JPS63123828A - Production of porous preform for optical fiber - Google Patents

Production of porous preform for optical fiber

Info

Publication number
JPS63123828A
JPS63123828A JP26836786A JP26836786A JPS63123828A JP S63123828 A JPS63123828 A JP S63123828A JP 26836786 A JP26836786 A JP 26836786A JP 26836786 A JP26836786 A JP 26836786A JP S63123828 A JPS63123828 A JP S63123828A
Authority
JP
Japan
Prior art keywords
outer diameter
burner
base material
porous
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26836786A
Other languages
Japanese (ja)
Inventor
Masumi Ito
真澄 伊藤
Toshio Danzuka
弾塚 俊雄
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26836786A priority Critical patent/JPS63123828A/en
Publication of JPS63123828A publication Critical patent/JPS63123828A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the titled preform of having a large bulk density and a desired shape in high and stable yield of synthesis while preventing dropping and cracking, by using a multiple-pipe burner having a nozzle with an outer diameter of a specific ratio to that of a porous preform to be prepared. CONSTITUTION:A concentric multiple-pipe burner 2 is constructed in such a way that, for example, raw material SiCl4 is fed to a central boat 1 at about 1l/min flow rate, H2 to a boat 2 at about 10l/min flow rate, Ar to a boat 3 at about 3l/min flow rate and O2 is fed to a boat 4 at about 20l/min flow rate and the outer diameter of the concentric multiple-pipe burner is 0.2-0.5 times as large as the outer diameter of a porous preform to be prepared. The burner 2 is set in the reactor 1 of a reaction apparatus for the vapor-phase axial deposition method of a porous preform for optical fiber; for example at the flow rates above-mentioned, each raw material gas and carrier gas are fed to the reactor; the raw material gases are hydrolyzed in an oxyhydrogen flame 3 to synthesize glass fine particles, which are deposited at the axial end part of a starting material at a revolving shaft 4, and the deposited material is grown in the revolving- and axial directions to give the aimed preform 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、火炎中での加水分解反応によりガラス微粒子
を合成し、これを堆積させることにより光ファイバ用多
孔質母材を製造するいわゆるスート法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the so-called soot method in which a porous base material for optical fibers is manufactured by synthesizing fine glass particles through a hydrolysis reaction in a flame and depositing the same. It is something.

従来の技術 光ファイバの製造方法としては、所期の組成の光ファイ
バ用多孔質母材を作製し、その光ファイバ用多孔質母材
を透明化して線引きする方法と、所期の組成のガラスロ
ッドを作製し、そのガラスロッドにガラスジャケットを
被せて一体化したあと線引きする方法とが主な方法であ
る。
Conventional methods for producing optical fibers include two methods: producing a porous preform for optical fiber with a desired composition, making the porous preform for optical fiber transparent and drawing it, and producing glass with the desired composition. The main method is to manufacture a rod, cover the glass rod with a glass jacket, integrate it, and then draw it.

上記した光ファイバ用多孔質母材は、火炎加水分解反応
を利用して、ガラス原料ガスからガラス微粒子を生成し
て、出発材料に堆積して作製される。
The above-mentioned porous preform for optical fibers is produced by generating glass particles from frit gas using a flame hydrolysis reaction and depositing them on a starting material.

略述するならば、このような光ファイバ用多孔質母材は
、第1図に示すように、反応容器1内においてバーナ2
から燃焼ガス、ガラス原料を噴出させ、燃焼ガスの燃焼
により生じる酸水素火炎3中においてガラス原料を加水
分解反応させ、その結果生成したガラス微粒子を、回転
する出発材上に堆積させ、多孔質母材5を成長させる方
法が用いられている。第1図は、いわゆる軸付は法を示
しおり、ガラス微粒子は、回転する出発材の軸端部に堆
積され、堆積体は、出発材の回転方向並びに軸方向に成
長する。
Briefly, as shown in FIG.
The combustion gas and the glass raw material are ejected from the combustion gas, and the glass raw material is subjected to a hydrolysis reaction in the oxyhydrogen flame 3 generated by the combustion of the combustion gas, and the glass fine particles generated as a result are deposited on the rotating starting material to form a porous matrix. A method of growing material 5 is used. FIG. 1 shows the so-called axial method, in which glass particles are deposited on the axial end of a rotating starting material, and the deposit grows in the rotational direction of the starting material as well as in the axial direction.

