JPH04243929A - Production of matrix for optical fiber - Google Patents

Production of matrix for optical fiber

Info

Publication number
JPH04243929A
JPH04243929A JP838091A JP838091A JPH04243929A JP H04243929 A JPH04243929 A JP H04243929A JP 838091 A JP838091 A JP 838091A JP 838091 A JP838091 A JP 838091A JP H04243929 A JPH04243929 A JP H04243929A
Authority
JP
Japan
Prior art keywords
layer
gas
raw material
gas flow
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP838091A
Other languages
Japanese (ja)
Other versions
JP2945148B2 (en
Inventor
Hisashi Koaizawa
久 小相澤
Yukio Komura
幸夫 香村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP838091A priority Critical patent/JP2945148B2/en
Publication of JPH04243929A publication Critical patent/JPH04243929A/en
Application granted granted Critical
Publication of JP2945148B2 publication Critical patent/JP2945148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To enlarge the deposition rate of glass fine particles and enable a sufficient reaction even when a raw material gas is supplied in a large volume. CONSTITUTION:In a state that a raw material gas flow layer blown from the second layer 92 is nipped with a combustible gas flow layer blown from the first layer 91 and with an oxidizing gas flow layer blown from the third layer 93, glass fine particles are synthesized from the gas layers in a flame to form a porous glass fine particle layer on the surface of a target article.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、VAD法やOVD法等
で光ファイバ用母材を製造する方法の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for manufacturing an optical fiber preform by a VAD method, an OVD method, or the like.

【0002】0002

【従来の技術】従来、光ファイバ用母材をVAD法で製
造する場合には、図3に示すようにチャンバー1内で回
転しつつ引き上げられる出発材ロッド2aの先端にコア
用バーナ3で多孔質のガラス微粒子層からなるコア部4
を作り、その外周にクラッド用バーナ5で多孔質のガラ
ス微粒子層からなるクラッド部6を作り、光ファイバ用
母材7を得ている。この場合、クラッド用バーナ5は複
数本用いる場合が多い。ここで用いられるバーナ3,5
は、同心状の四,五重管バーナ若しくは二重火炎バーナ
である。
2. Description of the Related Art Conventionally, when manufacturing an optical fiber preform by the VAD method, a core burner 3 makes a porous hole at the tip of a starting material rod 2a that is rotated and pulled up in a chamber 1, as shown in FIG. Core part 4 consisting of a layer of fine glass particles
A cladding part 6 made of a porous glass particle layer is formed on the outer periphery of the cladding part 6 using a cladding burner 5 to obtain an optical fiber preform 7. In this case, a plurality of cladding burners 5 are often used. Burners 3 and 5 used here
is a concentric four- or five-tube burner or a double flame burner.

【0003】一方、光ファイバ用母材をOVD法で製造
する場合には、図4に示すように、VAD法等で形成さ
れてガラス化されたコア用出発材ロッド2bをチャンバ
1内で水平向きで回転させつつ左右にトラバースさせて
、その表面に外付けバーナ8でガラス微粒子からなるク
ラッド部6を形成し、光ファイバ用母材を得ている。 このとき用いる外付けバーナ8は、VAD法の時のクラ
ッド用バーナと同様同心状バーナである。
On the other hand, when manufacturing an optical fiber base material by the OVD method, as shown in FIG. The optical fiber is traversed from side to side while being rotated in the same direction, and a cladding portion 6 made of glass fine particles is formed on the surface using an external burner 8, thereby obtaining a preform for an optical fiber. The external burner 8 used at this time is a concentric burner similar to the clad burner used in the VAD method.

【0004】これらの同心状バーナは、図5に示すよう
に、その中心の第1層91 に原料ガスを流し、第2層
92 にH2 ガス若しくはO2 ガスを流し、第3層
93 に不活性ガスを流し、第4層94 にO2 ガス
若しくはH2 ガスを流している。
As shown in FIG. 5, these concentric burners have a first layer 91 in the center where raw material gas flows, a second layer 92 where H2 gas or O2 gas flows, and a third layer 93 where an inert gas is passed. O2 gas or H2 gas is passed through the fourth layer 94.

