KR20090092686A - Burner for deposition of optical fiber preform - Google Patents

Burner for deposition of optical fiber preform

Info

Publication number
KR20090092686A
KR20090092686A KR1020080119262A KR20080119262A KR20090092686A KR 20090092686 A KR20090092686 A KR 20090092686A KR 1020080119262 A KR1020080119262 A KR 1020080119262A KR 20080119262 A KR20080119262 A KR 20080119262A KR 20090092686 A KR20090092686 A KR 20090092686A
Authority
KR
South Korea
Prior art keywords
deposition
burner
glass
diameter
small
Prior art date
Application number
KR1020080119262A
Other languages
Korean (ko)
Other versions
KR101035467B1 (en
Inventor
마코토 요시다
Original Assignee
신에쓰 가가꾸 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쓰 가가꾸 고교 가부시끼가이샤 filed Critical 신에쓰 가가꾸 고교 가부시끼가이샤
Publication of KR20090092686A publication Critical patent/KR20090092686A/en
Application granted granted Critical
Publication of KR101035467B1 publication Critical patent/KR101035467B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/14Tapered or flared nozzles or ports angled to central burner axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

A burner for depositing optical fiber preforms is provided to secure high deposition efficiency in a whole deposition process even when a large material is produced. A burner for depositing optical fiber preforms has a port for jetting a combustible gas with a plurality of small caliber supporting gas jetting ports. The burner having a concentric multi pipe structure is located further than a glass source gas jetting port(6). Optical fiber preforms are manufactured by hydrolyzing the glass source gas to generate glass particles using the burner and depositing the generated glass particles on a starting member. If the focal distance of the small caliber supporting gas jetting ports is L1 and the distance from the end of the small caliber supporting gas jetting ports to a glass particle deposited surface(7) is L2, L1 is greater than L2 at early deposition stage and L1 becomes smaller than L2 during deposition.

Description

광섬유용 모재의 퇴적용 버너{BURNER FOR DEPOSITION OF OPTICAL FIBER PREFORM}BURNER FOR DEPOSITION OF OPTICAL FIBER PREFORM}

본 발명은 유리 원료 가스를 화염 중에서 가수분해시켜 유리 미립자를 생성하고, 이것을 회전하는 출발 부재 상에 퇴적시키는 광섬유용 모재의 제조 방법에 관한 것이다.This invention relates to the manufacturing method of the base material for optical fibers which hydrolyzes a glass raw material gas in a flame, produces | generates glass fine particles, and deposits this on a rotating starting member.

종래, 광섬유용 모재를 제조하기 위해서 각종 방법이 제안되어 있다. 그러한 방법 중에서도, 회전하는 출발 부재 상에 버너(burner) 화염 중에서 생성된 유리 미립자를, 버너 혹은 출발 부재를 상대 왕복 운동시켜 부착 퇴적시켜 다공질 모재를 합성하고, 이것을 전기로 내에서 탈수, 소결하는 외부 부착법(OVD법)은, 비교적 임의의 굴절률 분포의 것이 얻어지고, 또한 대구경의 광섬유용 모재를 양산할 수 있기 때문에 범용되고 있다.Conventionally, various methods are proposed in order to manufacture the base material for optical fibers. Among such methods, the glass fine particles generated in the burner flame on the rotating starting member are attached and deposited by relative reciprocating movement of the burner or starting member to synthesize a porous base material, which is dehydrated and sintered in an electric furnace. The adhesion method (OVD method) is widely used because a relatively arbitrary refractive index distribution can be obtained and a large diameter base material for optical fibers can be mass produced.

