JPS62182131A - Production of piled material of glass fine particle - Google Patents

Production of piled material of glass fine particle

Info

Publication number
JPS62182131A
JPS62182131A JP61020233A JP2023386A JPS62182131A JP S62182131 A JPS62182131 A JP S62182131A JP 61020233 A JP61020233 A JP 61020233A JP 2023386 A JP2023386 A JP 2023386A JP S62182131 A JPS62182131 A JP S62182131A
Authority
JP
Japan
Prior art keywords
flow rate
glass
starting material
steady
glass fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61020233A
Other languages
Japanese (ja)
Other versions
JPH0615413B2 (en
Inventor
Toshio Danzuka
彈塚 俊雄
Minoru Watanabe
稔 渡辺
Hiroshi Yokota
弘 横田
Masumi Ito
真澄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61020233A priority Critical patent/JPH0615413B2/en
Publication of JPS62182131A publication Critical patent/JPS62182131A/en
Publication of JPH0615413B2 publication Critical patent/JPH0615413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent deformation and shaking rotation of starting material and to obtain the titled high-quality piled material, by setting a flow rate of fuel at an initial stage of piling of glass fine particle at a low flow rate and increasing the flow rate of fuel to a steady flow rate before a piling state becomes steady. CONSTITUTION:H2 as a fuel and O2 as a combustion improver gas are fed to the vicinity of one side of the outer periphery part of a columnar or cylindrical starting material 1 which is turning on its axis as a revolving shaft, further SiCl4 as a glass raw material is fed to flame 3 formed through a burner 2 for synthesizing glass fine particles and glass fine particles SiO2 formed by flame hydrolysis is piled on the starting raw material. A flow rate of the fuel H2 at an initial stage of piling and in a period up to formation of steady piled face is set at a lower flow rate than a steady flow rate in such a way that the temperature of the starting material 1 is lower than the softening point of the starting material 1 and piling of the glass fine particles is started. Then a flow rate is gradually increased until the piling state becomes steady and becomes a steady flow rate. Then the glass fine particles are piled in a steady state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス微粒子の集合体を円柱状或いは円筒状
出発材の外周部に形成する方法に関し、特に高純度が要
求される光ファイバ用母材製造の際の中間製品に好適に
用いられる出発材外周部に堆積せしめられたガラス微粒
子集合体の形成方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of forming an aggregate of glass particles on the outer periphery of a cylindrical or cylindrical starting material, particularly for optical fibers that require high purity. The present invention relates to a method for forming a glass particle aggregate deposited on the outer periphery of a starting material, which is suitably used for intermediate products in the production of a base material.

〔従来の技術〕[Conventional technology]

従来、石英系ガラス管もしくは光ファイバ用母材の製造
方法として特開昭48−73522号公報に示されたよ
うないわゆる“外付法″がある。この方法は、回転する
カーボン、石英系ガラス又はアルミナなどの耐火性出発
材の外周部に、ガラス原料の加水分解反応により生成せ
しめた8102  などの微粒子状ガラスを堆積させて
いき、所定量堆積させた鏝、堆積をやめ、出発材を引き
抜き、パイプ状ガラス集合体を形成し、このパイプ状ガ
ラス集合体を高温電気炉中で焼結透明ガラス化しパイプ
状ガラスを得ている。
Conventionally, there has been a so-called "external attachment method" as a method for manufacturing quartz-based glass tubes or optical fiber preforms, as disclosed in Japanese Patent Application Laid-Open No. 73522/1983. In this method, fine particulate glass such as 8102 produced by a hydrolysis reaction of glass raw materials is deposited on the outer periphery of a rotating refractory starting material such as carbon, quartz glass, or alumina, and a predetermined amount of glass is deposited. After stopping the deposition, the starting material is pulled out to form a pipe-shaped glass aggregate, and this pipe-shaped glass aggregate is sintered into transparent glass in a high-temperature electric furnace to obtain a pipe-shaped glass.