【0005】二重火炎バーナは、図6に示すように、中
心の第1層91 〜第4層94 までは同心状バーナと
同様にガスを流して第1の火炎を形成し、第5層95 
には不活性ガスを流し、第6層96 にはH2 ガス若
しくはO2 ガスを流し、第7層97 には不活性ガス
を流し、第8層98 にはO2 ガス若しくはH2 ガ
スを流して第2の火炎を形成している。
[0005] As shown in FIG. 6, in the double flame burner, gas flows through the first layer 91 to the fourth layer 94 in the center to form the first flame, similar to the concentric burner, and the fifth layer forms the first flame. 95
Inert gas is flowed into the sixth layer 96, H2 gas or O2 gas is flowed into the seventh layer 97, inert gas is flowed into the seventh layer 97, and O2 gas or H2 gas is flowed into the eighth layer 98. A flame is formed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
VAD法による同心状バーナでは、ガラス微粒子の堆積
速度が遅く、多数本のバーナを用いなければならない問
題点があった。また、多数本のバーナを用いると、隣接
するバーナの火炎の干渉により、多孔質の光ファイバ用
母材の層間に密度変化が発生し、密度が高い程脱水が困
難になる問題点があった。
However, the concentric burners used in the conventional VAD method have a problem in that the deposition rate of glass particles is slow and a large number of burners must be used. Additionally, when multiple burners are used, there is a problem in that density changes occur between the layers of the porous optical fiber base material due to interference between the flames of adjacent burners, and the higher the density, the more difficult it is to dewater. .

【0007】また、従来のOVD法による外付けバーナ
の場合には、多量に原料ガスを供給しようとすると、燃
焼して発生した水分の拡散が原料層中心まで十分にゆか
なくなり、原料ガスが十分に加水分解反応しなくなって
しまう問題点があった。
[0007] In addition, in the case of a conventional external burner using the OVD method, if a large amount of raw material gas is supplied, the moisture generated by combustion will not be able to diffuse sufficiently to the center of the raw material layer, and the raw material gas will not be fully supplied. There was a problem that the hydrolysis reaction stopped.

【0008】一方、二重火炎バーナの場合には、四,五
重管バーナよりもガラス微粒子の堆積速度は速いが、燃
焼ガスの使用量が増える問題点があった。また、多量に
原料ガスを供給しようとすると、四,五重管バーナと同
様のことが起こり、原料ガスが十分に反応しなくなる問
題点があった。
On the other hand, in the case of a double flame burner, the deposition rate of glass particles is faster than in a four- or five-tube burner, but there is a problem in that the amount of combustion gas used increases. Furthermore, if a large amount of raw material gas is supplied, the same problem as in a four- or five-tube burner occurs, and there is a problem in that the raw material gas does not react sufficiently.

【0009】本発明の目的は、ガラス微粒子の堆積速度
を上げることができ、しかも原料ガスを多量に供給して
も十分に反応させることができる光ファイバ用母材の製
造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing an optical fiber base material that can increase the deposition rate of glass fine particles and can cause a sufficient reaction even when a large amount of raw material gas is supplied. be.

【0010】0010

【課題を解決するための手段】上記の目的を達成するた
めの本発明の手段を説明すると、本発明に係る光ファイ
バ用母材の製造方法は、原料ガス流層を、燃焼ガス流層
と酸化ガス流層とで挟み込んだ状態で対象物側に吹き出
して、火炎内でガラス微粒子を合成し、該対象物の表面
に多孔質のガラス微粒子層を形成することを特徴とする
[Means for Solving the Problems] To explain the means of the present invention for achieving the above object, the method for manufacturing an optical fiber preform according to the present invention comprises replacing a raw material gas flow layer with a combustion gas flow layer. It is characterized in that glass particles are synthesized within the flame by blowing out toward the object while being sandwiched between the oxidizing gas flow layer and forming a porous glass particle layer on the surface of the object.