도 1은 광섬유용 모재의 제조 장치의 일례를 나타내고 있다. 도에 있어서, 유리 미립자(수트(soot))를 퇴적하는 출발 부재는, 코어 로드(core rod)(1)의 양단부에 더미 로드(dummy rod)(2)를 용착(溶着)한 것이고, 미도시의 기재 지지 부재에 의해 축회전으로 잉곳 척(ingot chuck) 기구(4)에 회전이 자유롭게 지지되어 있다. 이 출발 부재를 향해 배치된 이동이 자유로운 버너(3)로부터 광섬유용 원료, 예를 들면 SiCl4 등의 증기와 연소 가스(수소 가스 및 산소 가스)를 출발 부재를 향해 뿜어내고, 산수소 화염 중에서의 가수분해에 의해 생성한 수트를 출발 부재 상에 퇴적시킴으로써, 광섬유용 다공질 모재가 형성된다. 또한, 부호 5는 배기 후드(hood)이다.1 shows an example of an apparatus for producing a base material for optical fibers. In Fig. 1, the starting member for depositing glass fine particles (soot) is obtained by welding a dummy rod 2 to both ends of a core rod 1 and not shown. The rotation is freely supported by the ingot chuck mechanism 4 in the axial rotation by the base material supporting member. The raw material for optical fibers, for example, steam and combustion gas (hydrogen gas and oxygen gas), such as SiCl 4 , is blown toward the starting member from the freely moving burner 3 disposed toward the starting member, and the water in the oxyhydrogen flame By depositing the soot produced by decomposition on the starting member, a porous base material for the optical fiber is formed. Also, reference numeral 5 denotes an exhaust hood.

버너(3)는 미도시의 버너 가이드(guide) 기구에 의해 길이 방향으로 왕복 운동이 자유롭게 지지되고, 출발 부재를 축회전으로 회전시키면서, 출발 부재를 향해 화염을 분사하고, 화염 중에서의 원료 가스의 가수분해에 의해 생성한 유리 미립자를 퇴적시킴으로써 다공질 모재가 제조된다. 다음에, 가열로의 히터(heater)부를 통과시킴으로써, 탈수 유리화되고 광섬유 모재로 된다.The burner 3 is freely supported in the longitudinal direction by a burner guide mechanism (not shown), injects a flame toward the starting member while rotating the starting member in an axial rotation, and supplies the raw material gas in the flame. A porous base material is manufactured by depositing glass fine particles produced by hydrolysis. Next, by passing through a heater portion of the heating furnace, dehydration and vitrification become an optical fiber base material.

유리 미립자를 합성하고 출발 부재 상에 수트를 퇴적시키는데는 종래, 동심 다중관 버너가 이용되어 왔지만, 이러한 구조의 버너는 유리 원료 가스, 가연성 가스 및 조연성 가스의 혼합이 충분히 행해지지 않기 때문에, 유리 미립자의 생성이 충분하지 않았다. 그 결과, 수율이 늘어나지 않고 고속 합성이 곤란하였다.Conventionally, concentric multi-tube burners have been used to synthesize glass fine particles and deposit soot on the starting member, but the burner of such a structure is not sufficiently mixed with the glass raw material gas, the combustible gas, and the flammable gas. The production of particulates was not enough. As a result, the yield did not increase and high speed synthesis was difficult.

이 문제를 해결하기 위해서, 특허문헌 1에는, 가연성 가스 분출 포트(port) 내에, 중심의 원료 가스 분출 포트를 둘러싸도록 소구경 조연성 가스 분출 포트(이하, 소구경 분출 포트라고 약칭한다)를 배치한 멀티노즐(multi-nozzle)형 버너가 제안되어 있다.In order to solve this problem, patent document 1 arrange | positions a small diameter flammable gas ejection port (henceforth a small diameter ejection port) in a flammable gas ejection port so that a center source gas ejection port may be enclosed. One multi-nozzle type burner has been proposed.

또한, 특허문헌 2에서는, 원료 가스류의 흐트러짐을 막는 방법으로서, 소구경 분출 포트의 초점 거리를 L1, 소구경 분출 포트 선단으로부터 모재의 퇴적면까지의 거리를 L2로 할 때, L1을 L2보다도 크게 하는 것을 제안하고 있다. 역으로, 특허문헌 3은 L1을 L2보다도 작게 하여 가스의 혼합 효율을 높임으로써, 퇴적 효율을 향상시킬 수가 있다고 하고 있다.Further, in Patent Document 2, as a method of preventing disturbance of source gas flows, when the focal length of the small-diameter injection port is L 1 , and the distance from the tip of the small-diameter injection port to the deposition surface of the base material is L 2 , L 1. It is proposed to make the ratio larger than L 2 . Conversely, Patent Document 3 says that the deposition efficiency can be improved by making L 1 smaller than L 2 and increasing the gas mixing efficiency.

