JPS6168340A - Production of parent glass material for optical fiber - Google Patents

Production of parent glass material for optical fiber

Info

Publication number
JPS6168340A
JPS6168340A JP19048084A JP19048084A JPS6168340A JP S6168340 A JPS6168340 A JP S6168340A JP 19048084 A JP19048084 A JP 19048084A JP 19048084 A JP19048084 A JP 19048084A JP S6168340 A JPS6168340 A JP S6168340A
Authority
JP
Japan
Prior art keywords
gas
glass
flame
port
flowed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19048084A
Other languages
Japanese (ja)
Other versions
JPH0559053B2 (en
Inventor
Futoshi Mizutani
太 水谷
Gotaro Tanaka
豪太郎 田中
Hiroo Kanamori
弘雄 金森
Tsunehisa Kyodo
倫久 京藤
Naoki Yoshioka
直樹 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19048084A priority Critical patent/JPS6168340A/en
Publication of JPS6168340A publication Critical patent/JPS6168340A/en
Publication of JPH0559053B2 publication Critical patent/JPH0559053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Abstract

PURPOSE:To enable to use hydrocarbon gas as fuel for flame to be used for hydrolysis of a starting material for the glass by flowing each starting material gas with a specified arrangement to each port using a multilayered tube. CONSTITUTION:Gas streams are arranged in such a manner that fuel hydrocarbon gas is flowed out from a burner interposed between flows of gaseous oxygen. Namely, a concentric cylindrical six layered tubular burner is used, and (i) gaseous starting material and carrier gas are flowed through a central port 5, gaseous oxygen is flowed through a second port 6 and a sixth port 10, seal- gas is flowed through a third port 7 and a fifth port 9, and hydrocarbon gas is flowed through a fourth port 8. The hydrocarbon gas is burnt completely by the above-described process, thus, deterioration of quality due to deposition and entanglement of fine carbon particles to a porous glass body to be generated by the incomplete combustion is avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス原料を加水分解反応してガラス微粒子を
合成することによる光ファイバ用ガラス母材の製造方法
に関し、特に光伝送損失の少ない光ファイバの製造に適
する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing a glass base material for optical fibers by hydrolyzing glass raw materials to synthesize glass particles, and particularly relates to a method for producing a glass base material for optical fibers by hydrolyzing a glass raw material and synthesizing glass particles. Suitable for fiber manufacturing.

〔従来の技術〕[Conventional technology]

従来光ファイバ用ガラス母材を製造する方法の1つとし
て、axct4等のガラス原料を火炎中に投入し、加水
分解反応によシガヲス微粒子を合成し、該ガラス微粒子
を出発材すなわちマンドレル上かあるいはガラス棒先端
に堆積させて、その後加熱透明化する光ファイバ用母材
の製造方法が広く行われてお夛、火炎としては主に酸水
素炎が用いられてきた。
Conventionally, one of the methods for manufacturing a glass base material for optical fibers is to put a glass raw material such as AXCT4 into a flame, synthesize Shigawas fine particles through a hydrolysis reaction, and then transfer the glass fine particles to a starting material, that is, on a mandrel or A method of manufacturing an optical fiber base material in which the base material is deposited on the tip of a glass rod and then heated to become transparent has been widely used, and an oxyhydrogen flame has been mainly used as the flame.

ところで近時、酸水素炎にかえて火炎用燃料として炭化
水素系ガスを用いることが検討されている。炭化水素系
ガスは一般に単位体積当シの燃焼熱が水素ガスに比べて
大きい。例えば、メタンガスは212 KCJ&L/n
o 1.アセチレンガスは310Kcat/molの燃
焼熱をもつのに対して水素ガスは68Kca/、/mo
lである。この為、ガラス微粒子を堆積させる際に、被
堆積体となる多孔質ガラス体の表面温度を高くすること
が容易となるので多孔質ガラス体のカサ密度を大きくと
り、割れにくい多孔質ガラス体を、作成し易いという利
点がちる。
By the way, recently, the use of hydrocarbon gas as a flame fuel instead of oxyhydrogen flame has been considered. Hydrocarbon gases generally have a higher heat of combustion per unit volume than hydrogen gas. For example, methane gas is 212 KCJ&L/n
o 1. Acetylene gas has a heat of combustion of 310Kcat/mol, while hydrogen gas has a heat of combustion of 68Kcat/mol.
It is l. For this reason, when depositing glass particles, it is easy to increase the surface temperature of the porous glass body to be deposited, so the bulk density of the porous glass body can be increased, and the porous glass body is difficult to break. , it has the advantage of being easy to create.

