JPS6259063B2 - - Google Patents

Info

Publication number
JPS6259063B2
JPS6259063B2 JP54130791A JP13079179A JPS6259063B2 JP S6259063 B2 JPS6259063 B2 JP S6259063B2 JP 54130791 A JP54130791 A JP 54130791A JP 13079179 A JP13079179 A JP 13079179A JP S6259063 B2 JPS6259063 B2 JP S6259063B2
Authority
JP
Japan
Prior art keywords
tube
burner
gas
optical fiber
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54130791A
Other languages
Japanese (ja)
Other versions
JPS5654244A (en
Inventor
Katsuyuki Imoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP13079179A priority Critical patent/JPS5654244A/en
Publication of JPS5654244A publication Critical patent/JPS5654244A/en
Publication of JPS6259063B2 publication Critical patent/JPS6259063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor
    • C03B2207/28Multiple ports for glass precursor for different glass precursors, reactants or modifiers

Description

【発明の詳細な説明】 従来の同心円状の多重管バーナを用いて集束型
光フアイバ母材を作成する方法には第1図に示す
方法が用いられている。この方法はバーナ1の各
管内にそれぞれ不活性ガス、酸化性ガス、可燃性
ガス、および不活性または酸化性ガスで搬送され
たドーパント濃度の異なる2種以上の原料ガスを
供給し、燃焼および火炎加水分解によつてガラス
微粒子を合成させ、これを軸方向に堆積、成長さ
せる方法である。この方法について実験的に検討
したが、バーナに次のような問題点があることが
判明した。
DETAILED DESCRIPTION OF THE INVENTION The method shown in FIG. 1 is used for producing a convergent optical fiber preform using a conventional concentric multi-tube burner. In this method, two or more raw material gases with different concentrations of dopant, such as an inert gas, an oxidizing gas, a combustible gas, and an inert or oxidizing gas, are supplied into each tube of the burner 1, and combustion and flame are generated. This is a method of synthesizing glass particles through hydrolysis, and depositing and growing them in the axial direction. An experimental study of this method revealed the following problems with the burner.

なお、2はターゲツト、3はターゲツトの回転
方向、4はターゲツトの軸方向の移動方向、5は
火炎、6はガラス多孔質母材である。
In addition, 2 is a target, 3 is a rotating direction of a target, 4 is a moving direction of an axial direction of a target, 5 is a flame, and 6 is a glass porous base material.

(1) 酸化性ガスO2と可燃性ガスH2を隣接して供
給する構成になつているので、バーナの出口部
でH2とO2が燃焼し、長時間使用していると出
口部が損焼し変形してしまい、使用できなくな
つてしまう。またO2およびH2の吹出し出口部
にガラス微粒子が付着し目づまりを生ずる。
(1) Since the oxidizing gas O 2 and combustible gas H 2 are supplied adjacent to each other, H 2 and O 2 will burn at the outlet of the burner, and if the burner is used for a long time, the outlet will burn. was damaged and deformed, making it unusable. Furthermore, glass particles adhere to the O 2 and H 2 outlet, causing clogging.

(2) 集束型光フアイバ母材を作るには、最低5重
管構造にし、各々の管の外径、内径、管と管の
間のギヤツプの寸法を高精度におさえなければ
ならない。そのためには金属で作ればよいが、
(1)のような理由によりバーナ出口部の損焼を生
じ、金属がガラス母材中に混入して光フアイバ
損失を増大させる原因となる。石英ガラス製で
は(1)のような問題ばかりでなく、寸法精度良く
作ることに問題がある。
(2) In order to make a focusing optical fiber base material, it is necessary to have at least a five-ply tube structure, and the outer diameter and inner diameter of each tube, as well as the dimensions of the gap between the tubes, must be controlled with high precision. For that purpose, it can be made of metal,
Due to reasons like (1), the burner outlet part is damaged, and metal gets mixed into the glass base material, causing increased optical fiber loss. In addition to the problems mentioned in (1) with quartz glass, there are also problems in manufacturing with high dimensional accuracy.