그렇지만, 회전하는 출발 부재 상에 버너 화염 중에서 생성된 유리 미립자를, 버너 또는 출발 부재를 상대 왕복 운동시켜 부착 퇴적시키는 OVD법은, 퇴적이 진행됨에 따라, 중량이 증가하고 퇴적체의 직경이 크게 되어 가기 때문에, 퇴적이 진행됨에 따라 통상, 가스량을 증가시키고 퇴적체의 밀도 조정이 행해지고 있다. 예를 들면, 출발 부재의 50mmφ로부터 시작하여 300mmφ로 될 때까지 퇴적이 계속된다.However, in the OVD method of depositing and depositing glass fine particles generated in a burner flame on a rotating starting member by reciprocating the burner or the starting member, as the deposition proceeds, the weight increases and the diameter of the deposit becomes large. As the deposition progresses, the amount of gas is usually increased and the density of the deposited body is adjusted. For example, deposition starts from 50 mmφ of the starting member and continues until it reaches 300 mmφ.

퇴적 초기에는 퇴적 면적이 작기 때문에 가스량을 적게 하고 작은 가스 선속으로 행해진다. 그 때문에, 소구경 분출 포트로부터 분출되는 가스에 의해 유리 미립자의 흐름이 흐트러지고 쉽고, 흐트러지면 퇴적 효율이 저하된다. 퇴적 후반에는 퇴적체의 직경이 증가하고, 퇴적 면적이 크게 되어 있기 때문에 가스량을 증대시키고 큰 가스 선속으로 행해진다. 결과적으로, 소구경 분출 포트로부터 분출되는 가스에 의한 유리 미립자류의 흐트러짐은 작아지지만, 가스 선속이 크기 때문에 가스의 혼합률은 나빠지고, 퇴적 효율이 올라가지 않는다고 하는 문제가 있었다.In the initial stage of deposition, since the deposition area is small, the amount of gas is reduced and it is performed at a small gas flux. Therefore, the flow of glass fine particles is easily disturbed by the gas ejected from the small-diameter jet port, and when it is disturbed, the deposition efficiency is lowered. In the second half of the deposition, the diameter of the deposition body increases and the deposition area is large, so that the amount of gas is increased and a large gas flux is performed. As a result, the disturbance of the glass fine particles caused by the gas ejected from the small-diameter jet port becomes small, but there is a problem that the gas mixing rate is lowered and the deposition efficiency does not increase because the gas linear velocity is large.

특허문헌 1: 일본 특허 1773359호 공보Patent Document 1: Japanese Patent No. 1773359

특허문헌 2: 일본 특허 3543537호 공보Patent Document 2: Japanese Patent No. 3543537

특허문헌 3: 일본 특허공개 2003-226544호 공보Patent Document 3: Japanese Patent Application Laid-Open No. 2003-226544

본 발명은 상기한 문제점을 해소하고, 유리 미립자의 생성, 퇴적을 효율적으로 행할 수 있는 방법, 특히 대형의 모재를 합성하는 경우에 있어서, 퇴적 개시부터 퇴적 종료까지 안정하고 높은 퇴적 효율이 얻어지는 광섬유용 모재의 제조 방법을 제공하는 것을 목적으로 하고 있다.The present invention solves the above-mentioned problems, and the method for efficiently producing and depositing glass fine particles, especially for synthesizing a large base material, for the optical fiber that provides stable and high deposition efficiency from the start of deposition to the end of deposition. It aims at providing the manufacturing method of a base material.