ところで拡散係数の大きいH3を燃料用ガスとし、多重
管バーナーを用いてガラス微粒子を合成する際には、多
重管バーナーとしては、例えば第4図に示すような簡単
な断面構造(中′心部よυ1〜4層の同心多重管を例示
してちる)を持つものを利用できる。
By the way, when synthesizing glass particles using a multi-tube burner using H3, which has a large diffusion coefficient, as a fuel gas, the multi-tube burner should have a simple cross-sectional structure (with a central part) as shown in Figure 4, for example. A concentric multi-tube with 1 to 4 layers can be used.

第4図において、1にはガラス原料、2には山、3には
不活性ガス、4には0.ガスを流す部分を示す。3に流
す不活性ガスはバーナー出口近傍での燃焼反厄によりバ
ーナー先端が加熱され消耗することを防ぐ為に必要でお
る。また生成したガラス微粒子流はできるだけ細く集束
されたものにし、ガラス微粒子流が所望の堆積面上に確
実に当シ、効率的にガラス微粒子が堆積させるようにす
ることが望ましい。そのため、ガラス原料流を火炎の中
央部に配置できるよう、ガラス原料をバーナーの中心ボ
ート1に流す。さらに、拡散係数の小さい03を最外M
4に配置し、火炎を集束させることにより、ガラス原料
の集束度を高める効果を与えている。拡散係数の大きい
五愈を用いる場合には、−このような簡単な構造のバー
ナーを用いても十分H1が不活性ガス中を拡散し0.と
すみやかに反応するわけである。
In FIG. 4, 1 is a glass raw material, 2 is a mountain, 3 is an inert gas, and 4 is 0. Shows the part where gas flows. The inert gas flowing in step 3 is necessary to prevent the tip of the burner from being heated and worn out due to combustion reaction near the burner outlet. It is also desirable to make the generated glass particle stream as narrowly focused as possible to ensure that the glass particle stream deposits the glass particles accurately and efficiently on the desired deposition surface. Therefore, the frit is flowed into the center boat 1 of the burner so that the frit stream can be placed in the center of the flame. Furthermore, 03 with a small diffusion coefficient is added to the outermost M
4, and by focusing the flame, it has the effect of increasing the degree of convergence of the glass raw material. When using a burner with a large diffusion coefficient, even if a burner with such a simple structure is used, H1 will be sufficiently diffused in the inert gas and 0. It reacts quickly.

しかしながら、第4図に示したような単純な構造のバー
ナーにおいて、’12の代りに分子量が大きく拡散係数
の小さい炭化水素ガスを燃料用ガスとして用いる際には
以下のような不具合が生じる。
However, in a burner having a simple structure as shown in FIG. 4, when a hydrocarbon gas having a large molecular weight and a small diffusion coefficient is used instead of '12 as a fuel gas, the following problems occur.

すなわち、第4図に示した酸水素炎用の4重管バーナー
の水素ガス用ボート2に炭化水素ガスを流すと、よシ外
側のボート4から噴出させる酸素ガスとの反応が進まず
、バーナー先端から長く、炭素を含む火炎が形成される
。この様な火炎を用いて、ガラス微粒子を堆積させると
、多孔質ガラス体に炭素微粒子が混入し、伝送特性を劣
化させる。
That is, when hydrocarbon gas is flowed into the hydrogen gas boat 2 of the quadruple tube burner for oxyhydrogen flame shown in FIG. A long, carbon-containing flame forms from the tip. If glass particles are deposited using such a flame, carbon particles will be mixed into the porous glass body, deteriorating the transmission characteristics.

