JPS6355135A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS6355135A
JPS6355135A JP19898286A JP19898286A JPS6355135A JP S6355135 A JPS6355135 A JP S6355135A JP 19898286 A JP19898286 A JP 19898286A JP 19898286 A JP19898286 A JP 19898286A JP S6355135 A JPS6355135 A JP S6355135A
Authority
JP
Japan
Prior art keywords
raw material
gas
flow rate
glass
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19898286A
Other languages
Japanese (ja)
Other versions
JPH0712954B2 (en
Inventor
Masumi Ito
真澄 伊藤
Toshio Danzuka
彈塚 俊雄
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19898286A priority Critical patent/JPH0712954B2/en
Publication of JPS6355135A publication Critical patent/JPS6355135A/en
Publication of JPH0712954B2 publication Critical patent/JPH0712954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Abstract

PURPOSE:To improve the yield of raw material gas in the production of an optical fiber preform, by ejecting raw material gas and combustion gas through a multiple tube burner keeping the flow rate of the glass raw material gas and that of adjacent combustion gas at a specific ratio and hydrolyzing the raw material gas. CONSTITUTION:A rotatable and vertically movable core rod 2 is inserted into a reaction vessel 1 and a porous glass preform 3 for the production of optical fiber is formed by vapor-phase axial deposition using a multiple tube burner 4. In the above process, SiCl4 gas as a raw material for glass is flowed through the 1st port positioned at the center of the burner 4 at a flow rate of 3l/min, H2 gas through the adjacent 2nd port at a rate of 1-30l/min, Ar gas through the 3rd port at a rate of 3l/min and O2 gas through the outermost 4th port at a rate of 15l/min. A porous glass preform 3 can be produced in high yield of SiCl4 by adjusting the flow rate of the sintering gas H2 passing through a layer adjacent to the raw material layer to 1-4 times the flow rate of the raw material layer of a multiple tube burner forming a plurality of flame planes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバ用母材の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a base material for optical fiber.

〔従来の技術〕[Conventional technology]

一般に火炎加水分解反応を用いた元ファイノく用母材の
製造においては、ノクーナから燃焼ガス、ガラス原料等
を噴出し、酸水素火炎中において上記ガラス原料の加水
分解反応により生じ次ガラス微粒子を、回転する出発材
又は心棒の外周に堆積させ多孔質ガラス体を得る方法が
用いられている。この方法においては燃料ガスの流量が
原料収率を大きく支配することが分っている。
In general, in the production of base materials for base metals using flame hydrolysis reactions, combustion gas, glass raw materials, etc. are ejected from a nocuna, and the glass fine particles produced by the hydrolysis reaction of the glass raw materials in an oxyhydrogen flame are Methods have been used to obtain porous glass bodies by depositing them on the outer periphery of a rotating starting material or mandrel. It has been found that in this method, the flow rate of the fuel gas greatly controls the raw material yield.

ここでいう原料収率とは、原料投入量に対する堆積した
ガラス微粒子の割合〔母材型it/原料重量×100(
イ)〕をいう。これは、燃燃ガスの流量条件が火炎の温
度、流速を支配しており、このために該流量条件によっ
て火炎内で生成されるガラス微粒子の粒径及び数量が決
定され、さらに母材表面でのガラス微粒子の堆積効率を
決定しているためである。
The raw material yield here means the ratio of deposited glass particles to the amount of raw material input [base material type it/raw material weight x 100 (
b)]. This is because the flow rate conditions of the combustion gas control the temperature and flow velocity of the flame, and for this reason, the particle size and number of glass particles generated within the flame are determined by the flow rate conditions, and furthermore, the particle size and number of glass particles generated in the flame are determined by the flow rate conditions. This is because it determines the deposition efficiency of glass particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のこの種の製造方法は、原料投入量に対し燃焼ガス
流量をどのくらいにしたら原料収率が最良になるか不明
な点が多かった。そのため、原料流量を多くした場合な
ど、原料収率を悪化させることが多々あり問題となって
いた。
In conventional manufacturing methods of this kind, there were many points in which it was unclear how much the combustion gas flow rate should be in relation to the amount of raw material input to achieve the best raw material yield. Therefore, when the raw material flow rate is increased, the raw material yield often deteriorates, which has been a problem.