본 발명의 광섬유용 모재의 제조 방법은, 동심 다중관 구조를 가지고, 중심의 유리 원료 가스 분출 포트(port)의 외측에, 당해 유리 원료 가스 분출 포트에 대해서 동심원상으로 1열 또는 복수열 배치되고, 동일 열에 배치된 분출 포트가 동일한 초점 거리를 가지는, 복수의 소구경 조연성 가스를 내포하는 가연성 가스 분출 포트를 가지는 버너를 이용하여, 유리 원료 가스를 화염 중에서 가수분해시켜 생성되는 유리 미립자를 출발 부재 상에 퇴적시켜 광섬유용 모재를 제조하는데 즈음하여, 상기 복수의 소구경 조연성 가스 분출 포트의 초점 거리를 L1으로 하고, 당해 소구경 조연성 가스 분출 포트의 선단으로부터 유리 미립자 퇴적면까지의 거리를 L2로 할 때, 퇴적 초기에는 L1>L2로 하고, 퇴적 도중에 L1<L2로 되도록, L2를 크게 해 가는 것을 특징으로 하고 있다. 또한, 퇴적량이 증가하고, 모재의 외경이 증대함에 따라, 상기 버너를 퇴적면으로부터 떼어 놓고, 거리 L2를 크게 해 감으로써, L1<L2로 할 수가 있다.The manufacturing method of the base material for optical fibers of this invention has a concentric multi-pipe structure, and arrange | positions one row or multiple rows concentrically with respect to the said glass raw material gas blowing port outside the center glass raw material gas blowing port, Using a burner having a combustible gas ejection port containing a plurality of small-diameter combustible gases having ejection ports arranged in the same row having the same focal length, the glass fine particles generated by hydrolyzing the glass raw material gas in the flame are started. On the basis of the deposition on the member to produce the base material for the optical fiber, the focal lengths of the plurality of small-diameter flammable gas injection ports are set to L 1 , and from the tip of the small-diameter flammable gas injection port to the glass fine particle deposition surface. when the distance to the L 2, initially deposited so that the L 1 <L 2 in the middle, is deposited by L 1> L 2, the particular largely going to the L 2 Gong. Further, as the deposition amount increases and the outer diameter of the base material increases, the burner can be removed from the deposition surface, and the distance L 2 can be increased to set L 1 <L 2 .

본 발명에 의하면, 퇴적 개시부터 퇴적 종료까지 안정한 상태로 퇴적을 계속할 수가 있고, 급격한 밀도 변화가 생기지 않고, 또한 높은 퇴적 효율이 얻어지는 등, 극히 뛰어난 효과를 가져온다.According to the present invention, the deposition can be continued in a stable state from the start of deposition to the end of the deposition, a sudden change in density does not occur, and a high deposition efficiency is obtained.

도 1은 외부 부착법(OVD법)에 의한 다공질 유리 모재의 제조 장치를 나타내는 개략도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the manufacturing apparatus of the porous glass base material by an external adhesion method (OVD method).

도 2는 소구경 분출 포트(port)를 가지는 유리 미립자 합성용 버너(burner) 선단을 나타내는 개략도이다.FIG. 2 is a schematic diagram showing a burner tip for synthesizing glass particles having a small diameter ejection port. FIG.

도 3은 초점 거리 L1과 버너 선단으로부터 퇴적면까지의 거리 L2의 관계를 설명하는 도이다.3 is a diagram illustrating a relationship between the focal length L 1 and the distance L 2 from the burner tip to the deposition surface.

도 4는 퇴적 중량과 퇴적 속도의 관계를 나타내는 도이다.4 is a diagram showing a relationship between deposition weight and deposition rate.

<부호의 설명><Code description>

1 코어(core)부1 core

2 더미 로드(dummy rod)2 dummy rod

3 버너(burner)3 burner

4 잉곳 척(ingot chuck) 기구4 ingot chuck mechanism

5 배기 후드(hood)5 exhaust hood

6 소구경 분출 포트(port)6 small diameter jet port

7 퇴적면7 sedimentary surface

상기 과제를 달성하기 위해서 열심히 연구를 거듭한 결과, 소구경 분출 포트의 초점 거리와 당해 분출 포트의 선단으로부터 유리 미립자의 퇴적면까지의 거리의 관계를, 퇴적 초기와 퇴적 후반에 각각 적절히 설정하는 것이 중요하다는 것을 알아내어, 본 발명에 이르렀다.As a result of diligent research to achieve the above-mentioned problems, it is desirable to appropriately set the relationship between the focal length of the small-diameter jet port and the distance from the tip of the jet port to the deposition surface of the glass fine particles in the initial deposition stage and the late deposition stage, respectively. It was found out that it was important and the present invention was reached.

즉, 도 3에 나타내듯이, 동심원상으로 배열된 복수의 소구경 분출 포트로부터 분출되는 가스류가 맺히는 초점 거리를 L1으로 하고, 당해 분출 포트의 선단으로부터 유리 미립자 퇴적면까지의 거리를 L2로 할 때, 당해 분출 포트로부터 분출되는 조연성 가스에 의해 유리 미립자의 흐름이 흐트러지기 쉬운 퇴적 초기에는 L1>L2로 함으로써, 중심의 유리 미립자의 흐름을 흐트러트리지 않고, 그 외측에서 가연성 가스와 조연성 가스의 혼합을 촉진시켜, 퇴적 효율을 증가시킬 수가 있다.That is, as shown in FIG. 3, the focal length at which the gas flows from the plurality of small-diameter jet ports arranged concentrically is formed as L 1 , and the distance from the tip of the jet port to the glass fine particle deposition surface is L 2. In the initial stage of deposition where the flow of the glass fine particles tends to be disturbed by the flammable gas ejected from the jet port, L 1 &gt; L 2 , so that the flow of the central glass fine particles is not disturbed. Can be promoted to increase the deposition efficiency.