バーナ2は、第2図に示すような同心円状の多重管バー
ナが一般的であり、このバーナの各ポート径は、重要な
パラメータの1つである。
The burner 2 is generally a concentric multi-tube burner as shown in FIG. 2, and the diameter of each port of this burner is one of the important parameters.

かかる光ファイバ用多孔質母材の製造において、最近で
は生産性向上のため、多孔質母材の合成速度の高速化が
進んでいる。この高速合成化のために、ガスの流量を増
大する必要はあるが、ガスの流速を増大する方法は採用
できない。これは火炎内で起こるガラス微粒子生成反応
が反応時間を充分必要とするため、火炎の流速を遅くす
る必要があるためである。そのため、光ファイバ用多孔
質母材の高速合成化のために、バーナ外径を大きくする
必要がある。その結果、多孔質母材の合成速度を上げて
いくと、一般に多孔質母材の外径が大型化していく傾向
がある。
In the production of such porous preforms for optical fibers, the synthesis speed of porous preforms has recently been increased to improve productivity. Although it is necessary to increase the gas flow rate for this high-speed synthesis, a method of increasing the gas flow rate cannot be adopted. This is because the glass particle production reaction that occurs within the flame requires sufficient reaction time, so it is necessary to slow down the flame flow rate. Therefore, it is necessary to increase the outer diameter of the burner for high-speed synthesis of porous preforms for optical fibers. As a result, as the synthesis rate of the porous base material increases, the outer diameter of the porous base material generally tends to increase.

発明が解決しようとする問題点 このように多孔質母材の合成速度を高速化するのに伴い
、多孔質母材の外径が大型化していくにつれて、多孔質
母材がそれ自体の重量で落下する、または、表面に割れ
が発生する等の不良が発生しやすくなってきている。
Problems to be Solved by the Invention As described above, as the synthesis speed of the porous base material increases, the outer diameter of the porous base material increases. Defects such as falling or cracks on the surface are becoming more likely to occur.

このような多孔質母材の落下・表面上の割れなどの問題
は、合成される多孔質母材の硬さに依存しており、合成
温度が低く、柔らかい多孔質母材はどこれらの問題は発
生しやすい。
These problems, such as falling of the porous base material and cracks on the surface, depend on the hardness of the porous base material being synthesized. is likely to occur.

そこで、バーナに投入する燃焼ガス流量を増加させ、合
成温度を上げることが考えられるが、ガスの流量の増加
に伴い、流速が速くなり、火炎内での反応時間が不充分
になるという不都合が生じる。
Therefore, it is possible to increase the flow rate of combustion gas fed into the burner to raise the synthesis temperature, but as the flow rate of gas increases, the flow velocity increases and the reaction time in the flame becomes insufficient. arise.

また、燃焼ガスの増量だけでは、火炎の大きさには限り
があり、大型多孔質母材を充分加熱することは難しい。
Further, the size of the flame is limited by simply increasing the amount of combustion gas, and it is difficult to sufficiently heat a large porous base material.

更に、逆に火炎の大きさが大きすぎると、ガラス微粒子
が大きくなり、多孔質母材の外径が大きくなりすぎ、所
望の形態の多孔質母材を合成収率(多孔質母材と原料と
の比)良く形成することは困難である。
Furthermore, if the size of the flame is too large, the glass particles will become large and the outer diameter of the porous base material will become too large, which will reduce the synthesis yield (porous base material and raw materials) of the porous base material in the desired form. (ratio)) is difficult to form well.