原料収率の悪化は、それ自身が問題であるに加え、反応
容器内金堆積しなかったガラス微粒子が浮遊し、製造し
た母材表面に付着する等の悪影響を与える。したがって
、原料流量に対する燃焼ガス流量の最適条件が存在しそ
れを見出せるならば、原料流量を変えるたびに、最適条
件の探索の手間かはふけ、この種の製造技術の向上に非
常に効果が大きい。
The deterioration of the raw material yield is not only a problem in itself, but also has an adverse effect, such as glass fine particles that are not deposited with gold in the reaction vessel, floating and adhering to the surface of the manufactured base material. Therefore, if an optimal condition for the combustion gas flow rate relative to the raw material flow rate exists and can be found, it would save the time and effort of searching for the optimal condition every time the raw material flow rate is changed, and it would be very effective in improving this type of manufacturing technology. .

本発明の目的は、この原料流量に対する燃焼ガス流量の
最適条件という従来検討されていなかつ次製造条件を見
出し、原料収率を向上して元ファイバ用母材を製造する
方法を提供するにある。
An object of the present invention is to find the next manufacturing condition, which has not been considered in the past, which is the optimum condition of the combustion gas flow rate with respect to the raw material flow rate, and to provide a method for manufacturing a base material for an original fiber while improving the raw material yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは鋭意研究の結果、火炎面を複数個形成しう
る多重管バーナを用いた母材の製造方法において、原料
と混合したH2、あるいは原料ボートと隣接するボート
に流すH2の流量は原料収率に大きな影響を与えている
という新たな知見を得、原料を流す層と該層に隣接する
ボートよジ流すH,ガス流量に着目し、そのH2ガス流
量が原料流量に対し、1〜4倍に設定した製造条件にお
いて、母材を合成すれば高い原料収率が得られることを
見い出し、本発明に到達した。
As a result of intensive research, the present inventors found that in a method for manufacturing a base material using a multi-tube burner that can form multiple flame surfaces, the flow rate of H2 mixed with raw materials or flowing into a boat adjacent to a raw material boat is We obtained new knowledge that it has a large effect on raw material yield, and focused on the flow rate of H2 gas flowing through the layer where the raw material flows and the boat adjacent to the layer, and found that the H2 gas flow rate is 1 We have discovered that a high raw material yield can be obtained by synthesizing the base material under manufacturing conditions set to ~4 times as high, and have arrived at the present invention.

本発明は気体のガラス原料を燃焼バーナから噴出させて
火炎加水分解し、これにより生成するガラス微粒子を回
転する出発材又は心棒の外周に堆積させて回転軸方向に
成長させ、多孔質ガラス母材を製造する方法において、
火炎面を複数個形成する多重管バーナの原料を流す膚と
該層に隣接する層とに流す燃焼ガス流量を、原料流量の
1〜4倍とすることを特徴とする元ファイバ用母材の製
造方法である。
In the present invention, a gaseous glass raw material is ejected from a combustion burner and subjected to flame hydrolysis, and the resulting glass fine particles are deposited on the outer periphery of a rotating starting material or mandrel and grown in the direction of the rotation axis to form a porous glass base material. In the method of manufacturing,
A base material for an original fiber, characterized in that the flow rate of combustion gas flowing through the layer through which the raw material flows and the layer adjacent to the layer of the multi-tube burner forming a plurality of flame surfaces is 1 to 4 times the flow rate of the raw material. This is the manufacturing method.

以下図面を参照して説明する。第1図は元ファイバ用ガ
ラス母材の製造装置を模式的に示す図であって、反応容
器1内部の回転及び上下動可能な出発材又は心棒2の外
周に、燃焼バーナ4から気体のガラス原料、燃焼ガス、
助燃ガス、不活性ガス等を噴出させることにより上記ガ
ラス原料を火炎加水分解して生成したガラス微粒子を堆
積させ、回転軸方向に成長させて多孔質ガラス母材3を
得る。
This will be explained below with reference to the drawings. FIG. 1 is a diagram schematically showing an apparatus for manufacturing a glass preform for original fibers, in which gaseous glass is applied from a combustion burner 4 to the outer periphery of a rotatable and vertically movable starting material or mandrel 2 inside a reaction vessel 1. raw materials, combustion gas,
Glass fine particles produced by flame hydrolysis of the glass raw material are deposited by blowing out a combustion assisting gas, an inert gas, etc., and grown in the direction of the rotation axis to obtain a porous glass base material 3.

