JPH0324417B2 - - Google Patents

Info

Publication number
JPH0324417B2
JPH0324417B2 JP21325882A JP21325882A JPH0324417B2 JP H0324417 B2 JPH0324417 B2 JP H0324417B2 JP 21325882 A JP21325882 A JP 21325882A JP 21325882 A JP21325882 A JP 21325882A JP H0324417 B2 JPH0324417 B2 JP H0324417B2
Authority
JP
Japan
Prior art keywords
gas
raw material
gas supply
supply nozzle
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21325882A
Other languages
Japanese (ja)
Other versions
JPS59107934A (en
Inventor
Hiroshi Yokota
Minoru Watanabe
Koji Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21325882A priority Critical patent/JPS59107934A/en
Publication of JPS59107934A publication Critical patent/JPS59107934A/en
Publication of JPH0324417B2 publication Critical patent/JPH0324417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 (イ) 技術分野 本発明は、光フアイバ用プリフオーム製造の際
の気相軸付け法(VAD法)において、多重管バ
ーナに送り込まれる多量のガラス原料ガスを効率
よく反応させ、軸方向に積層するガラス微粒子の
堆積速度を増加させ、安定に、かつ経済的に光フ
アイバ用プリフオームを製造する方法を提供する
ものである。
[Detailed Description of the Invention] (a) Technical Field The present invention is a method for efficiently reacting a large amount of frit gas fed into a multi-tube burner in the vapor phase axial deposition method (VAD method) for manufacturing preforms for optical fibers. The present invention provides a method for stably and economically manufacturing an optical fiber preform by increasing the deposition rate of glass fine particles laminated in the axial direction.

(ロ) 背景技術 1本の同心円状多重管バーナーを用いてVAD
法により光フアイバ用プリフオームを製造する
際、通常、第1図に示すようにバーナーBの中心
ノズルにnnにガラス原料であるSiCl4,GeCl4
を、その外側のノズルnHに燃焼ガスとしてH2
更に最外周ノズルnOに助燃ガスとしてO2を供給
する3重管構造のバーナーが用いられる。
(b) Background technology VAD using one concentric multi-tube burner
When manufacturing optical fiber preforms by the method, as shown in Fig. 1, glass raw materials such as SiCl 4 , GeCl 4 , etc. are usually injected into the central nozzle of burner B, and combustion gas is injected into the outer nozzles . As H 2 ,
Furthermore, a triple-pipe structure burner is used that supplies O 2 as combustion auxiliary gas to the outermost nozzle n O.

しかしながら、このような方法では、ガラス合
成速度を増加させるために、SiCl4,GeCl4の原料
ガス供給量を増加させたり、あるいはH2,O2
ス量を増加させると、流速の増加に伴い燃焼によ
り生ずるH2Oの拡散時間が減少するため、原料
ガスであるSiCl4,GeCl4の一部が未反応となり、
ガラス微粒子の成長が不安定となる。また原料ガ
スが排気ガスと共に排出されるため、原料ガスの
反応付着効率が非常に劣化する。
However, in this method, in order to increase the glass synthesis rate, if the raw material gas supply amount of SiCl 4 or GeCl 4 or the amount of H 2 or O 2 gas is increased, the flow rate increases and As the diffusion time of H 2 O generated by combustion decreases, some of the raw material gases SiCl 4 and GeCl 4 become unreacted,
The growth of glass particles becomes unstable. Furthermore, since the raw material gas is discharged together with the exhaust gas, the reaction deposition efficiency of the raw material gas is significantly degraded.

また第1図の3重管構造のバーナーの他の多重
管バーナー構造として、本発明者等は先に、コア
とクラツドの境界でドーパント濃度がなだらかに
変化し、放物線形にドーパント濃度が分布するグ
レーテツドインデツクス型のプリフオームを得る
ために第2図、第3図に示すように原料ガス供給
ノズルnnを複数にして濃度を漸次変えて原料ガ
スを供給すると共に原料ガスノズルの周りに水素
ガス供給ノズルnHおよび酸素ガス供給ノズルnO
設けたものや、第4図に示すようにコアとクラツ
ドを分散するために2つの原料ガス供給ノズル
nnの間に酸素ガス供給ノズルnOを設けたものを提
案している(特開昭54−30853号公報)。しかしな
がらこれらの配置のバーナーを用いても第1図の
場合と同様の欠点があつた。
Furthermore, as a multi-tube burner structure other than the triple-tube structure burner shown in FIG. In order to obtain a graded index type preform, as shown in Figs. 2 and 3, a plurality of raw material gas supply nozzles n n are used to supply the raw material gas while gradually changing the concentration, and at the same time supply hydrogen around the raw material gas nozzles. One equipped with a gas supply nozzle n H and an oxygen gas supply nozzle n O , or two raw material gas supply nozzles for dispersing the core and cladding as shown in Figure 4.
It has been proposed that an oxygen gas supply nozzle nO is provided between n and n (Japanese Patent Application Laid-open No. 30853/1983). However, even with these burner arrangements, the same drawbacks as in the case of FIG. 1 were encountered.

