JPH0397632A - Production of porous glass preform for optical fiber - Google Patents
Production of porous glass preform for optical fiberInfo
- Publication number
- JPH0397632A JPH0397632A JP23275789A JP23275789A JPH0397632A JP H0397632 A JPH0397632 A JP H0397632A JP 23275789 A JP23275789 A JP 23275789A JP 23275789 A JP23275789 A JP 23275789A JP H0397632 A JPH0397632 A JP H0397632A
- Authority
- JP
- Japan
- Prior art keywords
- burner
- starting material
- glass
- preform
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005373 porous glass Substances 0.000 title claims abstract description 38
- 239000013307 optical fiber Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000011521 glass Substances 0.000 claims abstract description 34
- 239000007858 starting material Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 13
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 12
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 12
- 239000010419 fine particle Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 52
- 239000002245 particle Substances 0.000 claims description 17
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 5
- 239000000446 fuel Substances 0.000 claims description 4
- 238000006460 hydrolysis reaction Methods 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 2
- 230000007062 hydrolysis Effects 0.000 claims 1
- 239000004071 soot Substances 0.000 abstract description 4
- 238000005336 cracking Methods 0.000 abstract description 3
- 230000018044 dehydration Effects 0.000 abstract description 3
- 238000006297 dehydration reaction Methods 0.000 abstract description 3
- 238000004017 vitrification Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000002131 composite material Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005267 amalgamation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000007524 flame polishing Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001089 thermophoresis Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/06—Concentric circular ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/64—Angle
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/70—Control measures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光ファイバ用多孔質ガラス母材の製造方法に関
するものであり、詳しくはVAD法(気相軸付け法)、
OvPO法(外付け法)などのスート生成法により、ガ
ラスロッド外周部に多孔質ガラス母材を合成して光ファ
イバ用ブリフォームを製造する方法の改良に関するもの
である。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a porous glass base material for optical fibers, and more specifically, a method for manufacturing a porous glass base material for optical fibers, and more specifically, a method for manufacturing a porous glass base material for optical fibers.
The present invention relates to an improvement in a method for manufacturing an optical fiber preform by synthesizing a porous glass preform on the outer periphery of a glass rod using a soot generation method such as the OvPO method (external attachment method).
従来、石英系ガラス管もしくは光ファイバ用母材の製造
法として、特開昭48−73522号公報に示されるよ
うな、いわゆる“外付け法”がある。Conventionally, as a method for manufacturing a quartz-based glass tube or an optical fiber base material, there is a so-called "external attachment method" as disclosed in Japanese Patent Application Laid-Open No. 73522/1983.
この方法は、回転するカーボン、石英系ガラスあるいは
アルミナなどの耐火性出発材の外周部にSi C 14
などのガラス微粒子を堆積させていき、所定量堆積させ
たあと堆積をやめ、出発材を引き抜くことで、パイプ状
ガラス集合体を形成し、このパイプ状ガラス集合体を電
気炉中で透明ガラス化し、パイプ状ガラスを得ている。This method uses SiC14 on the outer periphery of a rotating refractory starting material such as carbon, quartz glass, or alumina.
After a predetermined amount of glass particles have been deposited, the deposition is stopped and the starting material is pulled out to form a pipe-shaped glass aggregate, and this pipe-shaped glass aggregate is turned into transparent vitrification in an electric furnace. , we have obtained pipe-shaped glass.
同様の方法で、出発材として中実の光ファイバリガラス
母材を用い、出発材とその外周部の形成された多孔質ガ
ラス母材の複合体を形成した後、該複合体をそのまま電
気炉で加熱処理し、多孔質ガラス母材の部分を透明化す
ることにより、出発材の外周部にさらに透明ガラス層を
形成するという方法も考えられる。In a similar manner, a solid optical fiber glass base material is used as a starting material to form a composite of the starting material and a porous glass base material with its outer periphery formed, and then the composite is directly heated in an electric furnace. Another possible method is to further form a transparent glass layer on the outer periphery of the starting material by heat treating the porous glass base material to make the porous glass base material transparent.