【0011】[0011]

【作用】このように原料ガス流層を、燃料ガス流層と酸
化ガス流層とで挟み込むと、原料ガス流の中に燃焼ガス
と酸化ガスが拡散して反応し、H2 Oを作る。かくし
て形成されたH2 Oはすぐに原料ガスと反応する。
[Operation] When the raw material gas flow layer is sandwiched between the fuel gas flow layer and the oxidizing gas flow layer in this way, the combustion gas and the oxidizing gas diffuse into the raw material gas flow and react, producing H2O. The H2O thus formed immediately reacts with the source gas.

【0012】従って、原料ガスを増やしても、これに対
応して燃焼ガス及び酸化ガスの量をそれぞれ増やすこと
により、ガラス微粒子の合成は十分に起きる。
Therefore, even if the raw material gas is increased, glass fine particles can be sufficiently synthesized by correspondingly increasing the amounts of combustion gas and oxidizing gas.

【0013】また、燃焼反応の起きているところで、ガ
ラス微粒子の合成反応が起こるので、ガスの温度が高く
なる。このため、ガラス微粒子の粒子径が大きくなり、
堆積速度が向上する。
[0013] Furthermore, since a synthesis reaction of glass particles occurs at the location where the combustion reaction is occurring, the temperature of the gas increases. For this reason, the particle size of the glass particles increases,
Deposition rate is increased.

【0014】更に、この方法では、燃焼ガス流層と酸化
ガス流層との間に不活性ガス流層を流していないので、
原料濃度をその分高くでき、ガラス微粒子層の粒子密度
を高くでき、堆積速度を向上できる。
Furthermore, in this method, since an inert gas flow layer is not flowed between the combustion gas flow layer and the oxidizing gas flow layer,
The raw material concentration can be increased accordingly, the particle density of the glass fine particle layer can be increased, and the deposition rate can be improved.

【0015】一方、二重火炎バーナでも、例えば内側の
火炎に上記内容のガスの流し方をし、外側の火炎は従来
通りのガスの流し方をすると、ガラス微粒子の堆積速度
が上がる。もちろん、原料ガスの供給量を多くしてもガ
ラス微粒子合成の反応は十分に起こる。
On the other hand, in the case of a double flame burner, for example, if the gas is passed through the inner flame as described above, and the gas is passed through the outer flame in the conventional manner, the deposition rate of glass particles increases. Of course, even if the amount of raw material gas supplied is increased, the glass particle synthesis reaction will still occur.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0017】図1は、本発明で用いる同心状バーナ3,
5,8の例を示したものである。このバーナ3,5,8
では、第1層91 にH2 ガス又はメタンガスの如き
燃焼ガスを流し、第2層92 にSiCl4 ガスの如
き原料ガスを流し、第3層93 にO2 ガスの如き酸
化ガスを流し、第4層94 にArガスの如き不活性ガ
スを流す。
FIG. 1 shows a concentric burner 3, which is used in the present invention.
Examples 5 and 8 are shown. This burner 3, 5, 8
Then, a combustion gas such as H2 gas or methane gas is supplied to the first layer 91, a source gas such as SiCl4 gas is supplied to the second layer 92, an oxidizing gas such as O2 gas is supplied to the third layer 93, and a fourth layer 94 is supplied with a combustion gas such as H2 gas or methane gas. An inert gas such as Ar gas is flowed through.

【0018】即ち、本実施例の光ファイバ用母材の製造
方法では、同心状バーナ3,5,8から原料ガス流層を
燃焼ガス流層と酸化ガス流層とで挟み込んだ状態で対象
物である出発材ロッド2a又は2b側に吹き出して、火
炎内でガラス微粒子を合成し、出発材ロッド2a又は2
bの表面に多孔質ガラス微粒子層4又は6を形成する。
That is, in the method for manufacturing an optical fiber base material of this embodiment, the material gas flow layer from the concentric burners 3, 5, and 8 is sandwiched between the combustion gas flow layer and the oxidizing gas flow layer, and the object is The starting material rod 2a or 2b is blown out to synthesize glass fine particles in the flame, and the starting material rod 2a or 2b is blown out.
A porous glass particle layer 4 or 6 is formed on the surface of b.

