JPS59232932A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPS59232932A
JPS59232932A JP10721683A JP10721683A JPS59232932A JP S59232932 A JPS59232932 A JP S59232932A JP 10721683 A JP10721683 A JP 10721683A JP 10721683 A JP10721683 A JP 10721683A JP S59232932 A JPS59232932 A JP S59232932A
Authority
JP
Japan
Prior art keywords
nozzle
refractive index
center
ejected
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10721683A
Other languages
Japanese (ja)
Other versions
JPS6144821B2 (en
Inventor
Hiroshi Yokota
弘 横田
Gotaro Tanaka
豪太郎 田中
Toru Kuwabara
透 桑原
Tsunehisa Kyodo
倫久 京藤
Minoru Watanabe
稔 渡辺
Shoichi Sudo
昭一 須藤
Fumiaki Hanawa
文明 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10721683A priority Critical patent/JPS59232932A/en
Publication of JPS59232932A publication Critical patent/JPS59232932A/en
Publication of JPS6144821B2 publication Critical patent/JPS6144821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor
    • C03B2207/28Multiple ports for glass precursor for different glass precursors, reactants or modifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce a titled preform having a step type refractive index distribution of an approximately accurate shape by ejecting only the dopant contg. no SiCl4 from the second nozzle from the center in a multiple-pipe burner. CONSTITUTION:SiCl4 added with H2 is ejected from a central nozzle 1 and GeCl4 added with H2 from the 2nd nozzle 3; further gaseous Ar and O2 are ejected from nozzles 5, 7 on he outside thereof and are brought into combustion and reaction. Then the concn. of GeO2 in the flame is higher the further from the center toward the radial direction at the outlet of the burner; on the contrary, the temp. is higher the nearer the center on the flame surface and therefore the ratio at which GeO2 is formed a solid solution to SiO2 is relatively high and the concn. of GeO2 approximately uniform in the radial direction of the base material of soot is provided, by which a preform having a refractive index distribution of a step type is produced. The effect by which an optical fiber having less light loss is produced is thus obtd.

Description

【発明の詳細な説明】 本発明は光ファイバ、特にステップ型屈折率分布を有す
る光フアイバ用プリフォームの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber, particularly a preform for an optical fiber having a step-type refractive index distribution.

従来、一般に多重管バーナを用い出発材の軸方向1(ガ
ラス微粒子を積層させてスート母材を製造する場合には
、第1図に示すように、中心ノズル1よりH2ガスを添
加したS i C4・GeCA!+を噴出させ、中心孔
のすぐ外側の第2ノズル3よりH2ガスを添加した5i
C4を噴出させ、次の反応により、出発材の軸方向にス
ート母材を成長させて製造していた。
Conventionally, in general, a multi-tube burner was used to prepare the starting material in the axial direction 1 (in the case of manufacturing a soot base material by laminating glass particles, as shown in FIG. 5i in which C4/GeCA!+ was ejected and H2 gas was added from the second nozzle 3 just outside the center hole.
The soot base material was manufactured by ejecting C4 and growing the soot base material in the axial direction of the starting material through the following reaction.

5iC4+2H20−+SiO,+4HCIGeC4+
2H2Q−+GeO2+4HCA!尚、第1図((示す
第3ノズル5からはArを噴出させ、第4ノズル7から
は02  を噴出させる。
5iC4+2H20-+SiO,+4HCIGeC4+
2H2Q-+GeO2+4HCA! In addition, Ar is ejected from the third nozzle 5 shown in FIG. 1, and 02 is ejected from the fourth nozzle 7.

そして、このような場合、中心部からGeC4が噴出し
ているため、火炎の中心から外れるに従ってGem2の
分布は減少する。また、火炎表面での温度分布は、中心
部で高(周辺部で低いため、G e Otの5in2粒
子への固溶収率(ドーパント収率)は中心部で高く周辺
部で低いことにより、得られたプリフォームの半径方向
線上のCeO2の濃度は中心部で高く周辺部で低い状態
となり、一般には第2図に示す如くグレーデッド型9分
布となる。従って、従来技術の製造方法ではステップ型
のμ折率分布を得ることは極めそ困難であった。  ゛
なお、第2図11はステップ型の屈折率分布を示す。ま
た、nは屈折率、rはファイバ中心からの距離を示す。
In such a case, since GeC4 is ejected from the center, the distribution of Gem2 decreases as it moves away from the center of the flame. In addition, the temperature distribution on the flame surface is high at the center (low at the periphery), so the solid solution yield (dopant yield) of G e Ot into 5in2 particles is high at the center and low at the periphery. The concentration of CeO2 on the radial line of the obtained preform is high in the center and low in the periphery, generally resulting in a graded type 9 distribution as shown in Figure 2. Therefore, in the manufacturing method of the prior art, step It was extremely difficult to obtain a μ refractive index distribution of the type. ゛ Fig. 2 11 shows the refractive index distribution of the step type. In addition, n is the refractive index and r is the distance from the center of the fiber. .