(3) (1)の対策としてO2とH2との間に不活性ガス
を流し、H2とO2の混合をバーナ出口部の前方
の空間部で行なう方法が考えられるが、この場
合には管を一つ増やして6重管構造にしなけれ
ばならず、複雑で増々寸法精度良く作ることが
困難である。
(3) A possible solution to (1) is to flow inert gas between O 2 and H 2 and mix H 2 and O 2 in the space in front of the burner outlet, but in this case In order to do this, it is necessary to add one tube to create a six-ply tube structure, which is complicated and increasingly difficult to manufacture with high dimensional accuracy.

以上のような問題点があるために、作成した光
フアイバの伝送帯域特性、損失特性のバラツキが
大きく、かつ高品質のものを作ることが困難であ
つた。
Due to the above-mentioned problems, the transmission band characteristics and loss characteristics of the manufactured optical fibers vary widely, and it has been difficult to manufacture high-quality optical fibers.

本発明は上記問題点を解決するバーナを提供す
るものである。すなわち、簡易構造であり、バー
ナ出口部の損焼、熱変形、目づまりがなく長寿命
のバーナを提供するものである。従来のバーナ構
成と異なる点は、(1)ガラスの原料ガスを水素を含
むガスで搬送してバーナに供給(ただし、屈折率
を高めるガラス原料を供給する方の水素の量を屈
折率を低めるガラス原料を供給する方の水素の量
よりも少なくする)し、かつ(2)水素を含むガスと
酸化性ガスとの間に不活性ガスを流して水素と酸
化性ガスの混合をバーナ出口部の前方の空間部で
行ない、しかも(3)従来の多重管バーナよりも少な
くとも管が1つ少ない簡易のバーナである。
The present invention provides a burner that solves the above problems. That is, the present invention provides a burner that has a simple structure and has a long life without burning out, thermal deformation, or clogging at the burner outlet. The difference from the conventional burner configuration is that (1) the raw material gas for the glass is transported as a gas containing hydrogen and supplied to the burner (however, the amount of hydrogen used to supply the glass raw material, which increases the refractive index, is used to lower the refractive index); (2) Inert gas is flowed between the hydrogen-containing gas and the oxidizing gas to mix the hydrogen and oxidizing gas at the burner outlet. (3) It is a simple burner with at least one less tube than the conventional multi-tube burner.

以下に本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の集束型光フアイバ母材製造方
法の一実施例を説明するための概略図である。
FIG. 2 is a schematic diagram for explaining an embodiment of the method for manufacturing a convergent optical fiber preform of the present invention.