そこで、本発明は、これらの問題点を解決し、安定した
光ファイバ用多孔質母材を収率良く合成する方法を提供
することを目的としている。
Therefore, an object of the present invention is to solve these problems and provide a method for synthesizing a stable porous preform for optical fibers with good yield.

問題点を解決するための手段 すなわち、本発明によるならば、多重管バーナによりつ
くられる火炎内で該多重管バーナから供給されるガラス
原料が反応して生成されるガラス微粒子を、回転する出
発材に堆積させ堆積体を回転方向に成長させることによ
り多孔質ガラス母材を製造する方法において、前記多重
管バーナの吹出口の直径を、多孔質母材の外径の0.2
〜0.5倍の範囲内とする。
Means for solving the problem, namely, according to the present invention, glass fine particles produced by reacting glass raw materials supplied from a multi-tube burner in a flame produced by a multi-tube burner are rotated as a starting material. In the method of manufacturing a porous glass preform by depositing the material on the substrate and growing the deposited body in the rotational direction, the diameter of the outlet of the multi-tube burner is set to 0.2 of the outer diameter of the porous preform.
-0.5 times.

作用 上述したように、多孔質母材の合成速度を高速化するの
に伴い、多孔質母材の外径が大型化し、多孔質母材の落
下・表面上の割れ等の不良が発生しやすくなる。そこで
、落下した多孔質母材と安定にその形状を保っている多
孔質母材を比較したところそのかさ密度が異なることが
分った。即ち、落下した多孔質母材は、そのかさ密度が
小さく、そのためその形状を保つことができないのであ
る。
Effect As mentioned above, as the synthesis speed of the porous base material increases, the outer diameter of the porous base material increases, making it easier for defects such as dropping of the porous base material and cracks on the surface to occur. Become. Therefore, when we compared the porous base material that had fallen and the porous base material that had stably maintained its shape, we found that their bulk densities were different. That is, the fallen porous base material has a low bulk density and therefore cannot maintain its shape.

従って、粒子同士の付着力は、かさ密度が大きいほど大
きいと言える。そして、多孔質母材のかさ密度は、酸水
素火炎による加熱により左右され、加熱効果を太き(し
た方がかさ密度が高くなることが分った。
Therefore, it can be said that the greater the bulk density, the greater the adhesive force between particles. It was also found that the bulk density of the porous base material is affected by heating with an oxyhydrogen flame, and that the bulk density becomes higher when the heating effect is increased.

従って、大型多孔質母材を安定して製造するには充分大
きな火炎を用いることがよい。多重管バーナの場合、原
料ガスが中心のポートから噴出され、一方、燃焼ガスが
それを囲む外側のポートから噴出されるため、火炎の大
きさはバーナの外径により規定される。種々の研究の結
果、多孔質母材外径に対し、0.2倍以上の最外径を有
するバーナを用いれば、充分に安定したすなわちかさ密
度が高い多孔質母材を製造することができることを見い
出した。
Therefore, it is preferable to use a sufficiently large flame to stably produce a large porous base material. In the case of a multi-tube burner, the flame size is determined by the burner's outer diameter because the feed gas is ejected from a central port while the combustion gas is ejected from surrounding outer ports. As a result of various studies, it has been found that it is possible to produce a porous base material that is sufficiently stable, that is, has a high bulk density, by using a burner that has an outermost diameter that is 0.2 times or more the outer diameter of the porous base material. I found out.

一方、バーナを大型化していくと、大型多孔質母材を安
定して製造することができるが、バーナの大型化に伴い
、多孔質母材の外径も大きくなる傾向がある。これは、
上述したように同心円状の多重管バーナの中心に原料を
送り込んでいるため、火炎の中心に粒子流が形成される
が、火炎の大型化に伴い、粒子が火炎の外側に拡散して
いき、粒子流の断面積が大きくなるためである。
On the other hand, if the size of the burner is increased, a large porous base material can be stably manufactured, but as the size of the burner is increased, the outer diameter of the porous base material also tends to increase. this is,
As mentioned above, since the raw material is fed into the center of the concentric multi-tube burner, a particle flow is formed at the center of the flame, but as the flame becomes larger, the particles diffuse to the outside of the flame. This is because the cross-sectional area of the particle flow becomes larger.

