における比屈折率差(△n)分布図である。
FIG. 4 is a distribution diagram of a relative refractive index difference (Δn) in a longitudinal direction of an optical fiber preform obtained by a conventional method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗山 収 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 磯部工場内 (58)調査した分野(Int.Cl.6,DB名) C03B 37/00 - 37/16 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Osamu Kuriyama Gunma Prefecture Annaka Isobe 2-chome 13th No. 1 Shin-Etsu chemical Co., Ltd. Isobe in the factory (58) investigated the field (Int.Cl. 6, DB name) C03B 37/00-37/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ゲルマニウムド−プしたガラス微粒子を
タ−ゲット基材に堆積し、これを軸方向に引上げて多孔
質ガラス母材を作製し、ついで高温で脱水、焼結してな
る光ファイバ用母材の製造方法において、多孔質ガラス
母材の脱水処理温度を多孔質ガラス母材のスタ−ト部と
エンド部でその中間部より高温度に設定することを特徴
とするシングルモ−ド光ファイバ用母材の製造方法。
1. An optical fiber obtained by depositing germanium-doped glass fine particles on a target substrate, pulling it up in the axial direction to produce a porous glass base material, and then dehydrating and sintering at a high temperature. In the method for manufacturing a base material for use, the single-mode light is characterized in that the dehydration temperature of the porous glass base material is set to be higher at the start portion and the end portion of the porous glass base material than at the intermediate portion. Manufacturing method of fiber preform.
JP8309891A 1991-03-22 1991-03-22 Method of manufacturing preform for single mode optical fiber Expired - Lifetime JP2938605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8309891A JP2938605B2 (en) 1991-03-22 1991-03-22 Method of manufacturing preform for single mode optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8309891A JP2938605B2 (en) 1991-03-22 1991-03-22 Method of manufacturing preform for single mode optical fiber

Publications (2)

Publication Number Publication Date
JPH04295025A JPH04295025A (en) 1992-10-20
JP2938605B2 true JP2938605B2 (en) 1999-08-23

Family

ID=13792715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8309891A Expired - Lifetime JP2938605B2 (en) 1991-03-22 1991-03-22 Method of manufacturing preform for single mode optical fiber

Country Status (1)

Country Link
JP (1) JP2938605B2 (en)

Also Published As

Publication number Publication date
JPH04295025A (en) 1992-10-20

Similar Documents

Publication Publication Date Title
JP4229442B2 (en) Method for producing a tube made of quartz glass, tubular intermediate product made of porous quartz glass, and use thereof
JPS5844619B2 (en) Manufacturing method of optical fiber base material
US8516855B2 (en) Method for producing an optical fiber preform
SE511399C2 (en) Process for producing optical fiber glass preform
JP2938605B2 (en) Method of manufacturing preform for single mode optical fiber
JPH0764578B2 (en) Manufacturing method of base material for single mode optical fiber
JP2938604B2 (en) Method of manufacturing preform for single mode optical fiber
EP1383714A1 (en) Method for producing an optical fiber preform
JP2517052B2 (en) Graded Index Optical Fiber-Manufacturing Method of Base Material
JP3071235B2 (en) Method of manufacturing preform for single mode optical fiber
US4804393A (en) Methods for producing optical fiber preform and optical fiber
JPH09221335A (en) Production of precursor of optical fiber glass preform
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH03242341A (en) Production of porous glass preform for single-mode optical fiber
JP2710446B2 (en) Production method of rare earth doped glass
JP3187130B2 (en) Method for producing rare earth element doped quartz glass
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JP3741832B2 (en) Dispersion shifted fiber glass preform manufacturing method
JP4071348B2 (en) Optical fiber preform dehydration method
JPH08225338A (en) Production of optical fiber preformed material
JP2713366B2 (en) Manufacturing method of optical fiber preform
JP3131032B2 (en) Manufacturing method of preform for optical fiber
JPS60145922A (en) Production of base material for optical fiber
JPH0761830A (en) Production of single mode optical fiber preform
JPS63315531A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12