上記出発材の外周に多孔質外周母材を合成する方法とし
て、出発材の片端部付近から多孔質外周母材を堆積させ
始め、バーナを出発材に対して相対的に出発材回転抽と
平行に、徐々に移動していく方法がある。バーナとして
同心円状4重管バーナに代表される単一火炎バーナを用
いる場合には、特開昭61−186240号公報に示さ
れているように、バーナの中心軸と出発母材回転軸のな
す角を20〜70°の範囲に設定して、多孔質外周母材
の合成が行われた。As a method for synthesizing the porous outer peripheral base material on the outer periphery of the above-mentioned starting material, the porous outer peripheral base material is deposited from near one end of the starting material, and the burner is set parallel to the starting material rotation drawing relative to the starting material. There is a way to move gradually. When using a single flame burner, such as a concentric quadruple tube burner, as shown in JP-A-61-186240, the central axis of the burner and the rotating shaft of the starting base material are The porous outer peripheral base material was synthesized with the angle set in the range of 20 to 70°.
従来、単一火炎バーナを用いた多孔質ガラス母材の合戊
では、合戒される多孔質ガラス母材の外径は、たかだか
100mmφ程度であり、多孔質外周母材の合戊速度も
1〜2g/分が限界である。Conventionally, in the welding of porous glass preforms using a single flame burner, the outer diameter of the porous glass preforms to be assembled is approximately 100 mmφ at most, and the welding speed of the porous outer peripheral preforms is also 1. ~2 g/min is the limit.
このため、光ファイバ生産の経済性向上のため、合成速
度の向上が種々検討され、特公昭62−50418号公
報に示されるように、いわゆる多重火炎バーナが開発さ
れた。この多重火炎バーナを用いて、出発材の外周に多
孔質ガラス母材を合成する方法では、大径の母材が合成
し易く、合戊速度は2g/分以上に容易に上げることが
できるようになった。Therefore, in order to improve the economic efficiency of optical fiber production, various methods of increasing the synthesis speed were investigated, and a so-called multiple flame burner was developed as shown in Japanese Patent Publication No. 62-50418. In this method of synthesizing a porous glass base material around the outer periphery of the starting material using this multiple flame burner, it is easy to synthesize a large diameter base material, and the synthesis speed can be easily increased to 2 g/min or more. Became.
ところが、バーナにより生成されるガラス微粒子の付着
効率が良いために、多量のガラス原料ガスを投入すると
、母材外径が大きくなりすぎ、母材が合成中あるいは合
戊後の電気炉での透明ガラス化中に割れやすいという問
題が生じた。However, because the adhesion efficiency of the glass particles produced by the burner is good, if a large amount of frit gas is introduced, the outer diameter of the base material becomes too large, and the base material becomes transparent in the electric furnace during synthesis or after amalgamation. A problem arose in that it was easily broken during vitrification.
この理由としては、母材外径が大きくなるに従って、多
孔質ガラス母材のカサ密度(空孔を含んだ微粒子集合体
の密度を表す、g/a/)が小さくなり、自重を支えら
れなくなる、あるいは、熱衝撃に弱くなるためと考えら
れた。従来、燃焼ガス流量の調整などで割れ防止を試み
てきたが、どれも抜本的な解決策となり得なかった。多
重管バーナの合成速度向」二に有利な特性を生かすため
にも、上記問題点を解決する必要があった。The reason for this is that as the outer diameter of the porous glass base material increases, the bulk density (g/a/, which represents the density of fine particle aggregates containing pores) of the porous glass base material decreases, making it unable to support its own weight. Or, it was thought that this was because it became vulnerable to thermal shock. In the past, attempts have been made to prevent cracking by adjusting the flow rate of combustion gas, but none of them have been able to provide a fundamental solution. In order to take advantage of the advantageous characteristics of the multi-tube burner in terms of composite speed, it was necessary to solve the above problems.
本発明は上述した問題点の解消を目的としたものであっ
て、多重管バーナを用いて合戊速度大で母材を合成して
、しかも割れ等なく安定に製造できる方法を提供するも
のである。The present invention aims to solve the above-mentioned problems, and provides a method for synthesizing a base material at a high mixing speed using a multi-tube burner, and also capable of producing it stably without cracking. be.