かかる炭素混入を避けるために、バーナーから多孔質ガ
ラス体までの間隔を大きくとり、酸素ガスとの混合を進
める方法があるが、この方法では多孔質ガラス体をバー
ナーから遠ざけるに従い、火炎の先端部のみで多孔質ガ
ラス体を加熱することになシ、堆積領域の温度を高く維
持することができない。このため、通常4重管バーナ一
様のガスの流し方では、カサ密度を高くすることで割れ
にくい多孔質ガラス体を作成することが難かしく、炭素
混入がなく、かつ、安定な多孔質ガラス体を得ることは
困難であった。
In order to avoid such carbon contamination, there is a method of increasing the distance between the burner and the porous glass body to promote mixing with oxygen gas, but in this method, as the porous glass body is moved away from the burner, the tip of the flame If the porous glass body is heated only by heating, the temperature in the deposition region cannot be maintained high. For this reason, it is difficult to create a porous glass body that is difficult to break by increasing the bulk density with the regular gas flow method of a quadruple tube burner. Obtaining the body was difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記の知見に鑑み、その問題点を解消すべ〈
従来法に改良を加え、炭化水素ガスを燃料ガスとして用
いる方式において、炭素微粒子の析出を抑えかつ高いカ
サ密度を有して割れにくい多孔質ガラス体を合成し、ひ
いては伝送損失の優れた光ファイバを安定に製造する方
法を提供することを目的としてなされたものである。
In view of the above knowledge, the present invention aims to solve the problems.
By improving the conventional method and using hydrocarbon gas as a fuel gas, we have synthesized a porous glass body that suppresses the precipitation of carbon particles and has a high bulk density that is difficult to break, thereby creating an optical fiber with excellent transmission loss. The purpose was to provide a method for stably producing .

〔問題点を解決する手段〕[Means to solve problems]

上記の目的を達成する手段として、本発明は多重管バー
ナを用いて火炎を形成し1.該火炎中にガラス合成用原
料を導入して、ガラス微粉体を合成し、出発材上に堆積
させた後、該堆積体を加熱透明化する工程を含む光ファ
イバ用ガラス母材の製造方法において、該火炎用燃料と
して炭化水素系ガスを用い、多重管から流すガス配置と
して、該炭化水素ガスの゛両隣りにシールガスを配置し
、かつ、さらにその両隣りに酸素ガスを配置せしめるこ
とを特徴とする光ファイバ用ガラス母材の製造方法を提
供するものである。
As a means of achieving the above objects, the present invention uses a multi-tube burner to form a flame.1. A method for producing a glass preform for optical fibers, which includes a step of introducing raw materials for glass synthesis into the flame, synthesizing glass fine powder, depositing it on the starting material, and then heating and transparentizing the deposited body. A hydrocarbon gas is used as the flame fuel, and the gas arrangement for flowing from multiple pipes is such that seal gas is arranged on both sides of the hydrocarbon gas, and oxygen gas is arranged on both sides of the gas. The present invention provides a method for manufacturing a glass preform for optical fibers.

本発明の特に好ましい実施態様としては、上記シールガ
スとしてアルゴンガス、窒素ガスまたはヘリウムガスを
含むガスを用いる上記の方法が挙げられ、またさらなる
好ましい実施態様としては該炭化水素系ガスとして、メ
タンガスまたはアセチレンガスを主成分とするガスを用
いる上記の方法が挙げられる。
A particularly preferred embodiment of the present invention includes the above-mentioned method using a gas containing argon gas, nitrogen gas, or helium gas as the sealing gas, and a further preferred embodiment includes the method using a gas containing argon gas, nitrogen gas, or helium gas as the sealing gas, and in a further preferred embodiment, methane gas or The above method uses a gas containing acetylene gas as a main component.