しかしながら、ステップ型屈折率分布を有する光ファイ
バはグレーデッド型に比べ送信可能な周波数の範囲はせ
まく所謂帯域制限が犬であるけれども開口数<Nf A
、 )が大きくとれることから光源、受光器との結合効
率が良く、特に短距離の光伝送用(例えば、医療機器用
)などには適して居り需要も増加して来ている。そこで
、略々正確なステップ型の屈折率分布を持つ光ファイバ
の製造方法について開発の必要性が大となりつ又ある。
However, optical fibers with a step-type refractive index distribution have a narrower range of frequencies that can be transmitted compared to graded-type fibers, and although they have a so-called band limit, the numerical aperture <Nf A
, ), it has good coupling efficiency with the light source and the light receiver, and is particularly suitable for short-distance optical transmission (for example, for medical equipment), and demand is increasing. Therefore, there is a growing need to develop a method for manufacturing an optical fiber having a substantially accurate step-type refractive index distribution.

本発明はこれらの必要性を満すため、また、前述した従
来技術の欠点を除去するため1/c、行なわれたもので
、より正確な形のステップ型屈折率分布を光ファイバに
与える製造方法であり、以下開示する。
The present invention has been made to meet these needs and to eliminate the shortcomings of the prior art described above, and which provides a method for manufacturing optical fibers that provides a more precisely shaped stepped index profile. The method is disclosed below.

即ち、本発明の製造方法は所謂多重管バーナな用いて山
元材の軸方向にプリフォームを形成する方法において、 前記多重管バーナの中心ノズルより5tcA4.或ハ5
iC4ic屈折率制御用原料’)j スGeC4、PO
Cls +T i CIJ4.AlC4、GaCl3 
 のうちから選ばれた1種以上を混合して噴出させ、中
心から第2番目のノズルよりSiO4を含まない前記屈
折率制御用原料ガスのうちから選ばれた1種以上を噴出
させることを特徴とする 例えば中心ノズルよりSiO4を噴出させ中心から第2
番目のノズルより、  5ick4を含まないドーパン
ト類即ちGeC4,POC&、TiO4,AAC&のう
ちから選ばれた1種以上を噴出させる、或は中心ノズル
より5iCltに前記同様のドーパントを混合して噴出
させ、中心がら第2番目のノズルから5iC7+を含ま
ない前記同様のドーパントを噴出させる。
That is, the manufacturing method of the present invention is a method of forming a preform in the axial direction of a pile material using a so-called multi-tube burner, in which 5tcA4. Orha 5
iC4ic refractive index control raw material')j GeC4, PO
Cls +T i CIJ4. AlC4, GaCl3
One or more selected from the above are mixed and ejected, and one or more selected from the refractive index control material gases not containing SiO4 is ejected from the second nozzle from the center. For example, SiO4 is ejected from the center nozzle and the second
From the second nozzle, eject one or more dopants that do not contain 5ick4, that is, one or more selected from GeC4, POC&, TiO4, AAC&, or eject a mixture of 5iClt and the same dopant as described above from the center nozzle, A dopant similar to the above but not containing 5iC7+ is ejected from the second nozzle from the center.

以下、添付図を参照して本発明の内容並びにその作用効
果について具体篩に説明する。
Hereinafter, the contents of the present invention and its effects will be specifically explained with reference to the accompanying drawings.