或いは、同様の方法で出発材として中実の光ファイバ用
ガラス微粒子堆積体の複合体を形成したのち、出発材を
引き抜かず該複合体を高温炉中で加熱処理しガラス微粒
子堆積体の部分を焼結することにより、出発材である光
ファイバ用ガラス母材の外周部にさらに透明ガラス層を
形成するという方法も考えられる。
Alternatively, after forming a composite of a solid glass particle deposit for an optical fiber as a starting material in a similar manner, the composite is heat-treated in a high temperature furnace without pulling out the starting material to remove the glass particle deposit. Another possible method is to further form a transparent glass layer on the outer periphery of the starting glass base material for optical fiber by sintering.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、上記方法においては、第1図に示す如く、ガラス
微粒子生成用バーナ2を1本ないし多数本用いてガラス
微粒子堆積体4を合成している。一般にバーナ4先端か
ら燃料ガスとして例えばH2+  CH4+  c3I
ll  等、助燃ガスとして0!。
Conventionally, in the above method, as shown in FIG. 1, one or more burners 2 for producing glass particles are used to synthesize a glass particle deposit 4. Generally, the fuel gas from the tip of the burner 4 is H2+ CH4+ c3I.
ll, etc., 0 as auxiliary combustion gas! .

空気等が供給され、火炎3を形成する。この火炎3中に
ガラス原料として5iC4,GeCl4等が供給され、
加水分解反応によりガラス微粒子Sin、、  GeO
2等が生成される。該ガラス微粒子を回転する出発材1
の外周部に堆積させることにより、ガラス微粒子堆積体
4が形成される。
Air or the like is supplied to form a flame 3. 5iC4, GeCl4, etc. are supplied as glass raw materials into this flame 3,
Through hydrolysis reaction, glass fine particles Sin, GeO
2nd prize is generated. Starting material 1 for rotating the glass particles
A glass fine particle deposit 4 is formed by depositing the glass particles on the outer periphery of the glass particle.

このように回転する出発材1の外周部にガラス微粒子堆
積体4を形成する場合には、該出発材1のふれまわりが
製造されるガラス体の品質に大きく影響を与えてくる。
When the glass fine particle deposit 4 is formed on the outer periphery of the starting material 1 that rotates in this manner, the wobbling of the starting material 1 greatly affects the quality of the manufactured glass body.

すなわち出発材1の中心が回転中心とずれる現象、いわ
ゆる“ふれまわり”が生じた場合にはガラス微粒子堆積
体4は、上記出発材1の中心に対して軸対称に形成され
ず、この結果、上記出発材1を引き抜き焼結透明化した
場合には製造されるパイプに偏肉が生じてしまう。また
出発材1を引き抜かずに透明化した場合には出発材1と
なったロンドがガラス体に対して偏心してしまうという
不具合点を生ずる。
That is, when a phenomenon in which the center of the starting material 1 deviates from the center of rotation, so-called "wandering" occurs, the glass fine particle deposit 4 is not formed axially symmetrically with respect to the center of the starting material 1, and as a result, If the starting material 1 is drawn out and sintered to make it transparent, uneven thickness will occur in the manufactured pipe. In addition, if the starting material 1 is made transparent without being pulled out, a problem arises in that the rond that has become the starting material 1 becomes eccentric with respect to the glass body.

ところで、ガラス微粒子堆積体を形成し始める初期の段
階すなわち堆積開始時から堆積面が定常となるまでにお
いては、第2図に示す如く、ガラス微粒子堆積体41は
小さく、第1図に示した定常にガラス微粒子が堆積して
いる状態に比べ、火炎2が出発材1を加熱する領域が広
くなる。このため、回転する出発材1の温度は定常堆積
時に比べ高くなり、出発材1の軟化点温度を越えた場合
には特に著しく上記出発材1の加熱部に変形が生じ、出
発材の中心が回転中心からズレる、いわゆるふれまわり
が生ずることになる。
By the way, in the initial stage of forming a glass particle deposit, that is, from the start of deposition until the deposition surface becomes steady, as shown in FIG. 2, the glass particle deposit 41 is small and does not reach the steady state shown in FIG. Compared to a state in which glass fine particles are deposited on the surface, the area in which the flame 2 heats the starting material 1 becomes wider. Therefore, the temperature of the rotating starting material 1 becomes higher than that during steady deposition, and when the temperature exceeds the softening point temperature of the starting material 1, the heating part of the starting material 1 is deformed particularly markedly, and the center of the starting material is This results in deviation from the center of rotation, so-called whirling.