11は円心状の4重管からなるバーナであり、
中心管7、第1中間管8、第2中間管9、外側管
10で構成されている。第1図の場合よりも管が
1つ少なく4重管で簡単な構造である。中心管7
にはSiCl4以外に屈折率を高めるドーパント、
GeCl4,POCl3の蒸気を水素を含むガス(たとえ
ばH2と不活性ガスの混合ガス)で搬送して供給
し、第1中間管8にはSiCl4以外に屈折率を低め
るドーパントBBr3の蒸気を水素を含むガスで搬
送して供給する。そして第2中間管9に不活性ガ
ス(たとえばAr,N2,He,Neなど)を流して外
側管10に供給するO2ガスと中心管、第1中間
管に流している水素ガスをしやへいし、O2とH2
の混合をバーナ出口部の前方lの位置の空間部で
行なうようにしてある。このlの位置は第2中間
管に流す不活性ガスの流量値で調節できる。lは
大きくとることによつてバーナ出口部の損焼、熱
変形、目づまりを防止できる。中心管7に流す水
素の量を第1中間管8に流す水素の量よりも少な
くすれば、中心部での燃焼温度が低く、その外周
部の燃焼温度が高くなるのでターゲツト2上に堆
積されたガラス多孔質母材6の半径方向のドーパ
ント濃度分布は第3図aに示すような半径方向に
ドーパント濃度分布を有するようになる。そして
このガラス多孔質母材を焼結することによつて第
3図bに示すごとく集束型屈折率分布を得ること
ができる。ここで中心管の水素の量Aと第1中間
管の水素の量BとはA/B=0.2〜0.6が好ましい。
11 is a burner consisting of four circular tubes,
It is composed of a central tube 7, a first intermediate tube 8, a second intermediate tube 9, and an outer tube 10. It has a simpler structure with four pipes, one less than the case in Figure 1. center tube 7
In addition to SiCl 4 , there is a dopant that increases the refractive index,
The vapors of GeCl 4 and POCl 3 are transported and supplied with a hydrogen-containing gas (for example, a mixed gas of H 2 and an inert gas), and the first intermediate tube 8 contains, in addition to SiCl 4 , a dopant BBr 3 that lowers the refractive index. Steam is transported and supplied using a gas containing hydrogen. Then, an inert gas (for example, Ar, N 2 , He, Ne, etc.) is passed through the second intermediate pipe 9, and O 2 gas is supplied to the outer pipe 10, and hydrogen gas is supplied to the center pipe and the first intermediate pipe. Yaheishi, O 2 and H 2
The mixing is performed in a space located at a position l in front of the burner outlet. The position of l can be adjusted by adjusting the flow rate of the inert gas flowing into the second intermediate pipe. By setting l large, it is possible to prevent burnout, thermal deformation, and clogging at the burner outlet. If the amount of hydrogen flowing into the center pipe 7 is smaller than the amount of hydrogen flowing into the first intermediate pipe 8, the combustion temperature at the center will be lower and the combustion temperature at the outer periphery will be higher, so that no hydrogen will be deposited on the target 2. The dopant concentration distribution in the radial direction of the glass porous preform 6 becomes as shown in FIG. 3a. By sintering this glass porous base material, a focused refractive index distribution as shown in FIG. 3b can be obtained. Here, the amount A of hydrogen in the center tube and the amount B of hydrogen in the first intermediate tube are preferably A/B=0.2 to 0.6.

第3図において、21は中心管からのドーパン
トの濃度分布を示す曲線、22は第1中間管から
のドーパントの濃度分布を示す曲線、23は中心
管からのドーパントによる屈折率変化を示す曲
線、24は第1中間管からのドーパントによる屈
折率変化を示す曲線、25は総合的な屈折率分布
を示す曲線である。
In FIG. 3, 21 is a curve showing the dopant concentration distribution from the central tube, 22 is a curve showing the dopant concentration distribution from the first intermediate tube, 23 is a curve showing the refractive index change due to the dopant from the central tube, 24 is a curve showing the refractive index change due to the dopant from the first intermediate tube, and 25 is a curve showing the overall refractive index distribution.

第4図は本発明の集束型光フアイバ母材製造用
バーナの別の実施例であり、aは上面図、bは断
面面である。このバーナ11′は中心管7′をバー
ナ出口部からLだけ引つ込ませてある。このLを
変えることによつて中心管7′から噴出するドー
パントのガスと第1中間管8′から噴出するドー
パントのガスの径方向拡散量を制御できる。この
ように、ガス状態で両方のドーパントのガスを混
合させるので、均一に拡散し易い。これに対し
て、従来のように燃焼させてから両方のドーパン
トを混合させる方法では両方のドーパントガスの
線速度の変化、温度分布特性など複雑な状態をも
つて混合、拡散するので不均な拡散になり易いと
いう欠点をもつ。第1図のバーナ1ではガス流
量、多重管の内、外径、ギヤツプ、バーナとガラ
ス母材の成長端との間隔を調節することによつて
屈折率を制御するのに対して、第4図のバーナは
上記プロセス変量以外にLが加わるので屈折率の
制御性を上げることが可能である。またLの範囲
のガス状態でドーパントを混合した後、燃焼雰囲
気中(バーナと成長端面との間隔)でドーパント
の拡散を行なわせるので半径方向の屈折率分布を
より連続的に変化させることが可能となる。
FIG. 4 shows another embodiment of the burner for producing a focusing type optical fiber preform of the present invention, in which a is a top view and b is a cross-sectional view. In this burner 11', the central tube 7' is retracted by an amount L from the burner outlet. By changing this L, the amount of radial diffusion of the dopant gas ejected from the central tube 7' and the dopant gas ejected from the first intermediate tube 8' can be controlled. In this way, since the gases of both dopants are mixed in a gaseous state, it is easy to diffuse them uniformly. On the other hand, in the conventional method of burning and then mixing both dopants, both dopant gases mix and diffuse under complex conditions such as changes in linear velocity and temperature distribution characteristics, resulting in non-uniform diffusion. It has the disadvantage that it can easily become In the burner 1 shown in Fig. 1, the refractive index is controlled by adjusting the gas flow rate, the inner and outer diameters of the multiple tubes, the gap, and the distance between the burner and the growth end of the glass base material. In the burner shown in the figure, since L is added in addition to the above process variables, it is possible to improve the controllability of the refractive index. In addition, after dopants are mixed in a gas state within the range of L, the dopants are diffused in the combustion atmosphere (distance between the burner and the growth end face), making it possible to change the refractive index distribution in the radial direction more continuously. becomes.