또한, 본 발명에 있어서 퇴적 후반이라는 것은, 퇴적체의 직경이 출발 부재의 직경의 대략 3배로 성장한 시점 이후를 가리키고 있다.In addition, in the present invention, the latter half of the deposition refers to a point after the point where the diameter of the deposited body grows to approximately three times the diameter of the starting member.

역으로, 가스량이 증가하고 가스류의 선속이 크게 되어 있는 퇴적 후반에는, 소구경 분출 포트로부터 분출되는 조연성 가스류에 의한 영향을 받기 어렵게 되고, 유리 미립자류는 흐트러지기 어렵게 되어 있지만, 반면, 가스 혼합률이 나빠지고 있으므로 L1<L2로 함으로써, 퇴적체에 충돌하기 전의 원료 화염에, 소구경 분출 포트로부터의 조연성 가스가 초점 위치에서 집중하여 충돌함으로써, 가연성 가스와 조연성 가스, 또한 유리 미립자의 혼합 및 반응이 적극적으로 촉진되고, 퇴적 효율을 증가시킬 수가 있다.Conversely, in the second half of the deposition in which the gas amount increases and the flow velocity of the gas flow is large, it is difficult to be influenced by the flammable gas streams ejected from the small-diameter jet port, and the glass fine particles are difficult to be disturbed. Since the gas mixing rate is deteriorating, by setting L 1 <L 2 , the flammable gas from the small-diameter jet port concentrates at the focal position and collides with the raw material flame before colliding with the deposit, thereby combustible gas and the flammable gas, In addition, the mixing and reaction of the glass fine particles can be actively promoted, and the deposition efficiency can be increased.

소구경 분출 포트의 초점 거리 L1의 조정은 퇴적 중 곤란하기 때문에, L1과 L2의 관계의 조정은, 버너 선단으로부터 퇴적면까지의 거리 L2를 조정함으로써 행할 수가 있다. 구체적으로는, 퇴적 초기부터 퇴적 후반에 걸쳐, 퇴적면으로부터 버너를 매끄럽게 떼어 놓고, L2를 크게 해 감으로써 L1<L2로 할 수가 있고, 퇴적 모재의 급격한 밀도 변화를 생기게 하는 일 없이, 안정한 상태로 퇴적을 계속할 수가 있다.Since the adjustment of the focal length L 1 of the small-diameter injection port is difficult during deposition, the adjustment of the relationship between L 1 and L 2 can be performed by adjusting the distance L 2 from the burner tip to the deposition surface. Specifically, the burner is removed from the deposition surface smoothly from the initial deposition stage to the second deposition stage, and L 2 is increased to make L 1 <L 2 , without causing a sudden density change of the deposition base material. The deposition can continue in a stable state.

이하, 본 발명의 실시의 형태에 대해서, 실시예 및 비교예를 들어 더 상세히 설명하지만, 본 발명은 이들에 한정되는 것은 아니다.EMBODIMENT OF THE INVENTION Hereinafter, although embodiment and a comparative example are given and described in detail about embodiment of this invention, this invention is not limited to these.

<실시예><Example>

실시예 1Example 1

도 1에 나타내는 것 같은 장치를 이용하여, 외부 부착법에 의해, 외경 50mm, 길이 2000mm의 코어 로드(core rod)의 양단부에 외경 50mm의 더미 로드(dummy rod)를 용착한 출발 부재 상에, 도 2에 나타내는 것 같은, 동심 5중관 구조를 가지는 버너를 이용하여, 유리 미립자를 퇴적하고, 광섬유용 모재를 제조하였다.On the starting member which welded the dummy rod of outer diameter 50mm to the both ends of the core rod of outer diameter 50mm and length 2000mm by the external attachment method using the apparatus as shown in FIG. Using the burner which has a concentric pentagonal structure as shown to it, glass microparticles | fine-particles were deposited and the base material for optical fibers was manufactured.

