JPS62162637A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS62162637A
JPS62162637A JP194186A JP194186A JPS62162637A JP S62162637 A JPS62162637 A JP S62162637A JP 194186 A JP194186 A JP 194186A JP 194186 A JP194186 A JP 194186A JP S62162637 A JPS62162637 A JP S62162637A
Authority
JP
Japan
Prior art keywords
hood
supplied
burner
optical fiber
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP194186A
Other languages
Japanese (ja)
Inventor
Tsutomu Yabuki
矢吹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP194186A priority Critical patent/JPS62162637A/en
Publication of JPS62162637A publication Critical patent/JPS62162637A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/40Mechanical flame shields

Abstract

PURPOSE:To enable the expansion of controllable range of a refractive index distribution along radial direction of a large-sized porous preform in the production of an optical fiber preform by VAD process using a vertically mounted multiple tube burner, by placing a hood surrounding the multiple tube burner and supplying an inert gas and hydrogen gas to the hood. CONSTITUTION:A glass raw material supplied from the central nozzle 2a of a vertically mounted multiple tube burner 1 is hydrolyzed with oxyhydrogen flame supplied from the outer nozzles 4a, 5a. Soot is deposited on an end of a target above the burner 1 by this process to obtain an optical fiber preform. Hoods 7, 8 surrounding the oxyhydrogen flame blasted from the burner is placed at the outer circumference of the multiple tube burner 1 and an inert gas and hydrogen gas are supplied to the above soot through the hoods 7, 8. Preferably, the hood has double-walled structure (7, 8), the inner hood 7 is supplied with an inert gas (e.g. N2) and the outer hood 8 is supplied with a mixture of inert gas and hydrogen gas (the mixed gas may be supplied through one hood).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、VAD法による光ファイバ母材の製造方法に
係り、特に垂直に立てた多重管バーナからガラス原料及
び酸水素炎等をターゲットに向けて供給し、多孔質母材
のスートを形成する光ファイバ母材の製造方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber preform by the VAD method, and in particular, a method for manufacturing an optical fiber preform by using a vertically erected multi-tube burner to target glass raw materials, oxyhydrogen flame, etc. The present invention relates to a method for manufacturing an optical fiber preform in which a soot of a porous preform is formed by supplying a porous preform.

[従来の技術] VAD法(気相軸付法)による光ファイバ母材のyJ3
i!i方法は、多重管バーナの中央よりガラス原料をキ
ャリアガスと共に石英棒などのターゲットに向けて噴出
し、これをバーナの外側から供給した酸水素炎で加水分
解させてターゲットの先端にガラス媒(スート)の多孔
質母材を形成し、これを加熱して焼結させることで透明
ガラス化した光ファイバ母材を形成するもので、ターゲ
ットを回転させながら上方に引き上げることで円形棒状
の多孔質母材を任意の長さに形成できる利点がある。
[Prior art] Optical fiber base material yJ3 by VAD method (vapor phase attachment method)
i! In the i method, glass raw material is ejected from the center of a multi-tube burner together with a carrier gas toward a target such as a quartz rod, and this is hydrolyzed by an oxyhydrogen flame supplied from the outside of the burner to inject a glass medium ( By forming a porous base material of soot) and heating and sintering it, a transparent vitrified optical fiber base material is formed.By rotating the target and pulling it upward, a circular rod-shaped porous base material is formed. There is an advantage that the base material can be formed to any length.

このVAD法においては多重管バーナは斜めに配置し、
ガラス原料等を斜め上方に向けて噴出するが、多重管バ
ーナを垂直に立てた場合、火炎の安定化及び光ファイバ
の屈折率分布制御のため、バーナ外周に多重管バーナと
一体化したフードを設け、そのフードにN2ガスなどの
不活性ガスを流すようにしている。
In this VAD method, multi-tube burners are arranged diagonally,
Glass raw materials are ejected diagonally upward, but when a multi-tube burner is placed vertically, a hood integrated with the multi-tube burner is installed around the burner to stabilize the flame and control the refractive index distribution of the optical fiber. The hood is equipped with an inert gas such as N2 gas.

このような構造のバーナに5iC14,Geα4などの
ガラス原料や112.02などの燃料を多く送り込むと
、送り込み聞に対して多孔質母材の外径や成長速度等を
大ぎくできる。
When a large amount of glass raw material such as 5iC14 or Geα4 or fuel such as 112.02 is fed into a burner having such a structure, the outer diameter, growth rate, etc. of the porous base material can be increased with respect to the feeding period.