本発明は、こうした出発材のふれまわりを防止し、品質
の高いガラス体を製造することを目的としてなされたも
のである。
The purpose of the present invention is to prevent such starting materials from wandering around and to produce a high quality glass body.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は自らの軸を回転軸として回転している実質的に
円柱状もしくは円筒状の出発材の片端近傍から、該出発
材外周部上にガラス徹粒子合成用バーナの火炎内にガラ
ス原料を供給することにより生成させたガラス微粒子を
堆積させ始め該バーナを出発材の軸と平行に相対的に移
動させていくことにより、ガラス微粒子の堆積体を出発
材の外周部に軸方向に形成していく方法に於いて、ガラ
ス微粒子を堆積させ始める初期の段階において、火炎を
形成する燃料流量をガラス微粒子堆積状態が定常の際の
流量よりも低い流量に設定してガラス微粒子を堆積させ
始め、ガラス微粒子の堆積状態が定常になるまでの間に
、上記燃料流量を上記定常時流量まで増量する、ことに
より、出発材のふれまわりを防止し、高品質のガラス体
を製造することを特徴としている。
In the present invention, a glass raw material is introduced from near one end of a substantially cylindrical or cylindrical starting material that is rotating about its own axis into the flame of a burner for glass-through-particle synthesis onto the outer periphery of the starting material. By starting to deposit the glass particles generated by supplying the burner and moving the burner relatively parallel to the axis of the starting material, a deposit of glass particles is formed in the axial direction on the outer periphery of the starting material. In this method, at the initial stage of starting to deposit glass particles, the fuel flow rate for forming the flame is set to a lower flow rate than the flow rate when the glass particle deposition state is steady, and the glass particles are started to be deposited. The fuel flow rate is increased to the steady flow rate until the deposition state of the glass particles becomes steady, thereby preventing the starting material from wandering around and producing a high quality glass body. There is.

堆積の定常状態においては、第1図に示すように、出発
材1の周囲にガラス微粒子堆積体4が形成されており、
バーナ火炎3はガラス微粒子の加熱に使用され、しかも
このガラス微粒子堆積体4の熱伝導率は小さく、中心部
出発材(ロンド)の温度は大きくは上が′らない。
In the steady state of deposition, as shown in FIG. 1, a glass particle deposit 4 is formed around the starting material 1.
The burner flame 3 is used to heat the glass particles, and the thermal conductivity of the glass particle deposit 4 is small, so that the temperature of the central starting material (rondo) does not rise significantly.

ところが、第2図に示したような、ガラス微粒子の堆積
が少ない初期の段階では、出発材1自体の温度が上りや
すく、特に微粒子が堆積していない部分の温度はかなり
高くなる。この結果ふれまわりが大きくなる。そこで、
従来法では堆積開始時から定常堆積時の流量で行なって
いたにかえて、本発明は堆積の初期段階では燃料流量を
減らすことにより、火炎による加熱量を少なりシ、出発
材の温度を調製し、これによやふれまわりを防止できる
ものである。なお、ガラス微粒子の形成には必要な燃料
流量があるので、特にふれまわりの発生する堆積の初期
の段階においてのみ流量を小さくすることが好ましい。
However, at an early stage as shown in FIG. 2, when only a small number of glass particles are deposited, the temperature of the starting material 1 itself tends to rise, and the temperature of the part where no fine particles are deposited becomes particularly high. As a result, the rotation becomes larger. Therefore,
In contrast to the conventional method, which uses the flow rate for steady deposition from the start of deposition, the present invention reduces the fuel flow rate during the initial stage of deposition to reduce the amount of heating by the flame and adjust the temperature of the starting material. However, this can prevent it from swinging around. Note that since a fuel flow rate is required for the formation of glass fine particles, it is preferable to reduce the flow rate only particularly in the initial stage of deposition when whirling occurs.