사용한 버너는, 제1관의 유리 원료 가스 분출 포트의 외측에 씰 가스(seal gas)를 분출하는 제2관, 또한 그 외측에 중심의 유리 원료 가스 분출 포트에 대하여 동심원상으로 1열로 배치되고, 조연성 가스를 분출하는 초점 거리 L1=150mm의 8개의 소구경 분출 포트를 내포하고, 가연성 가스를 분출하는 제3관(가연성 가스 분출 포트), 씰 가스를 분출하는 제4관, 조연성 가스를 분출하는 제5관으로 이루어져 있다.The used burners are arranged in a row concentrically with respect to the second pipe which ejects a seal gas to the outer side of the glass raw material gas blowing port of a 1st tube, and the glass raw material gas blowing port centered on the outer side, A third pipe (combustible gas ejection port) containing eight small-diameter ejection ports having a focal length L 1 = 150 mm for ejecting the combustible gas, and ejecting the combustible gas, a fourth pipe for ejecting the seal gas, the combustible gas Consists of a fifth pipe to eject the.

또한, 버너의 제1관에는, 유리 원료 가스로서 SiCl4 10L/min와 조연성 가스 O2를 20L/min 공급하고, 제2관에는 씰 가스 N2를 4L/min, 제3관에는 가연성 가스 H2를 170L/min, 제4관에는 씰 가스 N2를 5L/min, 제5관에 조연성 가스 O2를 40L/min 공급하고, 또한 제3관에 내포되는 소구경 분출 포트의 주관(主管)에는 조연성 가스로서 O2를 16L/min 공급하고, 출발 부재 상에 유리 미립자를 100kg 퇴적시켰다. 버너의 각 관에 공급한 가스의 종류, 공급량은 비교예 1, 2와 함께 표 1에 모아서 나타내었다.In addition, the first pipe of the burner was supplied with 10 L / min of SiCl 4 and 20 L / min of flammable gas O 2 as the glass raw material gas, 4 L / min of the seal gas N 2 was supplied to the second pipe, and the combustible gas was supplied to the third pipe. 170 L / min of H 2 , 5 L / min of sealing gas N 2 to the fourth pipe, 40 L / min of flammable gas O 2 to the fifth pipe, and the main pipe of the small-diameter injection port contained in the third pipe (主管) there was 100kg depositing the glass particles on a 16L / min feed, and the starting member the O 2 as a supporting gases. The kind and supply amount of the gas supplied to each pipe of the burner were shown in Table 1 together with Comparative Examples 1 and 2.

복수의 소구경 분출 포트의 초점 거리를 L1=150mm, 퇴적면까지의 거리 L2=125mm로 하여 퇴적을 개시하고, 퇴적체의 성장에 맞추어 버너를, 퇴적체의 직경이 출발 부재의 직경의 거의 3배인 150mmφ로 되었을 무렵에 L1=L2로 되고, 퇴적 종료시에는 L2=175mm로 되도록, 퇴적면으로부터 서서히 떼어 놓고 있었다.The deposition is started by setting the focal lengths of the plurality of small-diameter jet ports to L 1 = 150 mm and the distance to the deposition surface L 2 = 125 mm, and the burner is adjusted in accordance with the growth of the deposit, and the diameter of the deposit is equal to the diameter of the starting member. is almost three times as L 1 = L 2 is the time to 150mmφ, such that L 2 = 175mm is deposited at the end, were put slowly removed from the deposition surface.

퇴적 결과를 비교예 1, 2의 결과와 함께 표 2에 모아서 나타내고, 도 4에 5kg마다의 평균 퇴적 속도를 나타내었다. 도 4로부터, 실시예의 퇴적 속도는 퇴적 중, 후술하는 비교예 1, 2보다 뛰어나다는 것이 인지된다.The deposition results are shown in Table 2 together with the results of Comparative Examples 1 and 2, and the average deposition rate for every 5 kg is shown in FIG. It is recognized from FIG. 4 that the deposition rate of the example is superior to Comparative Examples 1 and 2 described later during deposition.