[発明が解決しようとする問題点] しかしながら、光ファイバの屈折率分布制御のため、多
重管バーナの中心部、すなわち、ガラス原料を噴出する
内側ノズルの内径には限界があり、火炎の幅を大きくす
ることはできない。そのため多孔質母材の外径を大きく
しようとしても、温度分布の広がりは起らず、屈折率分
布制御できる範囲は火炎の幅で決まってしまい、多孔質
母材を透明ガラス化した時のコアロッドの外径を1とじ
た場合、屈折率分布に勾配がつき、いわゆるグレーテッ
ド型になる部分は0.5〜0.7になり、残りの外周部
がクラッド部となる。
[Problems to be Solved by the Invention] However, in order to control the refractive index distribution of optical fibers, there is a limit to the inner diameter of the central part of the multi-tube burner, that is, the inner nozzle that ejects the glass raw material. You can't make it bigger. Therefore, even if you try to increase the outer diameter of the porous base material, the temperature distribution will not expand, and the range in which the refractive index distribution can be controlled is determined by the width of the flame.When the porous base material is made into transparent glass, the core rod When the outer diameter of the refractive index is 1, the refractive index distribution has a gradient and the so-called grated type portion is 0.5 to 0.7, and the remaining outer peripheral portion becomes the cladding portion.

またファイバ化した場合にはコアとクラッド部の境界が
不明確になり、屈折率分布定数αで評価できないような
、だらだらとした分布も生じやすく、伝送帯域を広帯域
にしようとする場合の妨げとなる。
Furthermore, when fabricated into a fiber, the boundary between the core and cladding becomes unclear, and a sloppy distribution that cannot be evaluated using the refractive index distribution constant α is likely to occur, which is a hindrance when trying to widen the transmission band. Become.

[発明の目的] 本発明の目的は、前記した従来技術の欠点を解消し、多
孔質母材を大型化するにおいて、多孔質母材の径方向の
屈折率分布制御の範囲を広げることができる光ファイバ
母材の製造方法を提供することにある。
[Object of the Invention] An object of the present invention is to eliminate the drawbacks of the prior art described above, and to expand the range of control of the refractive index distribution in the radial direction of the porous base material when increasing the size of the porous base material. An object of the present invention is to provide a method for manufacturing an optical fiber preform.

[発明の概要] ずなわち、本発明の要旨は、多重管バーナの外周部にフ
ードを設け、そのフードに不活性ガスと水素ガスを供給
したもので、フードに流すガスに不活性ガスの他に水素
ガスを流すことで112 + 02の反応が広範囲にわ
たって起り、多孔質母材を大型化しても温度分布の一様
な範囲を広げることができると共に屈折率分布制御の範
囲を広げることができ、広帯域の光ファイバ母材を得る
ことができるようにしたものである。
[Summary of the Invention] The gist of the present invention is that a hood is provided on the outer periphery of a multi-tube burner, and inert gas and hydrogen gas are supplied to the hood. In addition, by flowing hydrogen gas, the 112 + 02 reaction occurs over a wide range, making it possible to widen the range of uniform temperature distribution and expand the range of refractive index distribution control even if the porous base material is made larger. This makes it possible to obtain a broadband optical fiber preform.

[実施例] 以下、本発明に係る光ファイバ母材の製造方法の好適一
実施例を添付図面に基づいて説明する。
[Example] Hereinafter, a preferred example of the method for manufacturing an optical fiber preform according to the present invention will be described with reference to the accompanying drawings.

第1図において、1は垂直に配置した多重管バーナで、
石英ガラス管の四重構造からなり、中央から外側に原料
供給管2.不活性ガス供給管3゜水素供給管4.酸素供
給管5が順に同心円状に設けられ、その上端の各開口端
にノズル2a、3a。
In Fig. 1, 1 is a vertically arranged multi-tube burner;
It consists of a four-layered structure of quartz glass tubes, with two raw material supply tubes extending from the center to the outside. Inert gas supply pipe 3゜Hydrogen supply pipe 4. Oxygen supply pipes 5 are arranged concentrically in order, and nozzles 2a, 3a are provided at each open end of the upper end.