上記問題点を解決するための、本発明の構成は同心円状
多重管バーナであって、中心部に少なくとも原料噴出ポ
ート、燃料噴出ポート、支燃性ガス噴出ポートを持つガ
ラス微粒子合成用ポートを有し、この外周に上記ガラス
微粒子合成用ポートよりもガス噴出方向に突き出した、
少なくとも燃料噴出ポートと支燃性ガス噴出ポートとを
持つ火炎形成用ポートを1組あるいは複数組有する多重
火炎方式の多孔質ガラス母材合成用バーナより、気体の
ガラス原料を噴出し、火炎中で加水分解反応または酸化
反応させて、これにより生成するガラス微粒子を、自ら
の軸を回転軸として回転している実質的に円柱状あるい
は円筒状の出発材の片端近傍から堆積させ始め、該バー
ナを出発材の軸と並行に相対的に移動させていくことに
より、ガラス微粒子の堆積体を出発材の外周部に軸方向
に形成していく方法において、該バーナの中心軸と出発
材の回転軸のなす角度が60″より大きく90°より小
さいことを特徴とする光ファイバ用多孔質ガラス母材の
製造方法である。In order to solve the above problems, the configuration of the present invention is a concentric multi-tube burner, which has a port for synthesizing glass particles having at least a raw material injection port, a fuel injection port, and a combustion-supporting gas injection port in the center. On this outer periphery, there is a hole protruding from the glass particle synthesis port in the gas ejection direction.
A gaseous glass raw material is ejected from a burner for synthesizing a porous glass base material using a multiple flame method, which has one or more sets of flame forming ports each having at least a fuel ejection port and a combustion-supporting gas ejection port. The glass particles produced by the hydrolysis reaction or oxidation reaction begin to be deposited near one end of the substantially cylindrical or cylindrical starting material, which is rotating around its own axis, and the burner is turned on. In the method of forming a deposit of glass particles in the axial direction on the outer periphery of the starting material by relatively moving the starting material in parallel with the axis of the starting material, the center axis of the burner and the rotation axis of the starting material are This is a method for producing a porous glass preform for an optical fiber, characterized in that the angle formed by the preform is larger than 60'' and smaller than 90°.
上記バーナの中心軸と出発材の回転軸のなす角度は、よ
り安定な母材合成が保証できる点で、70〜856であ
ることが特に好ましい。The angle between the central axis of the burner and the rotating axis of the starting material is particularly preferably 70 to 856, since more stable base material synthesis can be ensured.
多孔質ガラス母材合成用バーナにより出発材の外周に出
発材片端近傍から、ガラス微粒子を合成し始め、バーナ
を出発材回転軸と平行に相対的に移動することにより、
多孔質ガラス母材を合戒する方法では、第1図に示すよ
うな構成がとられる。By starting to synthesize glass particles on the outer periphery of the starting material near one end of the starting material using a porous glass base material synthesis burner, and moving the burner relatively parallel to the starting material rotation axis,
In the method of preparing a porous glass base material, a configuration as shown in FIG. 1 is adopted.
一般に、出発材に対してバーナ中心軸が角度θとなるよ
うにバーナ2が設定される。バーナ2中には、ガラス原
料とて、si C /,、Si H C l’s, S
iHtCb −. Si Hiなどが投入され、火炎中
で加水分解反応あるいは酸化反応により、ガラス微粒子
SIOsが生成される。このとき、屈折率、粘性、熱膨
張係数を変えるために、GeCl+、Si F+、CF
4、S F,、POCb、BBr,などが添加されるこ
ともある。Generally, the burner 2 is set so that the burner center axis forms an angle θ with respect to the starting material. In the burner 2, glass raw materials such as Si C /, Si H C l's, S
iHtCb-. Si Hi, etc. are introduced, and glass fine particles SIOs are generated by a hydrolysis reaction or an oxidation reaction in a flame. At this time, in order to change the refractive index, viscosity, and thermal expansion coefficient, GeCl+, Si F+, CF
4, SF, POCb, BBr, etc. may be added.
火炎中で生成されたSiOm粒子は多孔質ガラス母材5
の成長而4に付着し、このガラス微粒子の付着に合わせ
て多孔質ガラス母材5は、引上げ速度v cml分で引
上げられる。このとき1分間に戊長面4に付着するガラ
ス微粒子の重量、すなわち、合成速度M (g/分)は
多孔質ガラス母材5の外径D(cm)およびカサ密度ρ
( g/crl )により下記(1)式のような関係を
持つ。The SiOm particles generated in the flame form a porous glass matrix 5.