さらに、前記のように出発材温度が軟化点を越えること
は出発材加熱部の変形とふれまわりをもたらすので、燃
料流量の初期設定値を、ガラス微粒子合成用バーナによ
り加熱される出発材の温度が該出発材の軟化点以下とな
るよう設定することは、本発明の特に好ましい実施態様
である。
Furthermore, as mentioned above, when the starting material temperature exceeds the softening point, it causes deformation and wobbling of the starting material heating section, so the initial setting value of the fuel flow rate is set to the temperature of the starting material heated by the burner for glass particle synthesis. It is a particularly preferred embodiment of the present invention to set the temperature to be below the softening point of the starting material.

以下実施例に基すいて本発明を具体的に説明する。The present invention will be specifically explained below based on Examples.

第1図に示す構成によりガラス微粒子堆積体の合成を行
った。ガラス微粒子合成用ノ・−す2に燃料として水素
、助燃ガスとして酸素を供給し、火炎3を形成する。こ
の火炎3中にガラス原料としてS i Claを投入し
、火炎加水分解によυガラス微粒子5iOz を生成し
、これを回転する出発材1の外周部に堆積させる。この
とき回転する出発材1をガラス微粒の堆積に合わせて引
き上げることによりガラス微粒子堆積体4の製造を行な
う。
A glass fine particle deposit was synthesized using the configuration shown in FIG. Hydrogen as a fuel and oxygen as an auxiliary gas are supplied to a glass particle synthesis nozzle 2 to form a flame 3. S i Cla is introduced into the flame 3 as a glass raw material, and 5 iOz of υ glass particles are produced by flame hydrolysis, and these are deposited on the outer periphery of the rotating starting material 1 . At this time, the rotating starting material 1 is pulled up as the glass particles are deposited, thereby manufacturing the glass particle deposit body 4.

上記方法によりガラス微粒子堆積体を製造する工程にお
いて、その初期の定常な堆積面が形成されるまでの期間
に燃料である水素流量を第3図に示す如く、QlからQ
oに連続的に変化させた。第3図の横軸は時間、縦軸は
燃料流量を示す。Qo  は定常ガラス微粒子堆積時の
流量、Qo は初期の流量設定値を示す。定常流量に設
定完了する時間t0  は堆積面が定常になる時間より
も短く設定した。
In the process of manufacturing a glass particle deposit by the above method, the flow rate of hydrogen, which is a fuel, is changed from Ql to Q as shown in Figure 3 during the period until the initial steady deposition surface is formed.
o was continuously changed. In FIG. 3, the horizontal axis shows time and the vertical axis shows fuel flow rate. Qo represents the flow rate during steady glass particle deposition, and Qo represents the initial flow rate setting value. The time t0 for completing the setting to a steady flow rate was set shorter than the time for the deposition surface to become steady.

以上の操作により上記出発材1のふれまわりは防止でき
、高品質なガラス体を得ることができる。上記の例では
水素流量の設定変更を連続的に行ったが、設定は連続で
ある必要はなく、不連続な設定変更でもかまわない。ま
た、燃料として、水素の列を述べたが、燃料は水素に限
定せず、aH4,C!3H,、Co  等の場合でも同
等の効果を期待できる。
By the above operations, it is possible to prevent the starting material 1 from swirling around, and a high-quality glass body can be obtained. In the above example, the setting of the hydrogen flow rate was changed continuously, but the setting need not be continuous and may be changed discontinuously. In addition, although we have mentioned a series of hydrogen as fuel, the fuel is not limited to hydrogen; aH4, C! Similar effects can be expected in the case of 3H, Co, etc.

〔実施例〕〔Example〕

第1図と同様の構成でガラス微粒子堆積体の製造を行っ
た。出発材1としては外径12m。
A glass particle deposit was manufactured using a configuration similar to that shown in FIG. The starting material 1 has an outer diameter of 12 m.

長さ5005m+の石英製のロッドを用い、バーナ2と
しては同心円状多重管バーナを使用した。
A quartz rod with a length of 5005 m+ was used, and the burner 2 was a concentric multi-tube burner.