本発明者らは第1図の燃焼バーナ4として多重管バーナ
、特に中心部のガラス原料流のまわフに二重に火炎を形
成する二重火炎バーナを用いてガラス母材km造した。
The present inventors used a multi-tube burner as the combustion burner 4 shown in FIG. 1, particularly a double flame burner that forms double flames around the flask of the frit flow in the center, to produce a glass base material.

この時のガス流量は、中心から項次第1ボートガラス原
料5iC431/分、第2ボートH,1〜30t/分の
間で変動、第3ボートAr5t/分、第4ボート0゜1
5t/分(以上第2〜4ボートは内側の火炎用ガスであ
る)、外側火炎としてH!401/分、Ar4t/分、
02517分であった。このように内側火炎で特に原料
と隣接するボートのHzR,にのみを1〜30t/分の
範囲で変化させたところ、原料収率は第2図に示すよう
に変化した。
The gas flow rate at this time varies from the center to 1st boat glass raw material 5iC431/min, 2nd boat H, fluctuates between 1 and 30t/min, 3rd boat Ar5t/min, 4th boat 0°1
5t/min (the above 2nd to 4th boats are the gas for the inner flame), H as the outer flame! 401/min, Ar4t/min,
It was 02517 minutes. In this way, when only the HzR of the inner flame, particularly of the boat adjacent to the raw material, was changed in the range of 1 to 30 t/min, the raw material yield changed as shown in FIG.

この現象をさらに詳しく調べるため、上記の条件により
合成されるガラス微粒子の大きさを比表面積測定法(B
、E、T法)によp測定したところ% H1流量との間
に第3図のグラフに示すような関係のあることがわかっ
た。すなわち原料を流す第1ボートに隣接する第2ボー
トのH2流量は、火炎内で合成されるガラス微粒子の粒
径を支配しており、大きな粒径が得られるH−流量にお
いては、母材製造の原料収率が高くなっていることが分
った。
In order to investigate this phenomenon in more detail, we measured the size of glass particles synthesized under the above conditions using the specific surface area measurement method (B
, E, T method), it was found that there was a relationship between the %H1 flow rate and the flow rate as shown in the graph of FIG. In other words, the H2 flow rate of the second boat adjacent to the first boat through which the raw materials flow controls the particle size of the glass fine particles synthesized in the flame, and at the H2 flow rate where a large particle size is obtained, it is difficult to manufacture the base material. It was found that the raw material yield was high.

本発明者らはさらに種々の流量条件により検討を重ねた
結果、原料流量に対しH,ガス流量が1〜4倍の場合に
原料収率が高収率となることを見出したのである。
As a result of further studies under various flow rate conditions, the present inventors found that the raw material yield becomes high when the H and gas flow rate is 1 to 4 times the raw material flow rate.

これは、H2ガスが火炎内で合成されるガラス微粒子の
大きさを支配しているからで、同様のことは、山ガス全
原料と混合した場合についても言えることがわかった。
This is because H2 gas controls the size of the glass particles synthesized in the flame, and it was found that the same thing can be said when mixed with all raw materials of mountain gas.

すなわち原料を流す層と該層に隣接する層に流す燃焼ガ
スの合計流量が原料流量に対し1〜4倍の場合に高い原
料収率が得られる。
That is, a high raw material yield can be obtained when the total flow rate of the combustion gas flowing through the layer through which the raw material flows and the layer adjacent to the layer is 1 to 4 times the flow rate of the raw material.

又、以上の説明は本発明の燃料ガスとしてH2を用いた
例について行ったが、H!の他に例えばメタン、プロパ
ン等の炭化水素を燃料としてもよい。
Furthermore, although the above explanation was given for an example using H2 as the fuel gas of the present invention, H! In addition, hydrocarbons such as methane and propane may be used as fuel.