The porous glass base material 5 is pulled up at a pulling speed v cml in accordance with the adhesion of the glass fine particles. At this time, the weight of glass fine particles adhering to the oblong surface 4 per minute, that is, the synthesis rate M (g/min) is the outer diameter D (cm) of the porous glass base material 5 and the bulk density ρ.
(g/crl), the relationship is as shown in equation (1) below.
M/ v ” D” D =11)すなわち
、カサ密度ρは合成速度Mに比例し、引上げ速度Vおよ
び外外径Dの2乗に反比例していると考えられる。M/v"D"D=11) That is, the bulk density ρ is considered to be proportional to the composite speed M and inversely proportional to the pulling speed V and the square of the outside diameter D.
本発明者らは、この関係に注目し、2重火炎バーナにお
いて、カサ密度を大きくする方法について、種々検討し
た。ところが、単一火炎の場合と異なり、2重火炎バー
ナにおいてバーナ角度θが小さい場合には、第2図に示
す如く成長面は平らとなり、ガラス母材外径Dが大きく
なるために、カサ密度ρが小さくなってしまうことがわ
かった(第3図)。The present inventors paid attention to this relationship and conducted various studies on methods for increasing the bulk density in a double flame burner. However, unlike the case of a single flame, when the burner angle θ is small in a double flame burner, the growth surface becomes flat as shown in Figure 2, and the outer diameter D of the glass base material increases, resulting in a decrease in bulk density. It was found that ρ became small (Figure 3).
そこで外径Dが大きい分だけρを大きくするために、+
1)式よりp tx M /[D ” vlであるから
、引き上げ速度Vを小さくしようと試みた。一般に火炎
温度を上げると合成される母材が硬くなる(多孔質母材
の気孔部が少なくる)ため、母材が成長する速度が遅く
なり引き上げ速度は小さくなる。そこで引き上げ速度V
を小さくするために火炎温度を上げる、すなわち燃焼ガ
ス」1,の流量を上げてみると、これに伴って外径Dが
第4図に示すように、さらに太くなってしまうことが判
った。Therefore, in order to increase ρ by the larger outer diameter D, +
1) From the formula, p tx M / [D '' vl, so we tried to reduce the pulling rate V. Generally, when the flame temperature is raised, the base material to be synthesized becomes harder (the porous base material has fewer pores, ), the growth rate of the base material slows down and the pulling speed decreases.Therefore, the pulling speed V
It was found that when the flame temperature was increased, that is, the flow rate of the combustion gas 1 was increased in order to reduce the diameter D, the outer diameter D became larger as shown in FIG.
すなわち、多重火炎バーナの角度θが小さい場合には上
記(11式はかならずしも成立せず、外径Dと引上げ速
度Vに相関があり、容易にカサ密度ρを上げることがで
きなかった。That is, when the angle θ of the multiple flame burner is small, the above equation (11) does not necessarily hold, and there is a correlation between the outer diameter D and the pulling speed V, and it is not possible to easily increase the bulk density ρ.
この原因は次のように考えられた。多重火炎バーナの場
合には、第5図に示す如く、外側の火炎が母材全体を包
むため、ガラス微粒子の付着を促進するサーモホレシス
効果8(微細な粒子が温度の高い方から低い方、すなわ
ち、成長面に向かって力を受け移動する現象)が大きく
、大径の母材が合戒されやすいと考えられる。このため
、火炎温度を上げれば、ますます付着しやすくなり、外
周まで粒子が付着することになると考えられる。The reason for this was thought to be as follows. In the case of a multiple flame burner, as shown in Fig. 5, the outer flame surrounds the entire base material, which promotes the adhesion of glass fine particles. It is thought that large-diameter base materials are more likely to coalesce because of their large diameter (the phenomenon of movement toward the growth surface under the influence of force). For this reason, it is thought that if the flame temperature is raised, particles will become more likely to adhere, and particles will adhere to the outer periphery.