バーナに投入したガスは定常堆積時で燃料ガスとして水
素ガス35t/min、助燃ガスとして酸素ガス35 
t / minを用い、この他シールガスおよび原料キ
ャリアガスとしてアルゴンガス17t/m1nを流した
。ガラス原料として5iOzを用い実音量として180
0 cc/ min投入したこの条件で最初から上記水
素流量でガラス微粒子4を堆積したところ、ガラス微粒
子合成用バーナ2による火炎3形成後、5分で石英製ガ
ラス出発材1は変形を始め、いわゆるふれまわりを生じ
た。ガラス微粒子堆積体4が定常的な成長を始める時間
には出発材1先端のふれまわりは出発材1の外周面の半
径方向の移動量で4園に達した。この結果、製造したガ
ラス体中の出発材1の偏心量は平均で5憾となった(比
較例)。
The gases input into the burner are 35 t/min of hydrogen gas as fuel gas and 35 t/min of oxygen gas as auxiliary combustion gas during steady deposition.
In addition, 17 t/ml of argon gas was flowed as a seal gas and a raw material carrier gas. Using 5iOz as the glass raw material, the actual volume is 180
When glass particles 4 were deposited from the beginning under these conditions with 0 cc/min input and the above hydrogen flow rate, the quartz glass starting material 1 began to deform in 5 minutes after the flame 3 was formed by the glass particle synthesis burner 2, resulting in the so-called It caused a whirlwind. At the time when the glass fine particle deposit 4 started to grow steadily, the amount of movement of the tip of the starting material 1 in the radial direction of the outer peripheral surface of the starting material 1 reached four degrees. As a result, the eccentricity of starting material 1 in the produced glass body was 5 on average (comparative example).

一方、本発明による構成により、最初の水素流量を28
1. / minに設定し、ガラス原料投入開始から5
0分間で定常流量値35t/minに連続的に変更した
。この結果、火炎5形成後の出発材1のふれ1わりは、
まったく生じず良好なガラス体を製造することが出来た
。このガラス体に対する出発材1の偏心は、出発材取り
付は時から生じていたふれ才わりのみに依存しておりα
6係以下であった(実施例)。
On the other hand, with the configuration according to the present invention, the initial hydrogen flow rate is set to 28
1. / min from the start of adding glass raw materials.
The steady flow rate value was changed continuously to 35 t/min in 0 minutes. As a result, the deflection of the starting material 1 after the flame 5 is formed is:
It was possible to produce a good glass body without any occurrence. The eccentricity of the starting material 1 with respect to the glass body is determined by the fact that the mounting of the starting material depends only on the ingenuity that has arisen since then.
It was 6 or less (Example).

〔発明の効果〕〔Effect of the invention〕

本発明により、ガラス微粒子堆積体製造時初期に発生す
る出発材の変形、これによるふれまわりを防止でき、偏
肉の少ないまだは偏心の少ない高品質のガラス体を製造
することができる。
According to the present invention, it is possible to prevent the deformation of the starting material that occurs in the initial stage of manufacturing a glass particle deposit body and the resulting wobbling, and it is possible to manufacture a high-quality glass body with less uneven thickness and less eccentricity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を概略説明する模式図、 第2図はガラス微粒子堆積体製造における初期のガラス
微粒子堆積状態を説明する模式図、第3図は本発明の方
法における水素流量の経時変化を示すグラフである。
FIG. 1 is a schematic diagram illustrating an embodiment of the present invention, FIG. 2 is a schematic diagram illustrating the initial state of glass particle deposition in the production of a glass particle deposit, and FIG. 3 is a schematic diagram illustrating the hydrogen flow rate in the method of the present invention. It is a graph showing changes over time.