(ハ) 発明の開示 本発明では従来法における欠陥、すなわち原料
ガスであるSiCl4,GeCl4等を増加させたとき反応
付着効率が劣化するという問題を解決するため
に、第5図に示すように原料ガス供給ノズルnn
の周りに、O2ガス供給ノズルnO,H2ガス供給ノ
ズルnH,O2ガス供給ノズルnOを順次配置するも
のである。このH2ガスの内側にO2ガスを供給す
るという配置により、発生する高温H2Oが中心
ノズルより噴出する原料ガスと反応するに要する
拡散距離が減少し、原料ガスがターゲツトに付着
する前に反応して効率よく積層する。また外側の
O2ガスは更にH2ガスと反応し、発生ガラス微粒
子及び成長する多孔質ガラス母材表面の加熱源と
して働く。H2ガスの内側、外側のO2ガスは両者
共、SiCl4,GeCl4等の原料ガスを含まないことが
必要で、第6図にSiCl4,GeCl4等の原料ガスと
O2ガスを同一ノズルnn+Oから噴出させるように
した例を示したが、このような配置ではO2ガス
の添加によりガラス原料の噴出流速が増加するた
め反応効率の改善は達成されない。またバーナー
のノズル先端を保護する目的で、H2ガスとO2
スの噴出ノズル間にシールガスとしてAr等の不
活性ガス噴出ノズルを設けることができる。
(C) Disclosure of the Invention In the present invention, in order to solve the defect in the conventional method, that is, the reaction deposition efficiency deteriorates when the raw material gases such as SiCl 4 and GeCl 4 are increased, the method is as shown in FIG. Raw material gas supply nozzle n n
An O 2 gas supply nozzle n O , an H 2 gas supply nozzle n H , and an O 2 gas supply nozzle n O are sequentially arranged around the . By supplying O 2 gas inside this H 2 gas, the diffusion distance required for the generated high-temperature H 2 O to react with the source gas ejected from the center nozzle is reduced, and before the source gas adheres to the target. Laminates efficiently in response to Also outside
The O 2 gas further reacts with the H 2 gas and serves as a heating source for the generated glass particles and the surface of the growing porous glass base material. Both the inner and outer O 2 gases of the H 2 gas must not contain raw material gases such as SiCl 4 and GeCl 4 .
An example has been shown in which O 2 gas is ejected from the same nozzle n n + O , but in such an arrangement, the addition of O 2 gas increases the ejection flow rate of the glass raw material, so improvement in reaction efficiency is not achieved. Further, for the purpose of protecting the nozzle tip of the burner, an inert gas jetting nozzle such as Ar can be provided as a seal gas between the H 2 gas and O 2 gas jetting nozzles.

本発明では、第5図のように原料供給ノズル
nnが一層のものの外、第7図、第8図に示すよ
うに多層のものも勿論用いることができ、いずれ
にしても原料供給ノズルの周りにO2−H2−O2
給ノズルが配置されれば、同様の効果が奏され
る。
In the present invention, as shown in Fig. 5, the raw material supply nozzle
In addition to the one in which n n is a single layer, a multi - layer one as shown in Figs. If placed, similar effects can be achieved.

(ニ) 発明が実施するための最良の形態 実施例 石英製4重管バーナーの中心ノズルにSiCl4200
c.c./分、GeCl440c.c./分を供給し、第2層目にO2
ガス600c.c./分、第3層目にH2ガス4.2/分、
更に最外周層にO2ガス10/分を供給し、多孔
質ガラス母材を作製した。得られた多孔質母材の
径は72mmφであり、仕上げ成長速度は81mm/時で
あつた。原料ガスの付着効率は73%であり、従来
法で製造したときの値51%と比較して大幅に改善
されている。この多孔質母材を抵抗炉ヒーターで
約1500℃に加熱し透明化した。得られた透明ガラ
スロツドを外径26φの石英管に入れ、外径/コア
径比を2.5にしてカーボン抵抗炉で加熱し125μm
径のフアイバに線引した。このフアイバの伝送損
失は2.5dβ/Km以下(λ=0.85μm)と極めて低損
失であり、また伝送帯域も650MHz・Kmと広帯域
で、すぐれた特性を有している。
(d) Best Mode for Carrying Out the Invention Example SiCl 4 200 in the center nozzle of a quartz quadruple tube burner
cc/min, GeCl 4 40c.c./min, and O 2 to the second layer.
Gas 600c.c./min, H2 gas 4.2/min in the third layer,
Further, O 2 gas was supplied at 10/min to the outermost layer to produce a porous glass base material. The diameter of the obtained porous base material was 72 mmφ, and the final growth rate was 81 mm/hour. The adhesion efficiency of the raw material gas was 73%, which is a significant improvement compared to the value of 51% when produced using the conventional method. This porous base material was heated to approximately 1500°C using a resistance furnace heater to make it transparent. The obtained transparent glass rod was placed in a quartz tube with an outer diameter of 26φ and heated in a carbon resistance furnace with an outer diameter/core diameter ratio of 2.5 to a diameter of 125 μm.
A line was drawn on the fiber of the diameter. The transmission loss of this fiber is extremely low, less than 2.5dβ/Km (λ=0.85μm), and the transmission band is wide at 650MHz/Km, giving it excellent characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