単一火炎バーナの場合には、上記外側火炎が存在しない
ために、ガラス微粒子の付着領域は限られ、このため火
炎温度を上げても、母材外径の増大は小さかった。この
ため、バーナ角度θが小さい場合でも容易にカサ密度の
調整を行なうことができた。逆にバーナ角度θを大きく
しすぎると、外側火炎がないために第6図に示すように
、出発材近傍を加熱することができず、出発材近傍にカ
サ密度の小さい柔らかい部分を形成することになり、安
定な母材合戒ができなかったわけである。In the case of a single flame burner, since the above-mentioned outer flame does not exist, the adhesion area of the glass particles is limited, and therefore, even if the flame temperature is increased, the increase in the outer diameter of the base material is small. Therefore, even when the burner angle θ was small, the bulk density could be easily adjusted. On the other hand, if the burner angle θ is too large, the vicinity of the starting material cannot be heated because there is no outer flame, as shown in Figure 6, and a soft part with low bulk density is formed near the starting material. Therefore, it was not possible to form a stable matrix.
このように、火炎構造の違いにより、多孔質ガラス母材
の合成状況が大きく変わ?ていると考えられた。In this way, the synthesis situation of porous glass base material changes greatly due to the difference in flame structure. It was thought that
一方、多重管バーナでバーナ角度θを大きくずると、第
1図に示す如く、成長はバーナ先端と平行状の形状とな
り、成長方向に比較的尖った形状となる。この場合、!
1宜流量を増量して火炎温度を上げると、成長速度はあ
まり変化せず、第7図に示すようにカサ密度が大きくな
ることがわかった。On the other hand, if the burner angle θ is greatly shifted in a multi-tube burner, the growth becomes parallel to the tip of the burner and becomes relatively sharp in the growth direction, as shown in FIG. in this case,!
It was found that when the flow rate was increased to raise the flame temperature, the growth rate did not change much and the bulk density increased as shown in FIG. 7.
すなわち、バーナ角度θにより、多孔質ガラス母材の成
長面が変化し、このために角度θが大きいほどカサ密度
ρを大きくしやすい。従って本発明においては、バーナ
角度θは60〜90°が好ましく、特に好ましくは70
〜85°である。That is, the growth surface of the porous glass base material changes depending on the burner angle θ, and therefore, the larger the angle θ, the easier it is to increase the bulk density ρ. Therefore, in the present invention, the burner angle θ is preferably 60 to 90 degrees, particularly preferably 70 degrees.
~85°.
60″未満では上記したρを大きくする効果を得ること
に困難があり、90″を越えると母材の成長面ば次第に
テーバが大きくなる(テーバ部が長くなる)傾向を示し
、不都合である。このテーバ部は非定常部であり、製品
として使用することのできない部分となるからである。If it is less than 60'', it is difficult to obtain the above-mentioned effect of increasing ρ, and if it exceeds 90'', the growth surface of the base material tends to gradually increase the taper (the taper portion becomes longer), which is disadvantageous. This is because this tapered portion is an unsteady portion and cannot be used as a product.
一般に、カサ密度ρは割れにくくするためには、0.
2 2 Klcd以上が必要となり、その後の透明化、
脱水工程で良好な透明ガラスを得るためには、0.6
g/cl以下が好ましい。Generally, the bulk density ρ should be 0.0 to make it difficult to break.
2 2 Klcd or more is required, and subsequent transparency,
In order to obtain good transparent glass in the dehydration process, 0.6
g/cl or less is preferable.
従って、本発明では角度θを60〜90’にして、ρが
上記の好適な範囲に入るように合成速度Mと引上速度V
を調整して合成して行く。このようにすることで所期の
効果を得られることを以下の実施例に具体的に説明する
。Therefore, in the present invention, the angle θ is set to 60 to 90', and the composite speed M and the pulling speed V
Adjust and synthesize. The fact that the desired effect can be obtained by doing so will be specifically explained in the following examples.
実施例l
同心円状で2重火炎構造をした8重管バーナを用いて、
屈折率差0.3%を有するクラッド/コア比5. 0の
石英ガラスロツドを出発材とし、この外周部に多孔質ガ
ラスロツドを合成した。出発石英ガラスロッドは予め火
炎研磨により表面を平滑、清浄化したものを用いた。8
重管バーナには、中心から原料としてSt C l+、
燃焼ガスとして!41,不活性ガスとしてAr、支燃性
ガスとしてOt,この外周にArSH*s Oxの順に
流した。それぞれの流量はSiC lt:5j!/分、
lit:11 1 /分、 八r:31/分、Ot
:501/分を流した。この8重管バーナを出発ロッド
回転軸に対して80°に設定したところ、引き上げ速度
1. 8 mm /分で成長面が定常となり、多孔質ガ
ラス母材の外径は1 4 5mmとなり、安定な製造が
できた。このときのカサ密度を評価したところ、0.