Claims (1)

【特許請求の範囲】 1)自らの軸を回転軸として回転している実質的に円柱
状もしくは円筒状の出発材の片端近傍から、該出発材の
外周部上にガラス微粒子合成用バーナの火炎内にガラス
原料を供給することにより生成させたガラス微粒子を堆
積させ始め、該バーナを出発材の軸と平行に相対的に移
動させていくことにより、ガラス微粒子の堆積体を出発
材の外周部に軸方向に形成していく方法に於いて、ガラ
ス微粒子を堆積させ始める初期の段階において、火炎を
形成する燃料流量をガラス微粒子堆積状態が定常の際の
流量よりも低い流量に設定してガラス微粒子を堆積させ
始め、ガラス微粒子の堆積状態が定常になるまでの間に
上記燃料流量を上記定常時流量まで増量する、ことを特
徴とするガラス微粒子堆積体の製造方法。 2)燃料流量の初期設定値を、ガラス微粒子合成用バー
ナにより加熱される円柱状もしくは円筒状出発材の温度
が該出発材の軟化点以下になるように設定することを特
徴とする特許請求の範囲第1項記載の光ファイバ用母材
の製造方法。
[Claims] 1) The flame of a burner for glass particle synthesis is applied from near one end of a substantially cylindrical or cylindrical starting material that is rotating about its own axis to the outer periphery of the starting material. By supplying the glass raw material into the interior of the starting material and depositing the glass fine particles generated therein, and moving the burner relatively parallel to the axis of the starting material, the deposited body of glass fine particles is deposited on the outer periphery of the starting material. In the method of forming glass particles in the axial direction, in the initial stage of depositing glass particles, the fuel flow rate for forming the flame is set to a lower flow rate than the flow rate when the glass particle deposition state is steady. A method for manufacturing a glass particle deposit body, characterized in that the fuel flow rate is increased to the steady state flow rate from the time the particle starts to be deposited until the deposition state of the glass particles becomes steady. 2) The initial set value of the fuel flow rate is set so that the temperature of the cylindrical or cylindrical starting material heated by the glass particle synthesis burner is below the softening point of the starting material. A method for manufacturing an optical fiber base material according to scope 1.
JP61020233A 1986-02-03 1986-02-03 Method for manufacturing glass particulate deposit Expired - Lifetime JPH0615413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020233A JPH0615413B2 (en) 1986-02-03 1986-02-03 Method for manufacturing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020233A JPH0615413B2 (en) 1986-02-03 1986-02-03 Method for manufacturing glass particulate deposit

Publications (2)

Publication Number Publication Date
JPS62182131A true JPS62182131A (en) 1987-08-10
JPH0615413B2 JPH0615413B2 (en) 1994-03-02

Family

ID=12021462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020233A Expired - Lifetime JPH0615413B2 (en) 1986-02-03 1986-02-03 Method for manufacturing glass particulate deposit

Country Status (1)

Country Link
JP (1) JPH0615413B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6441152B2 (en) 2015-04-06 2018-12-19 信越化学工業株式会社 Method for producing porous glass base material

Also Published As

Publication number Publication date
JPH0615413B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
KR880001607B1 (en) Preparation for making of glass fiber preform
RU2284968C2 (en) Method of manufacture of the optical glass
JPS62182131A (en) Production of piled material of glass fine particle
JP4742429B2 (en) Method for producing glass particulate deposit
JP3221059B2 (en) Method for producing glass particle deposit
JPS61281037A (en) Production of deposited glass soot
JP3381309B2 (en) Method for producing glass particle deposit
JPH02133331A (en) Production of fine glass particle-deposited body
JPS627641A (en) Production of deposited body of fine glass particle
JPS62182132A (en) Production of piled material of glass fine particle
JPS593027A (en) Manufacture of glass base material for optical fiber
JPS61266318A (en) Production of glass fine granular deposit
JPH0583497B2 (en)
JPS63107825A (en) Production of synthetic quartz tube
JPS63123828A (en) Production of porous preform for optical fiber
JPH04219339A (en) Production of preform for optical fiber
JPS604978Y2 (en) Glass particle synthesis torch
JPH0397632A (en) Production of porous glass preform for optical fiber
JPS62162646A (en) Production of glass fine particle deposit
JPS6212627A (en) Production of porous parent material for optical fiber
JPH0563417B2 (en)
JPH09301719A (en) Focusing multiple burner for synthesis of glass fine particle
JPH0712953B2 (en) Method for manufacturing base material for optical fiber
JPH0383830A (en) Optical fiber base material and preparation its
JPH0784331B2 (en) Method for manufacturing glass base material for optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term