第6図に示す如く本発明方法では中心ノズル1よりH2
を添加した5iCJ%を、第2ノズルろよりルを添加し
たG e C&を噴出させ、更にその外側のノズル5,
7からAr、02ガスを噴出させ燃焼反応させる。この
ようにすると、火炎内でのGeO2の濃度はバーナの出
口で中心から半径方向に遠ざかるにつれて高くなるが、
反面、火炎の表面では中心程高温であるからS i O
2へのGem、の固溶割合は比較的高くなる。換言すれ
ば、この方法によればGem、のSiO2へのドープ量
、温度依存性が火炎内のGem2濃度分布により補償さ
れ、スート母材の半径方向にほぼ均一なGeO2濃度を
有するようになる。このように5本発明の方法によれば
ステップ型の屈折率分布を有する光フアイバ用プリフォ
ームを製造することが可能となる。
As shown in FIG. 6, in the method of the present invention, the H2
5iCJ% added with G e C& added with the second nozzle filter is ejected, and further outside nozzle 5,
Ar and 02 gases are ejected from 7 to cause a combustion reaction. In this way, the concentration of GeO2 in the flame increases as it moves radially away from the center at the exit of the burner;
On the other hand, on the surface of the flame, the temperature is higher near the center, so S i O
The solid solution ratio of Gem 2 to 2 becomes relatively high. In other words, according to this method, the doping amount of Gem into SiO2 and the temperature dependence are compensated by the Gem2 concentration distribution in the flame, and the soot base material has a substantially uniform GeO2 concentration in the radial direction. As described above, according to the method of the present invention, it is possible to manufacture an optical fiber preform having a step-type refractive index distribution.

また、第5図に示すごとく中心ノズル1.第2ノズル6
より噴出されるSiO4とG e C&に添加物として
前記の場合のH2の代りに02を添加し、その外側のノ
ズル5,7,13,15より、順次Ar。
Moreover, as shown in FIG. 5, the center nozzle 1. Second nozzle 6
Instead of H2 in the above case, 02 was added as an additive to SiO4 and G e C& ejected from the above, and Ar was sequentially added from the outer nozzles 5, 7, 13, and 15.

H21Ar+02 を噴出させても略同−の効果が達成
されることがわかった。即ち、ステップ型屈折率分布を
有する光フアイバ用プリフォームを製造することができ
る。
It has been found that substantially the same effect can be achieved even when H21Ar+02 is injected. That is, an optical fiber preform having a step-type refractive index distribution can be manufactured.

以上説明した如く、また、以下の実施例においても詳細
に述べる如く、多重管バーナ使用のプリフォーム製造方
法において従来技術は特に中心から2番目のノズルから
SiO4のみを噴出させる方法がとられていたが、本発
明では特に前記2番目のノズルより5iC4を含まない
ドーパント剤のみを噴出せしめる特徴を有する方法をと
った処、従来方法では得られなかった略正確な形のステ
ップ型屈折率分布を有するプリフォームが得られ、これ
によって光損失の少ない開口数の大きい光ファイバを製
造することができるという効果が得られた。
As explained above, and as will be described in detail in the examples below, in the preform manufacturing method using a multi-tube burner, the conventional technology has adopted a method in which only SiO4 is ejected from the second nozzle from the center. However, in the present invention, in particular, by using a method characterized by ejecting only the dopant agent that does not contain 5iC4 from the second nozzle, a substantially accurate step-type refractive index distribution that could not be obtained with the conventional method is obtained. A preform was obtained, which produced the effect that an optical fiber with a large numerical aperture and low optical loss could be manufactured.

実施例1゜ 第6図に示す多重バーナによる原料ガス配置、即ち中心
ノズル1よりS i C4と毬、 第2ノズル6よりG
 e Clltと迅、第6ノズル5よりAr+  第4
ノズル7より02を夫々噴出させ、このバーナの上方に
配置した出発材の上にガラス微粒子を逐次堆積させスー
ト母材を製造した。単位時間当りの各原料ガス使用量は
次記第1表の通りであった。なお、ガラス原料はHeで
キャリヤーした。
Example 1 Raw material gas arrangement using multiple burners as shown in FIG.
e Cllt and quick, Ar+ 4th from 6th nozzle 5
02 was ejected from the nozzle 7, and glass fine particles were successively deposited on the starting material placed above the burner to produce a soot base material. The amount of each raw material gas used per unit time was as shown in Table 1 below. In addition, the glass raw material was carried by He.