多孔質母材の外径は、光ファイバの製造工程により種々
の制約があり、所望の形状に収める必要がある。そこで
、大型のバーナを用いる一方、流量、角度などを変える
ことにより、合成する多孔質母材の外径を小さくしてい
くと、合成収率が低下していく現象が現われることが分
った。これは、多孔質母材の外径の0.5倍以上の最外
径を有するバーナを用いた時、顕著になることを見い出
すことができた。
There are various restrictions on the outer diameter of the porous preform depending on the manufacturing process of the optical fiber, and it is necessary to fit it into a desired shape. Therefore, it was found that when the outer diameter of the porous base material to be synthesized was reduced by using a large burner and changing the flow rate, angle, etc., a phenomenon appeared in which the synthesis yield decreased. . It has been found that this becomes noticeable when a burner having an outermost diameter that is 0.5 times or more the outer diameter of the porous base material is used.

以上のことから、高速合成により大型多孔質母材を安定
して製造するには、製造したい多孔質母材の外径の0.
2〜0.5倍の外径のバーナを用いればよく、逆にバー
ナに制約がある場合には、バーナの外径の2倍から5倍
の外径の多孔質母材を製造すると良い。
From the above, in order to stably produce a large porous base material by high-speed synthesis, it is necessary to have an outer diameter of 0.
It is sufficient to use a burner with an outer diameter of 2 to 0.5 times, and conversely, if there are restrictions on the burner, it is preferable to manufacture a porous base material with an outer diameter of 2 to 5 times the outer diameter of the burner.

ここで、「バーナ外径」とは、酸水素火炎を形成するた
めに噴出する燃焼用ガスの噴出口の最外径を指す。従っ
て、バーナ先端に流れを整えるために取り付ける風防の
外径は、「バーナ外径」には含まれない。また、反応容
器内の流れを整えるため、バーナの周囲にすなわち最も
外側の燃焼用ガスの周囲に不燃性のガスを流す場合、こ
の不燃性ガスの噴出口の外径は、「バーナ外径」には含
まれない。
Here, the "burner outer diameter" refers to the outermost diameter of a combustion gas ejection port ejected to form an oxyhydrogen flame. Therefore, the outer diameter of the windshield attached to the tip of the burner to regulate the flow is not included in the "burner outer diameter." In addition, when nonflammable gas is flowed around the burner, that is, around the outermost combustion gas, in order to adjust the flow inside the reaction vessel, the outside diameter of the nozzle for this nonflammable gas is the "burner outside diameter". is not included.

かくして、燃焼バーナの吹出口の直径を多孔質母材の外
径の0.2倍以上にすることにより十分大きな火炎によ
って加熱効果を大きくすることができ、落下・表面上の
割れなどないかさ密度の大きい安定した多孔質母材を得
ることが可能であり、0.5倍以下にすることにより十
分な合成収率で多孔質母材を得ることができる。
Thus, by making the diameter of the outlet of the combustion burner at least 0.2 times the outer diameter of the porous base material, the heating effect can be increased with a sufficiently large flame, and the bulk density can be reduced without falling or cracking on the surface. It is possible to obtain a stable porous base material with a large value, and by reducing the amount by 0.5 times or less, a porous base material can be obtained with a sufficient synthesis yield.

実施例 以下、添付図面を参照して本発明の詳細な説明する。し
かし、本発明は、以下に説明しまた図示する実施例に何
ら制限されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. However, the invention is in no way limited to the embodiments described and illustrated below.