第5図は第4図の変形であり、バーナ11″の
中心管7″、第1中間管8″がバーナ出口部から
L′だけ中に引つ込んだ構造のものである。
Fig. 5 is a modification of Fig. 4, in which the central pipe 7'' and the first intermediate pipe 8'' of the burner 11'' are connected from the burner outlet.
It has a structure in which only L' is recessed inside.

第4図、第5図において、9′と9″は第2中間
管、10′と10″は外側管である。
In FIGS. 4 and 5, 9' and 9'' are second intermediate tubes, and 10' and 10'' are outer tubes.

次に本発明の実施例の具体例について述べる。 Next, specific examples of embodiments of the present invention will be described.

第2図において、中心管7にSiCl4,GeCl4
POCl3の蒸気をArでそれぞれ300c.c./min,150
c.c./min,80c.c./minバブルさせ、途中で1.5/
minのH2ガスと混合して供給した。第1中間管8
にSiCl4,BBr3の蒸気をArでそれぞれ300c.c./
min,130c.c./minバブルさせ、途中で3.5/min
のH2ガスと混合して供給した。第2中間管9に
は2.5/minのArガスを供給し、外側管10に
は10/minのO2ガスを供給した。そしてバーナ
出口部で点火してガラス微粒子を含んだ火炎5を
発生させ、矢印3方向に30rpmで回転させながら
矢印4方向に5mm/minの速度で引上げるターゲ
ツト(外径13mmの石英ムク棒)にガラス多孔質母
材6(外径75mm)を成長させた。約8時間連続し
て母材を成長させたが、バーナの出口部はまつた
く損焼、熱変形、ガラス微粒子の目づまりがなか
つた。またこの多孔質母材を電気炉(温度1300
℃)内に入れ、He雰囲気中(4/min)にてゾ
ーンメルト法により焼結しガラス化した。このガ
ラスロツドを石英管内に入れて融着しプリフオー
ムとした。次いでこのプリフオームを線引きして
光フアイバを得た。この光フアイバのベースバン
ド周波数帯域を測定した結果、8Kmの光フアイバ
長に対し、860MHz・Km(6dB低下)の広帯域特
性を得ることができた。さらに副次的効果とし
て、バーナの中心部の温度が低く、外側部の温度
が高いので、作成中に多孔質ガラス母材が落下し
たり、クラツクが入つたりするなどのトラブルを
生ぜず、安定して作成できるということもも明ら
かとなつた。
In FIG. 2, SiCl 4 , GeCl 4 ,
POCl 3 vapor with Ar at 300 c.c./min, 150
cc/min, 80c.c./min bubble, 1.5/min in the middle
It was supplied mixed with min H2 gas. First intermediate pipe 8
The vapors of SiCl 4 and BBr 3 were heated to 300c.c./each with Ar.
min, 130c.c./min bubble, 3.5/min in the middle
of H2 gas was supplied. Ar gas was supplied to the second intermediate tube 9 at a rate of 2.5/min, and O 2 gas was supplied to the outer tube 10 at a rate of 10/min. Then, the target is ignited at the burner outlet to generate a flame 5 containing glass particles, and pulled up at a speed of 5 mm/min in the direction of arrow 4 while rotating at 30 rpm in the direction of arrow 3 (a solid quartz rod with an outer diameter of 13 mm). A glass porous base material 6 (outer diameter 75 mm) was grown. Although the base material was grown continuously for about 8 hours, there was no burnout, thermal deformation, or clogging of glass particles at the outlet of the burner. In addition, this porous base material was heated in an electric furnace (temperature 1300
℃), and was sintered and vitrified by the zone melt method in a He atmosphere (4/min). This glass rod was placed in a quartz tube and fused to form a preform. This preform was then drawn to obtain an optical fiber. As a result of measuring the baseband frequency band of this optical fiber, we were able to obtain a broadband characteristic of 860MHz·Km (6dB reduction) for an optical fiber length of 8Km. Furthermore, as a side effect, the temperature at the center of the burner is low and the temperature at the outside is high, so there are no problems such as the porous glass base material falling or cracking during production. It has also become clear that it can be produced stably.