【0019】このように、原料ガス流層を燃焼ガス流層
とで酸化ガス流層とで挟み込むと、原料ガス流層内にO
2 の如き酸化ガスとH2 の如き燃焼ガスとが拡散し
て反応し、H2 Oを作る。かくして形成されたH2 
Oは、すぐに原料ガスと反応する。従って、原料ガスの
量を増やしても、これに相当する酸化ガス,燃焼ガスの
各量を増やすことにより、ガラス微粒子の合成は十分に
起こる。
In this way, when the raw material gas flow layer is sandwiched between the combustion gas flow layer and the oxidizing gas flow layer, O2 is generated in the raw material gas flow layer.
An oxidizing gas such as 2 and a combustion gas such as H2 diffuse and react to form H2O. Thus formed H2
O immediately reacts with the source gas. Therefore, even if the amount of raw material gas is increased, glass fine particles can be synthesized sufficiently by increasing the corresponding amounts of oxidizing gas and combustion gas.

【0020】燃焼反応の起きている所で、合成反応が起
こるので、ガスの温度が高い。このため、ガラス微粒子
の粒径が大きくなり、出発材ロッド2a又は2bに対す
るガラス微粒子の堆積速度を向上できる。更に、酸化ガ
ス流層と燃焼ガス流層との間に不活性ガスを流していな
いので、原料ガス濃度がその分高くなり、粒子密度を高
くでき、ガラス微粒子の堆積速度を向上できる。
[0020] Since the synthesis reaction occurs where the combustion reaction occurs, the temperature of the gas is high. Therefore, the particle size of the glass fine particles becomes large, and the deposition rate of the glass fine particles on the starting material rod 2a or 2b can be improved. Furthermore, since no inert gas is flowed between the oxidizing gas flow layer and the combustion gas flow layer, the raw material gas concentration increases accordingly, the particle density can be increased, and the deposition rate of glass fine particles can be improved.

【0021】また、二重火炎バーナでも、内側の火炎に
上記と同様に原料ガス流層を燃焼ガス流層と酸化ガス流
層とで挟み込んで供給し、外側の火炎に従来通りのガス
流を供給しても、ガラス微粒子の堆積速度を向上できる
[0021] Also, in a double flame burner, the raw material gas flow layer is sandwiched between the combustion gas flow layer and the oxidizing gas flow layer and is supplied to the inner flame in the same manner as described above, and the conventional gas flow is supplied to the outer flame. Even if it is supplied, the deposition rate of glass fine particles can be improved.

【0022】上記実施例とは逆に、第1層91 にはO
2 ガスの如き酸化ガスを流し、第3層9にはH2 ガ
スの如き燃焼ガスを流してもよい。勿論、原料ガスの供
給量を多くしてもガラス微粒子合成反応は十分に起こる
Contrary to the above embodiment, the first layer 91 contains O.
An oxidizing gas such as H2 gas may be passed through the third layer 9, and a combustion gas such as H2 gas may be passed through the third layer 9. Of course, even if the amount of raw material gas supplied is increased, the glass particle synthesis reaction will still occur.

【0023】次に、VAD法の場合における具体例を示
すと、下記の通りである。
Next, a specific example in the case of the VAD method is as follows.