実施例1 従来から使用されている第1図に示す光ファイバ用多孔
質母材の軸付は法式製造装置を使用して、以下の条件で
多孔質母材を製造した。本実施例では第2図に示したよ
うな同心円状4重管バーナを用いた。この時、中心の1
ボートに原料3iC1aをIf/分の流量供給し、中心
の1ポートを囲む2ポートにH2を101/分の流量供
給し、2ポートを囲む3ポートに^rを3β/分の流量
供給し、2ポートを囲む4ボートに0□を201/分の
流量供給した。外径20mmのバーナを用いた所、2g
/分の堆積速度で、80mmφの多孔質母材を合成でき
た。
Example 1 A conventionally used porous preform for optical fiber shown in FIG. 1 was manufactured using a method manufacturing apparatus under the following conditions. In this example, a concentric quadruple tube burner as shown in FIG. 2 was used. At this time, the center 1
The raw material 3iC1a is supplied to the boat at a flow rate of If/min, H2 is supplied at a flow rate of 101/min to 2 ports surrounding the central 1 port, ^r is supplied at a flow rate of 3β/min to 3 ports surrounding the 2 ports, 0□ was supplied to the four boats surrounding the two ports at a flow rate of 201/min. 2g when using a burner with an outer diameter of 20mm
A porous base material with a diameter of 80 mm could be synthesized at a deposition rate of /min.

すなわち、この場合、バーナ外径は多孔質母材の外径の
0.25倍であった。そして、不良率〔製造された多孔
質母材に対する不良品(落下や表面の割れが生じた多孔
質母材)の割合〕は、0.2であった。
That is, in this case, the burner outer diameter was 0.25 times the outer diameter of the porous base material. The defect rate [ratio of defective products (porous base material with falling or surface cracks) to the manufactured porous base material] was 0.2.

更に、実施例1と同一条件で、外径25ωmのバーナを
用いて80mmφの多孔質母材を合成した。この場合の
不良率は、0.05であった。
Furthermore, under the same conditions as in Example 1, a porous base material of 80 mmφ was synthesized using a burner with an outer diameter of 25 Ωm. The defect rate in this case was 0.05.

比較例1 実施例1と同形状の外形3Qmmφの多孔質母材を外径
15mmφとI Q+r+mφのバーナをそれぞれ使用
した製造した。
Comparative Example 1 A porous base material having the same shape as in Example 1 and having an outer diameter of 3Q mmφ was manufactured using burners with an outer diameter of 15 mmφ and an IQ+r+mφ, respectively.

この時、バーナに送り込むガスの流量は実施例1と同量
である。この実験の結果、15mmφと10aonφの
外径のバーナでは、不良率は、それぞれ0.7及び0.
8であった。このような結果では、安定な多孔質母材の
製造が期待できない。
At this time, the flow rate of gas sent to the burner was the same as in the first embodiment. As a result of this experiment, the defective rates of burners with outer diameters of 15 mmφ and 10 mmφ were 0.7 and 0.0, respectively.
It was 8. With such a result, stable production of a porous base material cannot be expected.

以上の実施例1及び比較例1の結果に加えて、他の外径
のバーナを使用した多孔質母材の製造結果によれば、多
孔質母材の外径が80乱φのときのバーナ外径と不良率
の関係は、第3図に示す通りであった。
In addition to the results of Example 1 and Comparative Example 1, the results of manufacturing porous base materials using burners with other outer diameters show that when the outer diameter of the porous base material is 80 φ, The relationship between the outer diameter and the defective rate was as shown in FIG.

実施例2 第2図に示すような4重管式の外径40mmφのバーナ
を用いて、1ポート原料5iC1,3R/分、2ボ一ト
H215j!/分、3ポ一トAr5j!/分、4ポー)
0225β/分の割合で供給したところ、堆積速度4g
/分で母材外径120mmφの多孔質母材の製造ができ
た。
Example 2 Using a quadruple pipe type burner with an outer diameter of 40 mm as shown in Fig. 2, 1 port raw material 5iC1,3R/min, 2 ports H215j! / minute, 3 points Ar5j! / minute, 4 po)
When supplied at a rate of 0225β/min, the deposition rate was 4g.
A porous base material with an outer diameter of 120 mmφ could be produced at a rate of 120 mmφ.