本発明は上記実施例に限定されない。ガラス原
料ガスはハロゲン化物、水素化物、アルキル化物
からなるシリコン化合物、あるいは屈折率制御用
化合物を含んだシリコン化合物を用いることがで
きる。バーナは3重管以上の多重管で構成され
る。集束型光フアイバ母材ばかりでなく、ステツ
プインデツクス型光フアイバ母材も作成可能であ
る。ステツプインデツクス型光フアイバ母材を作
成する場合には5重管とし中心管にコア用原料ガ
スを流し、第1中間管に不活性ガスを、第2中間
管にクラツド用原料ガスを、第3中間管に不活性
ガスを、そして外側管にO2ガスを流せばよい。
ただし原料ガスは水素を含むガスで搬送させる。
あるいは3重管でもステツプインデツクス型光フ
アイバ母材を作ることも可能である。この場合に
は中心管にコア用原料ガスをH2を含むガスで供
給し、中間管に不活性ガスを供給し、そして外側
管にクラツド用原料ガスをO2を含むガスで搬送
して供給する。バーナの材質はガラス、金属、磁
器を用いることができる。バーナの配置はターゲ
ツトの軸方向延長上、あるいは軸方向から半径方
向にずれた位置、さらには軸方向とある角度をも
たせた斜方向においてもよい。矢印4方向は天井
方向あるいは地下方向のいずれでもよい。バーナ
のノズル出口部は管径をテーパ状(減少方向ある
いは増大方向)にしてノズル部出口部から流出さ
れたガスの線速度が急激に減少するのを抑制する
ようにしてもよい。
The invention is not limited to the above embodiments. As the glass raw material gas, a silicon compound consisting of a halide, a hydride, or an alkylated compound, or a silicon compound containing a refractive index controlling compound can be used. The burner is composed of multiple tubes including triple tubes or more. It is possible to produce not only convergent optical fiber preforms but also step-index optical fiber preforms. When producing a step-index type optical fiber base material, a five-layer tube is used, with the core raw material gas flowing through the central tube, the inert gas flowing through the first intermediate tube, the cladding raw material gas flowing through the second intermediate tube, and the cladding gas flowing through the first intermediate tube. 3. All you need to do is to flow inert gas into the middle tube and O 2 gas into the outer tube.
However, the raw material gas is transported using a gas containing hydrogen.
Alternatively, it is also possible to make a step index type optical fiber base material using a triple tube. In this case, the raw material gas for the core is supplied to the central tube as a gas containing H2 , the inert gas is supplied to the intermediate tube, and the raw material gas for the cladding is conveyed and supplied to the outer tube as a gas containing O2 . do. The material of the burner can be glass, metal, or porcelain. The burner may be placed on the axial extension of the target, radially offset from the axial direction, or even diagonally at an angle with the axial direction. The four directions of the arrows may be either toward the ceiling or toward the basement. The nozzle outlet of the burner may have a tapered tube diameter (in a decreasing direction or an increasing direction) to suppress a sudden decrease in the linear velocity of the gas flowing out from the nozzle outlet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による光フアイバ母材の製造
法を説明する概略断面図、第2図は本発明の一実
施例における光フアイバ母材の製造法を説明する
概略断面図、第3図aは本発明の一実施例におい
て得られたガラス多孔質母材のドーパント濃度分
布を示すグラフ、第3図bは本発明の一実施例に
おいて得られた光フアイバ母材の屈折率分布を示
すグラフ、第4図と第5図はそれぞれ本発明の他
の実施例で用いたバーナの構造を示す平面図と断
面図である。 各図において、1,11,11′および11″は
バーナ、2はターゲツト、3はターゲツトの回転
方向、4はターゲツトの軸方向の移動方向、5は
火炎、6はガラス多孔質母材、7,7′および
7″はバーナの中心管、8,8′および8″は第1
中間管、9,9′および9″は第2中間管、10,
10′および10″は外側管、21は中心からのド
ーパントの濃度分布を示す曲線、22は第1中間
管からのドーパントの濃度分布を示す曲線、23
は中間管からのドーパントによる屈折率変化を示
す曲線、24は第1中間管からのドーパントによ
る屈折率変化を示す曲線、25は総合的な屈折率
分布を示す曲線である。
FIG. 1 is a schematic sectional view illustrating a method of manufacturing an optical fiber preform according to the prior art, FIG. 2 is a schematic sectional view illustrating a method of manufacturing an optical fiber preform according to an embodiment of the present invention, and FIG. 3 a is a graph showing the dopant concentration distribution of the glass porous preform obtained in one example of the present invention, and FIG. 3b is a graph showing the refractive index distribution of the optical fiber preform obtained in one example of the present invention. , 4 and 5 are a plan view and a sectional view, respectively, showing the structure of a burner used in another embodiment of the present invention. In each figure, 1, 11, 11' and 11'' are burners, 2 is a target, 3 is the rotational direction of the target, 4 is the axial movement direction of the target, 5 is the flame, 6 is the glass porous base material, and 7 is the target. , 7' and 7'' are the center tube of the burner, 8, 8' and 8'' are the first
The intermediate tubes 9, 9' and 9'' are the second intermediate tubes, 10,
10' and 10'' are outer tubes, 21 is a curve showing the dopant concentration distribution from the center, 22 is a curve showing the dopant concentration distribution from the first intermediate tube, 23
24 is a curve showing the refractive index change due to the dopant from the first intermediate tube, and 25 is a curve showing the overall refractive index distribution.