2 9 grcdと良好であった。多孔質ガラス母材合
成後、電気炉中で1600°の設定温度で透明化を行っ
たところ、気泡のない、透明な光ファイバ用プリフォー
ムを得ることができた。Example 1 Using an 8-tube burner with a concentric double flame structure,
Cladding/core ratio with refractive index difference 0.3%5. A porous glass rod was synthesized around the outer periphery of a quartz glass rod of No. 0 as a starting material. The starting quartz glass rod used had its surface smoothed and cleaned by flame polishing in advance. 8
In the heavy pipe burner, StCl+, StCl+,
As a combustion gas! 41, Ar as an inert gas, Ot as a combustion-supporting gas, and ArSH*sOx were flowed around the outer circumference in this order. Each flow rate is SiC lt:5j! / minute,
lit: 11 1/min, 8r: 31/min, Ot
:501/min. When this eight-pipe burner was set at 80 degrees with respect to the starting rod rotation axis, the pulling rate was 1. The growth surface became steady at 8 mm/min, and the outer diameter of the porous glass base material was 145 mm, allowing stable production. When the bulk density at this time was evaluated, it was found to be 0.
It was good with 2 9 grcd. After synthesizing the porous glass base material, it was made transparent in an electric furnace at a set temperature of 1600°, and a transparent optical fiber preform without bubbles could be obtained.
実施例2
実施例lと同様の構戊で、バーナ角度75°に設定し、
クラッド/コア比4.7の石英ガラスロツドの外周部に
多孔質ガラスロッドを合成した。バーナ構造、ガス流量
などは、同一条件とした。この結果、引上げ速度は1.
65(1)m/分で戒長面が定常となり、多孔質ガラス
母材の外径は148Bとなり、安定な製造ができた。製
造後、カサ密度の評価を行ったところ、0. 3 1
tr/cnfであった。この母材についても1600℃
の高温炉で透明化したところ、気泡不整のない良好な光
ファイバ用ブリフォームを得ることができた。Example 2 Same structure as Example 1, burner angle set at 75°,
A porous glass rod was synthesized around the outer periphery of a quartz glass rod with a cladding/core ratio of 4.7. The burner structure, gas flow rate, etc. were kept under the same conditions. As a result, the pulling speed was 1.
At a speed of 65 (1) m/min, the long plane became steady, and the outer diameter of the porous glass preform was 148B, allowing stable production. After manufacturing, the bulk density was evaluated and found to be 0. 3 1
It was tr/cnf. This base material is also heated to 1600℃.
When the material was made transparent in a high-temperature furnace, it was possible to obtain a good preform for optical fiber with no bubble irregularities.
比較例!
実施例l、2と同様の2重火炎8M管バーナを用い、バ
ーナ角度40’でクラッド/コア比5. 0の石英ガラ
ス上に多孔質ガラス母材の合成を行った。実施例1.2
との比較をするために、ガス流量も同一条件とした。こ
の結果、母材の外径は195mmと大径となり、カサ密
度が小さいことが予測された。約2時間スス付けしたと
ころで、母材外表面にクラックが発生してしまった。合
成された多孔質ガラス母材のカサ密度を評価したところ
、0. 1 9 gladと低く、特に表面近くではo
. 1 glad程度と柔らかいススであることがわか
った。Comparative example! A dual flame 8M tube burner similar to Examples 1 and 2 was used, with a burner angle of 40' and a clad/core ratio of 5. A porous glass base material was synthesized on No. 0 quartz glass. Example 1.2
In order to make a comparison, the gas flow rate was also set to the same conditions. As a result, the outer diameter of the base material was as large as 195 mm, and it was predicted that the bulk density would be small. After applying soot for about 2 hours, cracks appeared on the outer surface of the base material. When the bulk density of the synthesized porous glass base material was evaluated, it was found to be 0. It is as low as 19 grad, especially near the surface.
.. It was found that the soot was soft, about 1 grad.