【0024】コア用バーナ(四重管バーナ)第1層  
    H2 ガス    3  l/分第2層   
   SiCl4   1  l/分、GeCl4  
 0.5   l/分 第3層      O2 ガス    4  l/分第
4層      Arガス    1  l/分クラッ
ド用バーナ(七重管バーナ)2本第1層      H
2 ガス  10  l/分第2層      SiC
l4   3  l/分第3層      O2 ガス
  18  l/分第4層      Arガス   
 2  l/分第5層      H2 ガス    
6  l/分第6層      Arガス   2.5
  l/分第7層      O2 ガス  16  
l/分母材の引き上げ速度   0.8mm/分従来は
、クラッド用バーナは3本必要としたが、本発明によれ
ばクラッド用バーナは2本で必要量のガラス微粒子の合
成ができるようになった。
Core burner (quadruple tube burner) 1st layer
H2 gas 3 l/min 2nd layer
SiCl4 1 l/min, GeCl4
0.5 l/min 3rd layer O2 gas 4 l/min 4th layer Ar gas 1 l/min 2 cladding burners (seven-pipe burner) 1st layer H
2 Gas 10 l/min 2nd layer SiC
l4 3 l/min 3rd layer O2 gas 18 l/min 4th layer Ar gas
2 l/min 5th layer H2 gas
6 l/min 6th layer Ar gas 2.5
l/min 7th layer O2 gas 16
l/denominator material pulling speed 0.8 mm/min Conventionally, three cladding burners were required, but according to the present invention, the required amount of glass particles can be synthesized with two cladding burners. Ta.

【0025】図2は、本発明で用いる角形バーナの例を
示したものである。この角形バーナは、上部を第1層9
1 とすると、第2層92 、第3層93 、第4層9
4 、第5層95 までの五重構造で、更に第2層92
 と第3層93 との幅方向の両側にサイド層S1 ,
S2 が1個ずつ設けられた構造になっている。この場
合、第1層91 にはO2 ガスを流し、第2層92 
にはSiCl4 ガスを流し、第3層93 にはH2 
ガスを流し、第4層94 にはArガスを流し、第5層
95 にはO2 ガスを流し、両サイド層S1 ,S2
 にはArガスを流す。左右のサイド層S1 ,S2と
第4層94 に流すArガスは、独立して制御できる。
FIG. 2 shows an example of a rectangular burner used in the present invention. This rectangular burner has a first layer 9 on top.
1, the second layer 92, the third layer 93, the fourth layer 9
4, five-layer structure up to the fifth layer 95, and further the second layer 92
and the third layer 93 on both sides in the width direction, side layers S1,
It has a structure in which one S2 is provided. In this case, O2 gas is passed through the first layer 91 and the second layer 92 is
SiCl4 gas is supplied to the third layer 93, and H2 gas is supplied to the third layer 93.
Ar gas is flowed into the fourth layer 94, O2 gas is flowed into the fifth layer 95, and both side layers S1 and S2 are
Flow Ar gas. The Ar gas flowing into the left and right side layers S1, S2 and the fourth layer 94 can be controlled independently.

【0026】このように原料ガスSiCl4 を酸化ガ
スO2 と燃焼ガスH2 とで挟んで送り出すと、原料
ガスの反応を素早く起こさせることができ、原料ガスの
大量投入が可能となる。
[0026] When the raw material gas SiCl4 is sandwiched between the oxidizing gas O2 and the combustion gas H2 and sent out in this way, the reaction of the raw material gas can be caused quickly, and a large amount of the raw material gas can be introduced.

【0027】また、原料ガス流層の幅方向と出発材ロッ
ドの長手方向とを合わせると、ガラス微粒子の堆積速度
を同心状バーナより向上させることができる。
Furthermore, by aligning the width direction of the raw material gas flow layer with the longitudinal direction of the starting material rod, the deposition rate of glass fine particles can be increased compared to a concentric burner.

【0028】更に、図2において上下を反対にしても同
様の効果が得られることは勿論である。
Furthermore, it goes without saying that the same effect can be obtained even if the top and bottom of FIG. 2 are reversed.

【0029】このような角形バーナでOVD法を行う場
合の具体例を示すと、下記の通りである。
A specific example of carrying out the OVD method using such a rectangular burner is as follows.

【0030】第1層      O2 ガス    2
5  l/分第2層      SiCl4   20
  g/分、GeCl4   0.5   l/分 第3層      H2 ガス    15  l/分
第4層      Arガス      2  l/分
第5層      O2 ガス    15  l/分
サイド層    Arガス      4  l/分(
左右合計量)出発材ロッド 外径            20mm回転速度   
     20rpm トラバース速度  0.3m/
分 この場合、ガラス微粒子の堆積速度は、従来の3〜5g
/分から7〜10g/分に改善された。
[0030] First layer O2 gas 2
5 l/min 2nd layer SiCl4 20
g/min, GeCl4 0.5 l/min 3rd layer H2 gas 15 l/min 4th layer Ar gas 2 l/min 5th layer O2 gas 15 l/min Side layer Ar gas 4 l/min (
Total amount of left and right) Starting material rod outer diameter 20mm Rotation speed
20rpm Traverse speed 0.3m/
In this case, the deposition rate of glass particles is 3 to 5 g
/min to 7-10g/min.