Claims (1)

【特許請求の範囲】 1 円心円状のガラス微粒子発生用多重管バーナ
を用いて出発材上に光フアイバ母材を成長させる
方法において、上記バーナの中心から外側に向つ
て各管内に供給するガスをそれぞれ、ガラス原料
と水素を含むガス、不活性ガス、酸化性ガスと
し、前記ガラス原料と水素を含むガスを流す中心
管を他の管に比べて引つ込ませたことを特徴とす
る光フアイバ母材の製造方法。 2 特許請求の範囲第1項において、前記不活性
ガスを流す中間管を前記酸化性ガスを流す外側管
に比べて引つ込ませたことを特徴とする光フアイ
バ母材の製造方法。
[Scope of Claims] 1. In a method for growing an optical fiber preform on a starting material using a circular multi-tube burner for generating glass particles, supplying the fiber into each tube from the center of the burner outwards. The gases are respectively a gas containing a glass raw material and hydrogen, an inert gas, and an oxidizing gas, and the central pipe through which the glass raw material and the gas containing hydrogen flow is recessed compared to other pipes. A method for manufacturing an optical fiber base material. 2. The method of manufacturing an optical fiber preform according to claim 1, characterized in that the intermediate tube through which the inert gas flows is recessed compared to the outer tube through which the oxidizing gas flows.
JP13079179A 1979-10-12 1979-10-12 Preparation of optical fiber matrix Granted JPS5654244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13079179A JPS5654244A (en) 1979-10-12 1979-10-12 Preparation of optical fiber matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13079179A JPS5654244A (en) 1979-10-12 1979-10-12 Preparation of optical fiber matrix