以上、説明したように2重火炎構造のパーナを用いて出
発材の外周に多孔質ガラス母材を合成する方法において
、バーナの中心軸と出発材の回転軸の角度θを60〜9
0°、好ましくは70°より太き<90’より小さく、
さらに好ましくは設定することにより、多孔質ガラス母
材を容易に合成できる効果がある。As explained above, in the method of synthesizing a porous glass base material on the outer periphery of a starting material using a burner with a double flame structure, the angle θ between the central axis of the burner and the rotation axis of the starting material is set to 60 to 9
0°, preferably thicker than 70° and smaller than 90';
More preferably, by setting it, there is an effect that the porous glass base material can be easily synthesized.
本発明の実施例では、クラッド/コア比を4.7〜5.
0の石英がラスロッドの外周に多孔質ガラスロンドを合
成する場合について説明したが、出発ロッドが放物型の
屈折率分布を持つGl型光ファイバ用コアロツドであっ
ても、またはカーボンなどの耐火性ロッドであっても、
本発明の効果は変わらない。In the embodiment of the present invention, the clad/core ratio is 4.7 to 5.
Although we have described the case where a porous glass rod is synthesized on the outer periphery of a lath rod made of 0 quartz, even if the starting rod is a core rod for a Gl-type optical fiber with a parabolic refractive index distribution, or a fire-resistant material such as carbon Even if it is a rod,
The effects of the present invention remain unchanged.
また、当然のことながら、多孔質ガラス母材合成後の熱
処理において、脱水を行なうあるいはフッ素を添加する
などの工程を経る場合でも同様である。Naturally, this also applies to cases where steps such as dehydration or addition of fluorine are performed in the heat treatment after synthesis of the porous glass base material.
同心円状8重管バーナの場合に限らず、2重火炎構造あ
るいは、多重火炎構造のバーナについても、本発明の効
果は変わらない。The effects of the present invention are not limited to the case of a concentric eight-pipe burner, but also to a burner having a double flame structure or a multiple flame structure.
本発明は特に合成速度4g/分以上の大型母材を合成す
る場合に有効である。The present invention is particularly effective when synthesizing large base materials at a synthesis rate of 4 g/min or more.
第1図は本発明の構成を表す説明図、第2図は単一火炎
バーナの場合と同様にバーナ角度θを小さくした場合の
母材成長面を説明する図、第3図は一般に外径Dとカサ
密度ρの関係を表す図、第4図は2重火炎バーナの場合
、バーナ角度θが小さいときの111流量と外径Dの関
係を表す図、第5図は2重火炎バーナの場合のガラス粒
子付着の様子を表す図、第6図は2重火炎バーナの場合
のθを大きくしたときのH!流量と外径Dの関係を表す
図である。
図中、lは出発材、2はバーナ、3はバーナにより形成
される火炎、4は多孔質ガラス母材の成長面、5は多孔
質ガラス母材、6は2重火炎バーナにより形成される外
側火炎、7は内側火炎、8はガラス微粒子に働くサーモ
ホレシス力の方向、9は火炎中で形成されるガラス微粒
子を表す。Fig. 1 is an explanatory diagram showing the configuration of the present invention, Fig. 2 is a diagram illustrating the growth surface of the base material when the burner angle θ is reduced as in the case of a single flame burner, and Fig. 3 is an explanatory diagram showing the outer diameter in general. Figure 4 shows the relationship between 111 flow rate and outer diameter D when the burner angle θ is small for a double flame burner, and Figure 5 shows the relationship between D and bulk density ρ. Figure 6 shows the state of glass particle adhesion in the case of a double flame burner when θ is increased. It is a figure showing the relationship between flow volume and outer diameter D. In the figure, l is the starting material, 2 is the burner, 3 is the flame formed by the burner, 4 is the growth surface of the porous glass base material, 5 is the porous glass base material, and 6 is the flame formed by the double flame burner. 7 is the outer flame, 7 is the inner flame, 8 is the direction of the thermophoresis force acting on the glass particles, and 9 is the glass particles formed in the flame.