비교예 1Comparative Example 1

소구경 분출 포트의 초점 거리 L1=150mm로 하고, 퇴적면까지의 거리 L2=125mm를 유지하여 퇴적을 행한 외에는, 실시예 1과 마찬가지로 하여, 출발 부재 상에 유리 미립자를 100kg 퇴적시켰다. 도 4로부터, 퇴적 초기에는 실시예와 거의 동일한 정도의 퇴적 속도였지만, 퇴적 후반에는 실시예보다도 뒤떨어져 있었다.100 kg of glass fine particles were deposited on the starting member in the same manner as in Example 1 except that the focal length L 1 = 150 mm of the small-diameter jet port was maintained while the distance L 2 = 125 mm to the deposition surface was deposited. 4, the deposition speed was almost the same as that of the embodiment in the initial stage of deposition, but was inferior to the embodiment in the latter stage of deposition.

비교예 2Comparative Example 2

소구경 분출 포트의 초점 거리 L1=150mm로 하고, 퇴적면까지의 거리 L2=175mm를 유지하여 퇴적을 행한 외에는, 실시예 1과 마찬가지로 하여, 출발 부재 상에 유리 미립자를 100kg 퇴적시켰다.100 kg of glass fine particles were deposited on the starting member in the same manner as in Example 1 except that the focal length L 1 = 150 mm of the small-diameter jet port was maintained while the distance L 2 = 175 mm to the deposition surface was deposited.

도 4로부터, 퇴적 초기에는 실시예보다도 뒤떨어져 있었지만, 퇴적 후반의 퇴적 속도는 실시예와 거의 동일한 정도였다.Although it was inferior to an Example at the beginning of deposition from FIG. 4, the deposition rate of the latter half of deposition was about the same as an Example.

<산업상의 이용 가능성>Industrial availability

본 발명에 의하면, 유리 미립자의 퇴적 효율이 향상되고, 다공질 유리 모재의 생산성 향상에 크게 기여한다.According to this invention, the deposition efficiency of glass microparticles | fine-particles improves and it contributes greatly to the productivity improvement of a porous glass base material.

Claims (2)

동심 다중관 구조를 가지고, 중심의 유리 원료 가스 분출 포트의 외측에, 당해 유리 원료 가스 분출 포트에 대해서 동심원상으로 1열 또는 복수열 배치되고, 동일 열에 배치된 분출 포트가 동일한 초점 거리를 가지는, 복수의 소구경 조연성 가스를 내포하는 가연성 가스 분출 포트를 가지는 버너를 이용하여, 유리 원료 가스를 화염 중에서 가수분해시켜 생성되는 유리 미립자를 출발 부재 상에 퇴적시켜 광섬유용 모재를 제조하는데 즈음하여, 상기 복수의 소구경 조연성 가스 분출 포트의 초점 거리를 L1으로 하고, 당해 소구경 조연성 가스 분출 포트의 선단으로부터 유리 미립자 퇴적면까지의 거리를 L2로 할 때, 퇴적 초기에는 L1>L2로 하고, 퇴적 도중에 L1<L2로 되도록, L2를 크게 해 가는 것을 특징으로 하는 광섬유용 모재의 제조 방법.It has a concentric multi-pipe structure, one row or plural rows are arranged concentrically with respect to the glass raw material gas blowing port outside the center glass raw material gas blowing port, and the blowing ports arranged in the same row have the same focal length, By using a burner having a flammable gas ejection port containing a plurality of small-diameter flammable gases, glass fine particles generated by hydrolyzing the glass raw material gas in a flame are deposited on the starting member to produce a base material for the optical fiber, When the focal lengths of the plurality of small-diameter flammable gas blowing ports are set to L 1 , and the distance from the tip of the small-diameter flammable gas blowing port to the glass fine particle deposition surface is set to L 2 , at the initial stage of deposition, L 1 > to L 2, and L 1 is deposited during the method for fabricating a preform for optical fibers, it characterized in that the thin greatly, so that the L 2 <L 2. 제1항에 있어서,The method of claim 1, 퇴적량이 증가하고, 모재의 외경이 증대함에 따라, 상기 버너를 퇴적면으로부터 떼어 놓고, 거리 L2를 크게 해 감으로써 L1<L2로 하는 것을 특징으로 하는 광섬유용 모재의 제조 방법.The deposition method increases, and as the outer diameter of the base material increases, the burner is removed from the deposition surface, and the distance L 2 is increased so that L 1 <L 2 .
KR1020080119262A 2008-02-27 2008-11-28 Burner for deposition of optical fiber preform KR101035467B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008046843 2008-02-27
JPJP-P-2008-046843 2008-02-27