4a、5aが形成される。各管径は原料供給管2が5.
6〜7.0履φ、不活性ガス供給′r23が8.6〜1
0.0姻φ、水素供給管4が14.0〜16.0IMφ
、酸素供給管5が20.0〜23.0姻φに形成される
。原料供給管2には5iCQ4を8g/min 、 G
eCl4を450rng/ln、主1シリアガスの静を
1200CC/ rain供給し、不活性ガス供給管3
には^rを800CC/ min 、水素供給管4には
112を7J/min 、酸素供給管5には02を10
J/rain夫々供給する。
4a and 5a are formed. The raw material supply pipe 2 has a diameter of 5.
6 to 7.0 shoes φ, inert gas supply 'r23 is 8.6 to 1
0.0mmφ, hydrogen supply pipe 4 is 14.0~16.0IMφ
, the oxygen supply pipe 5 is formed to have a diameter of 20.0 to 23.0 mm. 5iCQ4 is added to the raw material supply pipe 2 at a rate of 8 g/min, G
Supply eCl4 at 450 rng/ln, main 1 Syrian gas static at 1200 CC/rain, and inert gas supply pipe 3.
^r at 800CC/min, hydrogen supply pipe 4 at 112 at 7J/min, oxygen supply pipe 5 at 02 at 10
J/rain is supplied respectively.

この多重管バーナ1の外周部には、そのバーナ1からの
火炎6を囲繞する石英ガラス管からなる二重のフード7
.8が設けられる。
A double hood 7 made of quartz glass tubes surrounds the flame 6 from the burner 1 on the outer periphery of the multi-tube burner 1.
.. 8 is provided.

この二重のフード7.8の管径は、内側フード7が38
〜34#lIφ、外側フード8にはN2.Arなどの不
活性ガスと水素ガスの混合ガスを供給し、例えば内側フ
ード7にはN2を10.1!/min 、外側フード8
にはN2を40J!、’+inと112を47/In1
nの混合ガスを供給する。
The pipe diameter of this double hood 7.8 is that the inner hood 7 is 38.
~34#lIφ, outer hood 8 has N2. A mixed gas of inert gas such as Ar and hydrogen gas is supplied, and for example, N2 is supplied to the inner hood 7 at 10.1! /min, outer hood 8
40J of N2! , '+in and 112 to 47/In1
A mixed gas of n is supplied.

以上において、多重管バーナ1の中央からキャリアガス
(Ar)と共に吹き出されたガラス原料(Si(J4.
 GaCl2)は、その外側から供給される02、+1
2の酸水素炎により加水分解反応を起し、SiO2,G
eO2のスートとなってターゲットの先端に付着堆積し
て成長する。
In the above, the glass raw material (Si (J4.
GaCl2) is supplied from the outside with 02, +1
A hydrolysis reaction is caused by the oxyhydrogen flame in step 2, and SiO2,G
The soot becomes eO2, which is deposited on the tip of the target and grows.

この場合、多重管バーナ1の火炎6は二重フード7.8
からのガス流により火炎6の安定化が図れると共に外側
フード8からN2ガスと共に供給した112ガスが火炎
6の酸素と反応し、ターゲットの先端に形成された多孔
質!!祠の外周部の温度低下を防止し、温度分布を一様
に広くすることができ、多孔質母材の径を大きくしても
その屈折率分布制御が可能となる。
In this case, the flame 6 of the multi-tube burner 1 has a double hood 7.8
The flame 6 is stabilized by the gas flow from the outer hood 8, and the 112 gas supplied together with the N2 gas reacts with the oxygen in the flame 6, forming a porous hole at the tip of the target! ! It is possible to prevent a temperature drop in the outer circumference of the shrine, to uniformly widen the temperature distribution, and to control the refractive index distribution even if the diameter of the porous base material is increased.

次に本発明の方法で得た光ファイバ母材と従来の方法で
得た光ファイバ母材の屈折率分布を第2図に示す。この
場合従来の方法においては、第1図に示したバーナを用
い、多重管バーナ1に本発明と同様に夫々ガスを流し、
内側フード7にはN2jj スヲIOJ / n+in
 、’外側フード8にはN2ガスを40J/1n流した
Next, FIG. 2 shows the refractive index distributions of the optical fiber preform obtained by the method of the present invention and the optical fiber preform obtained by the conventional method. In this case, the conventional method uses the burner shown in FIG.
Inner hood 7 has N2jj SuwoIOJ/n+in
,' 40 J/1n of N2 gas was flowed into the outer hood 8.