上記第1表の原料ガス使用によりスート母材を作製し、
He雰囲気で焼結し、透明ガラス母材とした後、直径を
10+n+aOに延伸し市販の石英管に入れ、光フアイ
バ用プリフォーム母材を作製した。
A soot base material is prepared by using the raw material gases listed in Table 1 above,
After sintering in a He atmosphere to obtain a transparent glass base material, it was stretched to a diameter of 10+n+aO and placed in a commercially available quartz tube to produce a preform base material for optical fiber.

この母材を約2,000℃にグラファイト質発熱体によ
り加熱し外径140/’yxに線引し、そのファイバ断
面の屈折率分布を測定したところ、第4図11に示すよ
うな略々正確なステップ型に近いファイバが得られた。
This base material was heated to approximately 2,000°C with a graphite heating element and drawn to an outer diameter of 140/'yx, and the refractive index distribution of the fiber cross section was measured, as shown in Figure 4-11. A fiber close to a precise step type was obtained.

実施例2゜ 第5図に示す多重バーナな使用する原料ガス配置、即ち
、中心ノズル1より5iC4と02.第2ノズル6より
G e CIl+と0□、第3ノズル5よりAr+第4
ノズル7よりH,、第5ノズル16よりA r +第6
ノスル15よりO,を夫々噴出せしめ、このバーナの上
方に配置した出発材の上に微粒子を堆積させてプリフォ
ームを製造′した。単位時間当りの各原料ガス使用量は
次記第2表の通りであった。
Embodiment 2 The raw material gas arrangement used in the multiple burner shown in FIG. G e CIl + and 0□ from the second nozzle 6, Ar + 4th from the third nozzle 5
H from the nozzle 7, A r + 6th from the fifth nozzle 16
A preform was manufactured by blowing out O from the nostle 15 and depositing fine particles on the starting material placed above the burner. The amount of each raw material gas used per unit time was as shown in Table 2 below.

第2表 上記の原料ガス使用によりスート母材を作製し実施例1
と同様の手順により外径140μmの光ファイバを製造
した。得られたファイバについて実施例1と同様の測定
手段で屈折率分布を測定したところ、はぼ同様なステッ
プ型の屈折率分布が得られた。なお、屈折率のピーク値
は△n=1.9%であった(△n−二コ工、  n、 
、コア屈折率。
Table 2 Example 1: Soot base material prepared using the above raw material gas
An optical fiber with an outer diameter of 140 μm was manufactured using the same procedure as above. When the refractive index distribution of the obtained fiber was measured using the same measuring means as in Example 1, a similar step-type refractive index distribution was obtained. The peak value of the refractive index was △n=1.9% (△n-Nikoko, n,
, core refractive index.

2 n2:クラッド屈折率)。2 n2: cladding refractive index).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は縦来法による多重管バーナの使用状況を示し、
第2図はその屈折率分布の説明図である。 第6図は本発明t(よる多重管バーナの使用状況を示し
、第4図はそれによって得られた屈折率分布図を示す。 第5図は本発明の第2の製造方法による場合の多重管バ
ーナの使用状況を示す。 1・・・中心ノズル、  3・・・第2ノズル。 5・・・第6ノズル、  7・・・第4ノズル。 16・・・第5ノズル、15・・・第6ノズル襄/図 
       暴2図 秦3 図 第1頁の続き ・老発 明 者 塙文明 茨城県那珂郡東海村大字白方字 白根162番地日本電信電話公社 茨城電貫通信研究所内 (社用 願 人 日本電信電話公社
Figure 1 shows the usage of a multi-tube burner using the vertical method.
FIG. 2 is an explanatory diagram of the refractive index distribution. FIG. 6 shows the usage of a multi-tube burner according to the present invention, and FIG. 4 shows a refractive index distribution diagram obtained thereby. FIG. The usage status of the tube burner is shown. 1... Center nozzle, 3... Second nozzle. 5... Sixth nozzle, 7... Fourth nozzle. 16... Fifth nozzle, 15...・6th nozzle sleeve/diagram
Figure 2, Hata 3, Continuation of Figure 1, page 1, author: Bunmei Hanawa, 162 Shirakata, Shirane, Tokai-mura, Naka-gun, Ibaraki Prefecture, Nippon Telegraph and Telephone Public Corporation, Ibaraki Denkan Communication Research Institute (for company use, applicant: Nippon Telegraph and Telephone Public Corporation)