【0031】[0031]

【発明の効果】以上説明したように本発明に係る光ファ
イバ用母材の製造方法によれば、下記のような効果を得
ることができる。
As explained above, according to the method for manufacturing an optical fiber preform according to the present invention, the following effects can be obtained.

【0032】(イ)原料ガス流層を燃焼ガス流層と酸化
ガス流層で挟み込んで流すので、原料ガス流層の厚みを
薄くでき、このため燃焼ガスと酸化ガスとの原料ガスに
対する拡散混合が良くなる。従って、原料濃度が高い所
で、H2 とO2 が反応したH2 Oが多く反応する
ため、原料の反応が速く、ガラス微粒子の空間的な分布
が小さくなり、ガラス微粒子の密度の高い火炎ができる
(a) Since the raw material gas flow layer is sandwiched between the combustion gas flow layer and the oxidizing gas flow layer, the thickness of the raw material gas flow layer can be reduced, and therefore, the diffusion mixing of the combustion gas and the oxidizing gas with respect to the raw material gas is reduced. gets better. Therefore, in areas where the raw material concentration is high, a large amount of H2 O, which is the reaction between H2 and O2, reacts, so the reaction of the raw materials is rapid, the spatial distribution of glass fine particles becomes small, and a flame with a high density of glass fine particles is created.

【0033】(ロ)H2 とO2 の反応の激しい所に
原料ガスが存在するので、周囲のガス温度が高くなり、
ガラス微粒子の外径が大きくなり、該ガラス微粒子の堆
積速度が向上する。
(b) Since the raw material gas exists in a place where the reaction between H2 and O2 is intense, the temperature of the surrounding gas increases,
The outer diameter of the glass particles increases, and the deposition rate of the glass particles increases.

【0034】(ハ)H2 とO2 用のシールガスを用
いていないので、原料ガスの濃度が高く、ガラス微粒子
密度の高い火炎ができる。
(c) Since a sealing gas for H2 and O2 is not used, a flame with a high concentration of raw material gas and a high density of glass particles can be produced.

【0035】以上の理由により、ガラス微粒子を火炎内
であまり拡がらないようにして対象物に吹き付けること
ができ、堆積速度を向上させることができる。また、燃
焼ガスと酸化ガスとを拡散し易くしているので、原料ガ
スの投入量が増えても十分に燃焼ガス及び酸化ガスと反
応させることができる。
[0035] For the above reasons, the glass particles can be sprayed onto the object without spreading much within the flame, and the deposition rate can be improved. Further, since the combustion gas and the oxidizing gas are made to easily diffuse, even if the input amount of the raw material gas increases, it can be sufficiently reacted with the combustion gas and the oxidizing gas.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明で用いる同心状バーナの一例を示す横断
面図である。
FIG. 1 is a cross-sectional view showing an example of a concentric burner used in the present invention.

【図2】本発明で用いる角形バーナの一例を示す横断面
図である。
FIG. 2 is a cross-sectional view showing an example of a square burner used in the present invention.

【図3】従来のVAD装置の縦断面図である。FIG. 3 is a longitudinal cross-sectional view of a conventional VAD device.

【図4】従来のOVD装置の縦断面図である。FIG. 4 is a longitudinal cross-sectional view of a conventional OVD device.

【図5】従来の同心状バーナの横断面図である。FIG. 5 is a cross-sectional view of a conventional concentric burner.

【図6】従来の二重火炎バーナの縦断面図である。FIG. 6 is a longitudinal cross-sectional view of a conventional double flame burner.