添付の図面はVAD法に用いる多重管バーナー
の横断面図で、第1図、第2図、第3図、第4図
が従来用いられていたもの、第5図、第7図、第
8図が本発明で用いられるもの、第6図が比較例
のものである。
The attached drawings are cross-sectional views of multi-tube burners used in the VAD method. The figure shows one used in the present invention, and FIG. 6 shows a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 同心円状の複数のノズルよりなる多重管バー
ナーを用いてガラス原料ガスおよび燃焼ガスを混
合燃焼せしめて出発母材の軸方向にガラス微粒子
を積層させ、後に焼結して光フアイバ用プリフオ
ームを製造するVAD法において、上記多重管バ
ーナーの原料ガス供給ノズルの周囲に酸素ガス供
給ノズル−水素ガス供給ノズル−酸素ガス供給ノ
ズルを順次配置することを特徴とする、光フアイ
バ用プリフオームの製造方法。
1 Using a multi-tube burner consisting of a plurality of concentric nozzles, glass raw material gas and combustion gas are mixed and burned to stack glass particles in the axial direction of the starting base material, which is then sintered to produce an optical fiber preform. A method for producing an optical fiber preform in the VAD method, characterized in that an oxygen gas supply nozzle, a hydrogen gas supply nozzle, and an oxygen gas supply nozzle are sequentially arranged around the raw material gas supply nozzle of the multi-tube burner.
JP21325882A 1982-12-07 1982-12-07 Manufacture of optical fiber Granted JPS59107934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21325882A JPS59107934A (en) 1982-12-07 1982-12-07 Manufacture of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21325882A JPS59107934A (en) 1982-12-07 1982-12-07 Manufacture of optical fiber

Publications (2)

Publication Number Publication Date
JPS59107934A JPS59107934A (en) 1984-06-22
JPH0324417B2 true JPH0324417B2 (en) 1991-04-03

Family

ID=16636114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21325882A Granted JPS59107934A (en) 1982-12-07 1982-12-07 Manufacture of optical fiber

Country Status (1)

Country Link
JP (1) JPS59107934A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131325A (en) * 1984-07-23 1986-02-13 Furukawa Electric Co Ltd:The Method for supplying gas in multi-walled pipe burner for forming pulverous particles of optical glass
JPS6173627U (en) * 1984-10-23 1986-05-19
JPH0829957B2 (en) * 1988-11-04 1996-03-27 信越化学工業株式会社 High NA step index type optical fiber preform manufacturing method
US5203897A (en) * 1989-11-13 1993-04-20 Corning Incorporated Method for making a preform doped with a metal oxide
US5683547A (en) * 1990-11-21 1997-11-04 Hitachi, Ltd. Processing method and apparatus using focused energy beam
JP4213882B2 (en) 2001-07-16 2009-01-21 ヤンマー株式会社 Fuel injection amount control device

Also Published As

Publication number Publication date
JPS59107934A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
US7143608B2 (en) Burner for synthesizing glass particles and method for producing porous glass body
GB2128982A (en) Fabrication method of optical fiber preforms
JPH10101343A (en) Method for synthesizing fine glass particle and focal burner therefor
JPH0324417B2 (en)
JPS6168340A (en) Production of parent glass material for optical fiber
JPH05323130A (en) Multifocus type burner and production of glass particulate deposited body by using this burner
US5238479A (en) Method for producing porous glass preform for optical fiber
JP3567574B2 (en) Burner for synthesis of porous glass base material
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPS60264338A (en) Manufacture of optical fiber preform
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPH06227825A (en) Production of porous glass preform
JPS61183140A (en) Production of base material for optical fiber
JPS6259063B2 (en)
KR930001938B1 (en) Method for producing porous glass preform for optical fiber
JP3176949B2 (en) Method for producing porous silica preform
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JPH059035A (en) Production of soot base material for optical fiber
JPS63159234A (en) Production of optical fiber preform
JPS6172645A (en) Manufacture of optical fiber preform
JPS6121177B2 (en)
JPS63182232A (en) Apparatus for producing optical fiber parent material
JPS6168330A (en) Formation of fine particle of optical glass
JPH0561210B2 (en)
JPH0558661A (en) Production of parent material for optical fiber