この時、同一バーナに同じガス滝壷を流し、バーナの多
孔質母材に対する角度を変えることにより、多孔質母材
の外径を種々調節したところ、堆積速度は、第4図に示
すように変化した。
At this time, the same gas waterfall pot was flowed through the same burner, and the outer diameter of the porous base material was adjusted in various ways by changing the angle of the burner relative to the porous base material. As a result, the deposition rate changed as shown in Figure 4. did.

第4図から分るように、バーナ外径40關φに対し2倍
以下、すなわち80mmφ以下の光ファイバ用多孔質母
材の合成を行う場合、非常に生産性が悪い。
As can be seen from FIG. 4, when synthesizing a porous preform for an optical fiber having a diameter less than twice the outer diameter of the burner of 40 mm, that is, less than 80 mm, the productivity is extremely poor.

以上の実施例は、いわゆる軸付は法による光ファイバ用
多孔質母材の製造に本発明を適用したものであるが、い
わゆる外付は法においても同様に光ファイバ用多孔質母
材を製造するので、本発明を等しく適用できる。
In the above embodiments, the present invention is applied to the manufacture of porous preforms for optical fibers using the so-called shaft-mounting method, but the so-called externally-attached porous preforms can also be manufactured using the method. Therefore, the present invention is equally applicable.

発明の詳細 な説明したように、本発明は、多孔質母材の外径に対し
て、0.2〜0.5倍の外径を有するバーナを用いるこ
とにより、多孔質母材が落下することのない、かさ密度
の大きい所望の形状の多孔質母材を合成収率よく製造す
ることが可能となり、生産性向上に有効である。
As described in detail, the present invention uses a burner having an outer diameter 0.2 to 0.5 times the outer diameter of the porous base material so that the porous base material falls. It becomes possible to produce a porous base material in a desired shape with a high bulk density without any problems, and with a high synthesis yield, which is effective in improving productivity.

【図面の簡単な説明】 第1図は、多孔質母材の軸付は法式製造装置の典型例を
示した図である。 第2図は、第1図に示した多孔質母材製造装置に使用さ
れる同心円状多重管バーナを概略的に示した端面図及び
縦断面図である。 第3図は、外径80mmφの多孔質母材をバーナ外径を
変えた製造したときの落下・表面上の割れによる不良率
を示したグラフである。 第4図は、外径40mmφのバーナで多孔質母材を製造
したとき、製造した多孔質母材の外径による堆積速度の
変化を示したグラフである。 (主な参照番号) 1・・反応容器、 2・・バーナ、 3・・酸水素火炎、 4・・回転軸、 5・・多孔質母材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a typical example of a method-based manufacturing apparatus for shafting a porous base material. 2 is an end view and a longitudinal sectional view schematically showing a concentric multi-tube burner used in the porous preform manufacturing apparatus shown in FIG. 1. FIG. FIG. 3 is a graph showing the defect rate due to falling and surface cracks when porous base materials with an outer diameter of 80 mmφ were manufactured with different burner outer diameters. FIG. 4 is a graph showing the change in deposition rate depending on the outer diameter of the porous base material produced when the porous base material was produced using a burner having an outer diameter of 40 mmφ. (Main reference numbers) 1. Reaction vessel, 2. Burner, 3. Oxyhydrogen flame, 4. Rotating shaft, 5. Porous base material

Claims (2)