【符号の説明】[Explanation of symbols]

1            チャンバー2a,2b  
  出発材ロッド 3            コア用バーナ4     
       コア部 5            クラッド用バーナ6   
         クラッド部7          
  光ファイバ用母材8            外付
けバーナ91 〜98     第1層(中心層)〜第
8層S1 ,S2     サイド層
1 Chamber 2a, 2b
Starting material rod 3 Core burner 4
Core part 5 Burner 6 for cladding
Cladding part 7
Optical fiber base material 8 External burners 91 to 98 1st layer (center layer) to 8th layer S1, S2 Side layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  原料ガス流層を、燃焼ガス流層と酸化
ガス流層とで挟み込んだ状態で対象物側に吹き出して、
火炎内でガラス微粒子を合成し、該対象物の表面に多孔
質のガラス微粒子層を形成することを特徴とする光ファ
イバ用母材の製造方法。
[Claim 1] Blowing out the raw material gas flow layer to the object side while sandwiching it between the combustion gas flow layer and the oxidizing gas flow layer,
A method for manufacturing an optical fiber preform, which comprises synthesizing glass particles in a flame to form a porous glass particle layer on the surface of the object.
JP838091A 1991-01-28 1991-01-28 Manufacturing method of preform for optical fiber Expired - Lifetime JP2945148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP838091A JP2945148B2 (en) 1991-01-28 1991-01-28 Manufacturing method of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP838091A JP2945148B2 (en) 1991-01-28 1991-01-28 Manufacturing method of preform for optical fiber

Publications (2)

Publication Number Publication Date
JPH04243929A true JPH04243929A (en) 1992-09-01
JP2945148B2 JP2945148B2 (en) 1999-09-06

Family

ID=11691620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP838091A Expired - Lifetime JP2945148B2 (en) 1991-01-28 1991-01-28 Manufacturing method of preform for optical fiber

Country Status (1)

Country Link
JP (1) JP2945148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098489A1 (en) 2008-02-27 2009-09-09 Shin-Etsu Chemical Co., Ltd. Method of fabricating an optical fiber preform and a burner therefor
KR101035432B1 (en) * 2008-02-27 2011-05-18 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing optical fiber preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098489A1 (en) 2008-02-27 2009-09-09 Shin-Etsu Chemical Co., Ltd. Method of fabricating an optical fiber preform and a burner therefor
KR101035432B1 (en) * 2008-02-27 2011-05-18 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing optical fiber preform
US9260339B2 (en) 2008-02-27 2016-02-16 Shin-Etsu Chemical Co., Ltd. Method of fabricating an optical fiber preform and a burner therefor

Also Published As

Publication number Publication date
JP2945148B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
US4627866A (en) Method for producing optical fiber preform
US6725690B2 (en) Burner for synthesizing glass particles and method for producing porous glass body
CA1233080A (en) Method of fabricating optical fiber preforms
JP2000191337A (en) Torch for synthesizing glass particulate with hood
JPS6126532A (en) Production of base material for optical fiber
JPH04243929A (en) Production of matrix for optical fiber
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPS60264338A (en) Manufacture of optical fiber preform
JPH0324417B2 (en)
JPS6044258B2 (en) synthesis torch
JPS6261541B2 (en)
JP2006264995A (en) Device of producing preform for optical fiber and method of producing the same
JPS6168330A (en) Formation of fine particle of optical glass
JPH0986948A (en) Production of porous glass base material for optical fiber
JPS5978941A (en) Manufacture of base material for optical fiber
JP2722735B2 (en) Method for producing glass preform for optical fiber
JPS6259063B2 (en)
JPS63252937A (en) Production of optical fiber preform
JPH06199534A (en) Production of dispersion shift fiber preform
JPS6355135A (en) Production of optical fiber preform
JPS59137333A (en) Manufacture of base material for optical fiber
JPS63159234A (en) Production of optical fiber preform
JPH04275924A (en) Burner for producing particulate glass
JP2000007367A (en) Apparatus and process for producing glass preform for optical fiber
JPS6287428A (en) Production of porous preform for optical system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12