第2図において、従来例すにおいてはロット外径に対す
るコア相当部は0.62で、かつ0.62付近でだらだ
らした屈折率となるが、本発明aにおいてはロット外径
に対するコア相当部は0.80となり、クラッド部が少
なくなり、かつコア部とクラッド部の境界部が明確にな
ることが判る。
In FIG. 2, in the conventional example, the core equivalent part to the lot outer diameter is 0.62, and the refractive index becomes sloppy around 0.62, but in the present invention a, the core equivalent part to the lot outer diameter is 0.62. 0.80, it can be seen that the cladding portion is reduced and the boundary between the core portion and the cladding portion is clear.

尚、上述した実施例においては多重管バーナ1の外周に
二重のフードを設け、その外側のツー・ドに不活性ガス
と共に水素ガスを流すようにしたが、フードを一つとし
、そのフードに不活性ガスと水素ガスを供給するように
してもよい。またフードに供給する水素ガスは不活性ガ
スに対して約10分の1の割で供給する例を示したが、
形成する多孔質母材の径に応じて水素ガスの混入割合を
適宜増減させることは勿論である。
In the above-mentioned embodiment, a double hood was provided around the outer circumference of the multi-tube burner 1, and hydrogen gas was made to flow along with an inert gas through the outer two hoods. Alternatively, an inert gas and hydrogen gas may be supplied. In addition, we have shown an example in which the hydrogen gas supplied to the hood is approximately 1/10 that of inert gas.
Of course, the proportion of hydrogen gas mixed in can be increased or decreased as appropriate depending on the diameter of the porous base material to be formed.

[発明の効果] 以、L詳述してきたことから明らかなように本発明によ
れば次のごとき擾れた効果を発揮する。
[Effects of the Invention] As is clear from what has been described in detail below, the present invention provides the following distinct effects.

(1)  垂直に立てた多重管バーナの外周部にフード
を設け、そのフードに不活性ガスと水素ガスとを供給す
るようにしたので、その水素ガスとバーナからの酸素と
の反応が広範囲にわたり起り、多孔質母材の底面温度分
布が広くなり、屈折率の分布制御範囲を広くできる。
(1) A hood is installed around the outer periphery of the vertical multi-tube burner, and inert gas and hydrogen gas are supplied to the hood, so that the reaction between the hydrogen gas and the oxygen from the burner can occur over a wide range. As a result, the bottom surface temperature distribution of the porous base material becomes wider, and the refractive index distribution control range can be widened.

(υ ロット外径に対するコア相当部の比率を高くする
ことができると共にその境界部の屈折率分布のスソ引き
が小さくなり広帯域化が図れる。
(υ) It is possible to increase the ratio of the core-corresponding portion to the outside diameter of the lot, and to reduce the unevenness of the refractive index distribution at the boundary, thereby achieving a wider band.

(3)  径方向の多孔質母材のかさ密度の変化を小さ
くできる。
(3) Changes in the bulk density of the porous base material in the radial direction can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光ファイバ母材の製造方法に用いるフ
ード付多m管バーナの概略断面図、第2図は本発明と従
来例にお番プる屈折率分布を示ず図である。 図中、1は多重管バーナ、2aはガラス原料供給ノズル
、4aは水素供給ノズル、5aは酸素供給ノズル、6は
火炎、7,8はフードである。
FIG. 1 is a schematic cross-sectional view of a hooded multi-tube burner used in the method for manufacturing an optical fiber preform of the present invention, and FIG. 2 is a diagram without showing the refractive index distribution that differs between the present invention and the conventional example. . In the figure, 1 is a multi-tube burner, 2a is a frit supply nozzle, 4a is a hydrogen supply nozzle, 5a is an oxygen supply nozzle, 6 is a flame, and 7 and 8 are hoods.