〔実施例〕〔Example〕

実施例1 従来、多重管バーナのガス流量条件を中心から順次第1
ボート5iC4: 3t/分、第2ボー)!(1: 1
517分、第3ボートAr:3t/分、第4ボートo2
:15t/分、にして、また以上による火炎の外側にH
,401/分、Ar4t/分、015017分の流量条
件の火炎を形成して母材t−g造していたところ、原料
の平均収率は50チ前後であった。上記の製造条件にお
いて、本発明により、第2ボー)Hz流量を原料流量の
3倍の917分にして母材全製造したところ原料収率が
67%と17チも向上した。しかも、この製造条件にお
いても、母材の回転軸方向の成長も安定しておフ、母材
割れ等の不良も発生しなかった。
Example 1 Conventionally, the gas flow conditions of a multi-tube burner were set to 1 in order from the center.
Boat 5iC4: 3t/min, 2nd boat)! (1: 1
517 minutes, 3rd boat Ar: 3t/min, 4th boat o2
: 15t/min, and H on the outside of the flame due to
, 401/min, Ar 4 t/min, and 0.15017 min of flow rate to produce the base material tg, and the average yield of the raw material was around 50 t/min. Under the above manufacturing conditions, according to the present invention, when the entire base material was manufactured by setting the second baud)Hz flow rate to 917 minutes, which is three times the raw material flow rate, the raw material yield was improved by 17 cm to 67%. Moreover, even under these manufacturing conditions, the growth of the base material in the direction of the rotation axis was stable, and defects such as base material cracking did not occur.

実施例2 第1ボート5ick : 417分、第2ボートH2、
第3ボートAr:3t/分、第4ボートO,: 15t
/分の条件に固定し、第2ボートH8の流量を2〜20
t/分に変化させてみ友。原料収率は第2ボートH2流
量が12t/分、すなわち、原料流量の3倍の時に最大
で64俤であった。
Example 2 1st boat 5ick: 417 minutes, 2nd boat H2,
3rd boat Ar: 3t/min, 4th boat O: 15t
/min, and the flow rate of the second boat H8 is set to 2 to 20 min.
Please change it to t/min. The maximum raw material yield was 64 tons when the second boat H2 flow rate was 12 t/min, that is, three times the raw material flow rate.

以上の実施例は2重火炎バーナにおける原料層と隣接す
る層に流すH2流量に関するものであるが、これは2重
火炎に限らず、火炎を複数個形成するバーナについて同
様のことが言えることも研究の結果判明した。
The above examples relate to the H2 flow rate flowing into the raw material layer and the adjacent layer in a double flame burner, but this is not limited to double flame burners, and the same can be said for burners that form multiple flames. This was discovered as a result of research.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は多重管バーナの場合、原
料と隣接するH2ガスの流量を原料流量に対し、1〜4
倍に設定することにより、高収率で母材を製造すること
ができる。
As explained above, in the case of a multi-tube burner, the present invention allows the flow rate of H2 gas adjacent to the raw material to be 1 to 4 times the flow rate of the raw material.
By setting the amount to double, the base material can be manufactured with high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の元ファイバ母材の製造方法の一実施態
様を説明する概略断面図である。 第2図#:を原料を流す層に隣接する層におけるH2 
 流を変化と原料収率の関係を示すグラフ、第3図は同
様に隣接層でのHzR,量変化とガラス微粒子粒径の関
係を示すグラフである。
FIG. 1 is a schematic cross-sectional view illustrating one embodiment of the method for manufacturing a fiber preform of the present invention. Figure 2 #: H2 in the layer adjacent to the layer through which the raw material flows
FIG. 3 is a graph showing the relationship between the flow rate and the raw material yield, and FIG. 3 is a graph showing the relationship between the HzR and amount changes in the adjacent layer and the glass particle size.