Publications (2)

Publication Number Publication Date
KR20090092686A true KR20090092686A (en) 2009-09-01
KR101035467B1 KR101035467B1 (en) 2011-05-18

Family

ID=41080095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080119262A KR101035467B1 (en) 2008-02-27 2008-11-28 Burner for deposition of optical fiber preform

Country Status (2)

Country Link
KR (1) KR101035467B1 (en)
CN (1) CN101519271B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966607A (en) * 2019-12-26 2020-04-07 中天科技精密材料有限公司 Natural gas auxiliary flame treatment burner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230936A (en) * 2010-04-23 2011-11-17 Shin-Etsu Chemical Co Ltd Burner for manufacturing porous glass preform
JP5234672B2 (en) * 2010-09-24 2013-07-10 信越化学工業株式会社 Quartz glass burner
JP5748633B2 (en) 2011-10-18 2015-07-15 信越化学工業株式会社 Burner for manufacturing porous glass base material and method for manufacturing porous glass base material
CN103964684A (en) * 2014-04-30 2014-08-06 长飞光纤光缆股份有限公司 Machine tool for depositing optical fiber preform rods by outside chemical vapor deposition method
CN107056042B (en) * 2017-04-17 2023-05-09 江苏亨通光导新材料有限公司 Blowtorch of optical fiber preform

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187135A (en) * 1986-02-12 1987-08-15 Furukawa Electric Co Ltd:The Torch for synthesizing fine glass particle
JP3543537B2 (en) 1996-05-09 2004-07-14 住友電気工業株式会社 Method for synthesizing glass fine particles and focus burner therefor
JP2000191337A (en) * 1998-12-25 2000-07-11 Furukawa Electric Co Ltd:The Torch for synthesizing glass particulate with hood
JP2003226544A (en) * 2002-02-01 2003-08-12 Fujikura Ltd Method of manufacturing optical fiber porous preform
JP2003238186A (en) 2002-02-14 2003-08-27 Fujikura Ltd Method for processing glass rod for optical fiber
KR100507623B1 (en) 2002-11-06 2005-08-10 엘에스전선 주식회사 Burner for making fine particles for deposition of silica particles
JP5323130B2 (en) * 2011-05-26 2013-10-23 富士フイルム株式会社 Fluorescence analyzer and fluorescence analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966607A (en) * 2019-12-26 2020-04-07 中天科技精密材料有限公司 Natural gas auxiliary flame treatment burner

Also Published As

Publication number Publication date
CN101519271A (en) 2009-09-02
KR101035467B1 (en) 2011-05-18
CN101519271B (en) 2014-09-24

Similar Documents

Publication Publication Date Title
KR101035467B1 (en) Burner for deposition of optical fiber preform
US9260339B2 (en) Method of fabricating an optical fiber preform and a burner therefor
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
JP5229957B2 (en) Burner for manufacturing glass base material for optical fiber
JP2003226544A (en) Method of manufacturing optical fiber porous preform
CN1343638A (en) Burner of synthetic glass particles and method for mfg. porous vitreum
JP2014122141A (en) Burner for synthesizing glass fine particles, and production method of glass fine particle deposit
JP2011230936A (en) Burner for manufacturing porous glass preform
RU2243944C2 (en) Method of production of optical fiber billet and design of torch to realize the method
KR101035437B1 (en) Burner for producing porous glass preform
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
EP2221281B1 (en) Burner for manufacturing porous glass base material, and manufacturing method of porous glass base material
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
JP5264543B2 (en) Manufacturing method of optical fiber preform
KR20050093708A (en) Fabrication apparatus of porous glass preform and glass preform for optical fiber fabricated thereby
KR101035432B1 (en) Method for producing optical fiber preform
EP2573054B1 (en) Method for manufacturing an optical fiber preform by flame hydrolysis
JP2009274896A (en) Method for manufacturing porous glass preform
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
KR101036064B1 (en) Burner for producing porous glass preform
JPH10167748A (en) Burner for synthesis of glass raw material and production of glass raw material
KR20060024447A (en) Method of manufacturing optical fiber base material
JP5168772B2 (en) Method for producing glass particulate deposit
JP2011225413A (en) Method for manufacturing optical fiber preform
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140418

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170421

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180502

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 9