Claims (2)

【特許請求の範囲】[Claims] (1)垂直に立てた多重管バーナの中央のノズルから供
給されるガラス原料を、外方のノズルから供給される酸
水素炎で加水分解してバーナ上方のターゲット先端にス
ートを生成させる光ファイバ母材の製造方法において、
上記多重管バーナの外周部に、該バーナから噴出される
酸水素炎を包囲するフードを設け、該フードから上記ス
ートに不活性ガスと水素ガスを供給するようにしたこと
を特徴とする光ファイバ母材の製造方法。
(1) Optical fiber that hydrolyzes the glass raw material supplied from the central nozzle of a vertical multi-tube burner using an oxyhydrogen flame supplied from the outer nozzle to generate soot at the target tip above the burner. In the method for manufacturing the base material,
An optical fiber characterized in that a hood is provided on the outer periphery of the multi-tube burner to surround the oxyhydrogen flame ejected from the burner, and inert gas and hydrogen gas are supplied from the hood to the soot. Method of manufacturing base material.
(2)フードが二重のフードからなり、その内側のフー
ドに不活性ガスを、また外側のフードに不活性ガスと水
素ガスの混合ガスを供給するようにしたことを特徴とす
る特許請求の範囲1項に記載の光ファイバ母材の製造方
法。
(2) A patent claim characterized in that the hood consists of a double hood, and the inner hood is supplied with inert gas, and the outer hood is supplied with a mixed gas of inert gas and hydrogen gas. A method for manufacturing an optical fiber preform according to Item 1.
JP194186A 1986-01-08 1986-01-08 Production of optical fiber preform Pending JPS62162637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP194186A JPS62162637A (en) 1986-01-08 1986-01-08 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP194186A JPS62162637A (en) 1986-01-08 1986-01-08 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPS62162637A true JPS62162637A (en) 1987-07-18

Family

ID=11515634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP194186A Pending JPS62162637A (en) 1986-01-08 1986-01-08 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS62162637A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334339B1 (en) * 1998-12-25 2002-01-01 The Furukawa Electric Co., Ltd. Hooded torch for synthesizing glass particulates
KR20030043081A (en) * 2001-11-26 2003-06-02 천호식 Production of Preform for POF and Apparatus for Production Therefor
US8650912B2 (en) 2003-12-05 2014-02-18 Shin-Etsu Chemical Co., Ltd. Burner and method for the manufacture of synthetic quartz glass
US20150336839A1 (en) * 2014-05-22 2015-11-26 Corning Incorporated Burner shield to reduce soot buildup

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334339B1 (en) * 1998-12-25 2002-01-01 The Furukawa Electric Co., Ltd. Hooded torch for synthesizing glass particulates
KR20030043081A (en) * 2001-11-26 2003-06-02 천호식 Production of Preform for POF and Apparatus for Production Therefor
US8650912B2 (en) 2003-12-05 2014-02-18 Shin-Etsu Chemical Co., Ltd. Burner and method for the manufacture of synthetic quartz glass
US20150336839A1 (en) * 2014-05-22 2015-11-26 Corning Incorporated Burner shield to reduce soot buildup
US9540272B2 (en) * 2014-05-22 2017-01-10 Corning Incorporated Burner shield to reduce soot buildup

Similar Documents

Publication Publication Date Title
US4810189A (en) Torch for fabricating optical fiber preform
US4406684A (en) Core torch for fabricating single-mode optical fiber preforms
US4224046A (en) Method for manufacturing an optical fiber preform
US4367085A (en) Method of fabricating multi-mode optical fiber preforms
GB2128982A (en) Fabrication method of optical fiber preforms
US4915716A (en) Fabrication of lightguide soot preforms
RU2284968C2 (en) Method of manufacture of the optical glass
JPS62162637A (en) Production of optical fiber preform
JPH07138028A (en) Production of synthetic quartz glass member and burner for producing synthetic quartz glass
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JP3133392B2 (en) Manufacturing method of soot base material for optical fiber
JPH0525818B2 (en)
JPS6044258B2 (en) synthesis torch
JP2545408B2 (en) Method of manufacturing optical waveguide stop preform
JPS6041627B2 (en) Manufacturing method of optical fiber base material
JPH0331657B2 (en)
JPS5983953A (en) Preparation of parent material of optical fiber
JPS6259063B2 (en)
JPS59174537A (en) Manufacture of base material for optical fiber
JP3992970B2 (en) Manufacturing method and apparatus for manufacturing glass preform for optical fiber
KR850000908B1 (en) Method for manufacturing an optical fiber preform
JPS62162639A (en) Production of preform for w-type single mode optical fiber
KR20040040056A (en) Burner for making fine particles for deposition of silica particles
JPH01203238A (en) Production of optical fiber preform
JPS593028A (en) Manufacture of base material for optical fiber