Claims (1)

【特許請求の範囲】[Claims] (1)気体のガラス原料を燃焼バーナから噴出させて火
炎加水分解し、これにより生成するガラス微粒子を回転
する出発材又は心棒の外周に堆積させて回転軸方向に成
長させ、多孔質ガラス母材を製造する方法において、火
炎面を複数個形成する多重管バーナの原料を流す層と該
層に隣接する層とに流す燃焼ガス流量を、原料流量の1
〜4倍とすることを特徴とする光ファイバ用母材の製造
方法。
(1) A gaseous glass raw material is ejected from a combustion burner and subjected to flame hydrolysis, and the resulting glass fine particles are deposited on the outer periphery of a rotating starting material or mandrel and grown in the direction of the rotation axis to form a porous glass base material. In a method for manufacturing a multi-tube burner that forms a plurality of flame surfaces, the flow rate of combustion gas flowing through a layer through which the raw material flows and a layer adjacent to the layer is set to 1 of the flow rate of the raw material.
A method for manufacturing an optical fiber preform, characterized in that the base material is increased by ~4 times.
JP19898286A 1986-08-27 1986-08-27 Method for manufacturing base material for optical fiber Expired - Lifetime JPH0712954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19898286A JPH0712954B2 (en) 1986-08-27 1986-08-27 Method for manufacturing base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19898286A JPH0712954B2 (en) 1986-08-27 1986-08-27 Method for manufacturing base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS6355135A true JPS6355135A (en) 1988-03-09
JPH0712954B2 JPH0712954B2 (en) 1995-02-15

Family

ID=16400148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19898286A Expired - Lifetime JPH0712954B2 (en) 1986-08-27 1986-08-27 Method for manufacturing base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH0712954B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6725690B2 (en) 2000-09-14 2004-04-27 Sumitomo Electric Industries, Ltd. Burner for synthesizing glass particles and method for producing porous glass body
WO2017188334A1 (en) * 2016-04-26 2017-11-02 住友電気工業株式会社 Method of synthesizing glass microparticles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6725690B2 (en) 2000-09-14 2004-04-27 Sumitomo Electric Industries, Ltd. Burner for synthesizing glass particles and method for producing porous glass body
US7143608B2 (en) 2000-09-14 2006-12-05 Sumitomo Electric Industries, Ltd. Burner for synthesizing glass particles and method for producing porous glass body
WO2017188334A1 (en) * 2016-04-26 2017-11-02 住友電気工業株式会社 Method of synthesizing glass microparticles
CN109071296A (en) * 2016-04-26 2018-12-21 住友电气工业株式会社 The synthetic method of glass granules
KR20180136457A (en) * 2016-04-26 2018-12-24 스미토모 덴키 고교 가부시키가이샤 Method of synthesizing glass microparticles
JPWO2017188334A1 (en) * 2016-04-26 2019-02-28 住友電気工業株式会社 Method for synthesizing glass particles
CN109071296B (en) * 2016-04-26 2021-07-30 住友电气工业株式会社 Method for synthesizing glass microparticles

Also Published As

Publication number Publication date
JPH0712954B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
CA1233080A (en) Method of fabricating optical fiber preforms
RU2271341C2 (en) Multi-tubular burner and method of producing glass blank
JPS6126532A (en) Production of base material for optical fiber
JPS6355135A (en) Production of optical fiber preform
JP3567574B2 (en) Burner for synthesis of porous glass base material
JP2019064897A (en) Method of manufacturing porous glass layered product for optical fiber
JPS60260433A (en) Manufacture of base material for optical fiber
JP2751176B2 (en) Manufacturing method of base material for optical fiber
JP3188515B2 (en) Burner for synthesis of silica fine particles
US20020189298A1 (en) Apparatus for manufacturing an optical fiber soot, and method for manufacturing an optical fiber soot using the same
JPS6259063B2 (en)
JPH06219764A (en) Production of perform for dispersed shift fiber
JPS63123828A (en) Production of porous preform for optical fiber
JP2003212560A (en) Method for manufacturing fine glass deposit
JPS63107825A (en) Production of synthetic quartz tube
JPH04240125A (en) Manufacture of optical fiber preform
JPH0986948A (en) Production of porous glass base material for optical fiber
JPS63252937A (en) Production of optical fiber preform
JP2000063141A (en) Production of porous glass preform for optical fiber
JPH09301719A (en) Focusing multiple burner for synthesis of glass fine particle
JPH02120250A (en) Production of deposited glass soot material
JPH04243929A (en) Production of matrix for optical fiber
JPH01179737A (en) Production of preform for optical fiber
JPS63282137A (en) Production of porous base material for quartz glass
JPH02133331A (en) Production of fine glass particle-deposited body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term