Claims (1)

【特許請求の範囲】 複数のノズルを有する多重管バーナを用いて原料ガスお
よび燃料ガスを混合燃焼せしめて出発材の軸方向にガラ
ス微粒子を積層させ焼結して光フアイバ用プリフォーム
を製造する方法において、前記多重管バーナの中心ノズ
ルより5iC14*或はSi C14に屈折率制御用原
料ガスGeC4。 PQC4t T I CA!4 * All C4+ 
GcLClls  のうちから選ばれた1種以上を混合
して噴出させ、中心から第2番目のノズルより5iC1
,を含まない前記屈折率制御用原料ガスのうちから選ば
れた1種以上を噴出させることを特徴とする 光フアイバ用プリフォームの製造方法。
[Claims] An optical fiber preform is produced by mixing and burning raw material gas and fuel gas using a multi-tube burner having a plurality of nozzles, stacking glass particles in the axial direction of the starting material, and sintering the mixture. In the method, a raw material gas GeC4 for controlling the refractive index is added to 5iC14* or SiC14 from the center nozzle of the multi-tube burner. PQC4t T I CA! 4 * All C4+
One or more selected from GcLClls are mixed and ejected, and 5iC1 is ejected from the second nozzle from the center.
A method for producing an optical fiber preform, comprising ejecting one or more selected from the refractive index control material gases that do not contain .
JP10721683A 1983-06-15 1983-06-15 Production of preform for optical fiber Granted JPS59232932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10721683A JPS59232932A (en) 1983-06-15 1983-06-15 Production of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10721683A JPS59232932A (en) 1983-06-15 1983-06-15 Production of preform for optical fiber

Publications (2)

Publication Number Publication Date
JPS59232932A true JPS59232932A (en) 1984-12-27
JPS6144821B2 JPS6144821B2 (en) 1986-10-04

Family

ID=14453427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10721683A Granted JPS59232932A (en) 1983-06-15 1983-06-15 Production of preform for optical fiber

Country Status (1)

Country Link
JP (1) JPS59232932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010173923A (en) * 2009-02-02 2010-08-12 Sumitomo Electric Ind Ltd Method for manufacturing porous glass preform
WO2010098352A1 (en) * 2009-02-24 2010-09-02 旭硝子株式会社 Process for producing porous quartz glass object, and optical member for euv lithography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010173923A (en) * 2009-02-02 2010-08-12 Sumitomo Electric Ind Ltd Method for manufacturing porous glass preform
WO2010098352A1 (en) * 2009-02-24 2010-09-02 旭硝子株式会社 Process for producing porous quartz glass object, and optical member for euv lithography
US8356494B2 (en) 2009-02-24 2013-01-22 Asahi Glass Company, Limited Process for producing porous quartz glass object, and optical member for EUV lithography

Also Published As

Publication number Publication date
JPS6144821B2 (en) 1986-10-04

Similar Documents

Publication Publication Date Title
US4224046A (en) Method for manufacturing an optical fiber preform
JPH0425214B2 (en)
GB2128981A (en) Fabrication method of optical fiber preforms
JPS59232932A (en) Production of preform for optical fiber
JPS6046939A (en) Manufacture of glass preform for optical fiber
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
KR870001277B1 (en) Method for making of optical fiber preform
JP2002047027A (en) Preform for optical fiber and single mode optical fiber
JPH0525818B2 (en)
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPS6259063B2 (en)
EP0415341B1 (en) Method for producing porous glass preform for optical fiber
JPH09221335A (en) Production of precursor of optical fiber glass preform
JPS61183140A (en) Production of base material for optical fiber
KR850000908B1 (en) Method for manufacturing an optical fiber preform
US4804393A (en) Methods for producing optical fiber preform and optical fiber
JPS5915092B2 (en) Method of manufacturing optical transmission glass
Schultz Vapor phase materials and processes for glass optical waveguides
JPS59232933A (en) Production of preform for optical fiber
JPS62162639A (en) Production of preform for w-type single mode optical fiber
JPS60260433A (en) Manufacture of base material for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JPS6219369B2 (en)
JPS593944B2 (en) Optical fiber manufacturing method
JPS5852933B2 (en) Manufacturing method of optical transmission line