Claims (1)
とも原料噴出ポート、燃料噴出ポート、支燃性ガス噴出
ポートを持つガラス微粒子合成用ポートを有し、この外
周に上記ガラス微粒子合成用ポートよりもガス噴出方向
に突き出した、少なくとも燃料噴出ポートと支燃性ガス
噴出ポートとを持つ火炎形成用ポートを1組あるいは複
数組有する多重火炎方式の多孔質ガラス母材合成用バー
ナより、気体のガラス原料を噴出し、火炎中で加水分解
反応または酸化反応させて、これにより生成するガラス
微粒子を、自らの軸を回転軸として回転している実質的
に円柱状あるいは円筒状の出発材の片端近傍から堆積さ
せ始め、該バーナを出発材の軸と並行に相対的に移動さ
せていくことにより、ガラス微粒子の堆積体を出発材の
外周部に軸方向に形成していく方法において、該バーナ
の中心軸と出発材の回転軸のなす角度が60゜より大き
く90゜より小さいことを特徴とする光ファイバ用多孔
質ガラス母材の製造方法。(1) A concentric multi-tube burner, which has a port for synthesizing glass particles having at least a raw material injection port, a fuel injection port, and a combustion-supporting gas injection port in the center, and the port for synthesizing glass particles on its outer periphery. A multi-flame type porous glass base material synthesis burner that has one or more sets of flame forming ports having at least a fuel injection port and a combustion-supporting gas injection port protrudes in the gas injection direction. One end of a substantially cylindrical or cylindrical starting material that is rotating around its own axis by ejecting glass raw materials and subjecting them to a hydrolysis or oxidation reaction in a flame, thereby producing fine glass particles. In a method in which a deposit of glass fine particles is formed in the axial direction on the outer periphery of the starting material by starting the deposition from nearby and moving the burner relatively in parallel with the axis of the starting material, the burner A method for producing a porous glass preform for an optical fiber, characterized in that the angle between the central axis of the starting material and the rotational axis of the starting material is greater than 60° and smaller than 90°.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23275789A JPH0397632A (en) | 1989-09-11 | 1989-09-11 | Production of porous glass preform for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23275789A JPH0397632A (en) | 1989-09-11 | 1989-09-11 | Production of porous glass preform for optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0397632A true JPH0397632A (en) | 1991-04-23 |
Family
ID=16944278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23275789A Pending JPH0397632A (en) | 1989-09-11 | 1989-09-11 | Production of porous glass preform for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0397632A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612701A1 (en) * | 1993-02-22 | 1994-08-31 | Litespec, Inc. | Vapour axial deposition process for making optical fibre preforms |
-
1989
- 1989-09-11 JP JP23275789A patent/JPH0397632A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612701A1 (en) * | 1993-02-22 | 1994-08-31 | Litespec, Inc. | Vapour axial deposition process for making optical fibre preforms |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1097737C (en) | Process for producing optical fiber preform | |
US5674305A (en) | Method for flame abrasion of glass preform | |
US4765815A (en) | Method for producing glass preform for optical fiber | |
JPH0397632A (en) | Production of porous glass preform for optical fiber | |
JP4742429B2 (en) | Method for producing glass particulate deposit | |
JP4097982B2 (en) | Method for producing porous preform for optical fiber | |
JPH02204340A (en) | Production of optical fiber base material | |
JP3221059B2 (en) | Method for producing glass particle deposit | |
AU646490B2 (en) | Method for producing glass article | |
JP4398114B2 (en) | Manufacturing method of glass base material for optical fiber with less unevenness | |
JP3917022B2 (en) | Method for producing porous preform for optical fiber | |
JP2000272929A (en) | Production of optical fiber preform | |
JP2005247636A (en) | Method of manufacturing porous preform for optical fiber and glass preform | |
JP3381309B2 (en) | Method for producing glass particle deposit | |
JP3587032B2 (en) | Manufacturing method of optical fiber preform | |
JPH0583497B2 (en) | ||
JPS60260433A (en) | Manufacture of base material for optical fiber | |
JPH05345621A (en) | Production of glass article | |
JP2006199526A (en) | Method of manufacturing optical fiber preform | |
JPH0583499B2 (en) | ||
JPH0712951B2 (en) | Method for manufacturing base material for optical fiber | |
JPH0383829A (en) | Preparation of base material for optical fiber | |
JPS62182131A (en) | Production of piled material of glass fine particle | |
JPH0563417B2 (en) | ||
JPS63123828A (en) | Production of porous preform for optical fiber |