Publications (2)

Publication Number Publication Date
JPS5654244A JPS5654244A (en) 1981-05-14
JPS6259063B2 true JPS6259063B2 (en) 1987-12-09

Family

ID=15042765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13079179A Granted JPS5654244A (en) 1979-10-12 1979-10-12 Preparation of optical fiber matrix

Country Status (1)

Country Link
JP (1) JPS5654244A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232933A (en) * 1983-06-15 1984-12-27 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPS61202944A (en) * 1985-03-06 1986-09-08 Kyokuto Kaihatsu Kogyo Co Ltd Container handling vehicle
JPS61202943A (en) * 1985-03-06 1986-09-08 Kyokuto Kaihatsu Kogyo Co Ltd Container handling vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327607A (en) * 1976-08-27 1978-03-15 Sumitomo Electric Industries Nozzle for use in synthesizing oxide particles
JPS5387245A (en) * 1977-01-10 1978-08-01 Nippon Telegr & Teleph Corp <Ntt> Optical fiber parent material production apparatus
JPS54131044A (en) * 1978-04-04 1979-10-11 Nippon Telegr & Teleph Corp <Ntt> Production of parent material for optical communication fiber
JPS5595635A (en) * 1979-01-08 1980-07-21 Nippon Telegr & Teleph Corp <Ntt> Production of glass base material for optical fiber
JPS5719059A (en) * 1980-07-05 1982-02-01 Matsushita Electric Works Ltd Painting of inorganic hardening body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327607A (en) * 1976-08-27 1978-03-15 Sumitomo Electric Industries Nozzle for use in synthesizing oxide particles
JPS5387245A (en) * 1977-01-10 1978-08-01 Nippon Telegr & Teleph Corp <Ntt> Optical fiber parent material production apparatus
JPS54131044A (en) * 1978-04-04 1979-10-11 Nippon Telegr & Teleph Corp <Ntt> Production of parent material for optical communication fiber
JPS5595635A (en) * 1979-01-08 1980-07-21 Nippon Telegr & Teleph Corp <Ntt> Production of glass base material for optical fiber
JPS5719059A (en) * 1980-07-05 1982-02-01 Matsushita Electric Works Ltd Painting of inorganic hardening body

Also Published As

Publication number Publication date
JPS5654244A (en) 1981-05-14

Similar Documents

Publication Publication Date Title
US4135901A (en) Method of manufacturing glass for optical waveguide
JPS5927728B2 (en) Manufacturing method of sooty glass rod
JPH039047B2 (en)
GB2128982A (en) Fabrication method of optical fiber preforms
US4915717A (en) Method of fabricating optical fiber preforms
RU2284968C2 (en) Method of manufacture of the optical glass
US4915716A (en) Fabrication of lightguide soot preforms
JPH0761831A (en) Production of porous glass preform for optical fiber
JPS6259063B2 (en)
JP3567574B2 (en) Burner for synthesis of porous glass base material
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPS60264338A (en) Manufacture of optical fiber preform
JPS6044258B2 (en) synthesis torch
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH0867524A (en) Production of preform of optical fiber
JPS5820744A (en) Preparation of parent material for optical fiber
JPS62162637A (en) Production of optical fiber preform
JPH0986948A (en) Production of porous glass base material for optical fiber
JPH0331657B2 (en)
JPS6159250B2 (en)
JP3953855B2 (en) Method for producing porous base material
JP3998228B2 (en) Optical fiber porous base material, optical fiber glass base material, and manufacturing methods thereof
JPS5915092B2 (en) Method of manufacturing optical transmission glass
JPS59232932A (en) Production of preform for optical fiber
KR850000908B1 (en) Method for manufacturing an optical fiber preform