【特許請求の範囲】[Claims] (1)多重管バーナによりつくられる火炎内で該多重管
バーナから供給されるガラス原料が反応して生成される
ガラス微粒子を、回転する出発材に堆積させ堆積体を回
転方向に成長させることにより多孔質ガラス母材を製造
する方法において、前記多重管バーナの吹出口の直径を
、多孔質母材の外径の0.2〜0.5倍の範囲内とする
ことを特徴とする光ファイバ用多孔質母材の製造方法。
(1) By depositing glass particles produced by reacting the glass raw materials supplied from the multi-tube burner in the flame created by the multi-tube burner on a rotating starting material and growing the deposit in the direction of rotation. A method for producing a porous glass preform, wherein the diameter of the outlet of the multi-tube burner is within a range of 0.2 to 0.5 times the outer diameter of the porous preform. Method for manufacturing porous base material for use.
(2)前記ガラス微粒子を、回転する出発材の軸端部に
堆積させ、堆積体を前記出発材の回転方向並びに該出発
材の軸方向に成長させて、多孔質ガラス母材を軸付け法
により製造することを特徴とする特許請求の範囲第(1
)項記載の光ファイバ用多孔質母材の製造方法。
(2) The porous glass base material is attached to a shaft by depositing the glass particles on the shaft end of the rotating starting material and growing the deposited body in the rotational direction of the starting material as well as in the axial direction of the starting material. Claim No. 1 (1) characterized in that it is manufactured by
) A method for producing a porous preform for optical fibers as described in item 2.
JP26836786A 1986-11-11 1986-11-11 Production of porous preform for optical fiber Pending JPS63123828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26836786A JPS63123828A (en) 1986-11-11 1986-11-11 Production of porous preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26836786A JPS63123828A (en) 1986-11-11 1986-11-11 Production of porous preform for optical fiber

Publications (1)

Publication Number Publication Date
JPS63123828A true JPS63123828A (en) 1988-05-27

Family

ID=17457525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26836786A Pending JPS63123828A (en) 1986-11-11 1986-11-11 Production of porous preform for optical fiber

Country Status (1)

Country Link
JP (1) JPS63123828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756628A (en) * 1996-03-11 1998-05-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Organic phyllotitanosilicate, shaped body thereof, and method for producing them
JP2003277070A (en) * 2002-03-22 2003-10-02 Fujikura Ltd Method for manufacturing porous preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756628A (en) * 1996-03-11 1998-05-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Organic phyllotitanosilicate, shaped body thereof, and method for producing them
JP2003277070A (en) * 2002-03-22 2003-10-02 Fujikura Ltd Method for manufacturing porous preform

Similar Documents

Publication Publication Date Title
KR880001607B1 (en) Preparation for making of glass fiber preform
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
JP4043768B2 (en) Manufacturing method of optical fiber preform
US7165425B2 (en) Multi-tube burner and glass preform manufacturing method using the same
KR20090092686A (en) Burner for deposition of optical fiber preform
JP2006182624A (en) Method for manufacturing glass rod-like body
JPS63123828A (en) Production of porous preform for optical fiber
JP3118822B2 (en) Method for manufacturing glass articles
JP4530687B2 (en) Method for producing porous glass preform for optical fiber
JP3381309B2 (en) Method for producing glass particle deposit
JPH05319849A (en) Production of silica porous preform
JP2751176B2 (en) Manufacturing method of base material for optical fiber
JP3188515B2 (en) Burner for synthesis of silica fine particles
JPS6355135A (en) Production of optical fiber preform
JPH0776108B2 (en) Method for manufacturing base material for optical fiber
JPS63107825A (en) Production of synthetic quartz tube
JPH02133331A (en) Production of fine glass particle-deposited body
JPS60260433A (en) Manufacture of base material for optical fiber
JPH0435428B2 (en)
JPS6055450B2 (en) Manufacturing method of optical fiber base material
JPH05339011A (en) Production of glass particulate deposited body
JPH04240125A (en) Manufacture of optical fiber preform
JPS62182131A (en) Production of piled material of glass fine particle
JPH02120250A (en) Production of deposited glass soot material
JPH0712953B2 (en) Method for manufacturing base material for optical fiber