本発明は基本的には、ガラス原料の加水分解反応に供す
る火炎の燃料を炭化水素系ガスとした時に、その燃料を
酸素ガスが挾み込むように、多重管バーナのボートのガ
ス配置を施こして、堆積中の多孔質ガラス体と炭化水素
系ガスの流れの間に酸素ガスを挿入し、不完全燃焼によ
シ生成した炭素微粒子がこの酸素ガス流中で完全に燃焼
し、多好質ガラス体に到達しないようにする多重管バー
ナのボートのガス配置を特徴とする方法である。
Basically, the present invention is implemented by arranging the gas in the boat of the multi-tube burner so that when a hydrocarbon gas is used as the fuel for the flame used in the hydrolysis reaction of glass raw materials, the fuel is sandwiched between oxygen gas. Then, oxygen gas is inserted between the porous glass body being deposited and the flow of hydrocarbon gas, and the carbon particles generated by incomplete combustion are completely burned in this oxygen gas flow, resulting in a polycarbonate gas. The method is characterized by a multi-tube burner boat gas arrangement that prevents the gas from reaching the glass body.

本発明の方法においては、多重管の中心ボートはガラス
原料用で、キャリアガスとしては例えばアルゴンガス、
ヘリウムガス、窒素ガス。
In the method of the present invention, the central boat of the multi-tube is for the glass raw material, and the carrier gas is, for example, argon gas,
Helium gas, nitrogen gas.

酸素ガス等あるいはこれらの混合ガスを用いる。Oxygen gas or a mixture thereof is used.

また、必要に応じ水素ガスあるいはキャリアガスとして
挙げたガスを原料ボートから流してもよい、ガラス原料
ボートは必ずしも1ボートに限らず必要に応じ、例えば
原料組成を変えて複数のボートから流してもよい、ガラ
ス原料ボートの外側には、火炎用ガスボートを配置する
Additionally, if necessary, hydrogen gas or the gases listed as carrier gases may be flowed from the raw material boat.The number of glass raw material boats is not necessarily limited to one boat; for example, the raw material composition may be changed and flowed from multiple boats. A flame gas boat is placed outside the frit boat.

火炎用ガスポートは、内側から外側へと酸素ガス、シー
ルガスe 炭化水素系カス、 シール−tj、x、。
The flame gas port is filled with oxygen gas, seal gas e, hydrocarbon scum, seal-tj, x, from inside to outside.

酸素ガスの順に構成され、シールガスとしては、アルゴ
ンガス、ヘリウムガス等の不活性ガスや窒素ガスあるい
はこれらの混合ガスが用いられる。また必要に応じて更
に上記の順にガスボートを追加してもよい。
Oxygen gas is used as the sealing gas, and an inert gas such as argon gas or helium gas, nitrogen gas, or a mixture thereof is used as the sealing gas. Moreover, you may further add a gas boat in the above order as needed.

本発明に用いる炭化水素系ガスとしては例えばメタン、
エタン、プロパン、ブタン、エチレン、アセチレン等が
挙げられる。
Examples of the hydrocarbon gas used in the present invention include methane,
Examples include ethane, propane, butane, ethylene, and acetylene.

第1図は本発明の最も簡単な実施態様例を示すもので、
同心円筒の6重管バーナーを用いる場合を説明する図で
ある。中心ボート5は上記の如くガラス原料、キャリア
ガスあるいは必要に応じ水素ガスを流す。第2ボート6
及びE6ボート10には酸素ガスを、第3ボート7及び
第5ボート9にはシールガスを、そして第4ボート8に
は炭化水素系ガスを流す、つまり第2ボート以下は酸素
ガス、シールガス、炭化水素系ガス、シールガス、酸素
ガスの順である。
FIG. 1 shows the simplest embodiment of the present invention.
It is a figure explaining the case where a concentric cylindrical six-tube burner is used. The center boat 5 allows glass raw materials, carrier gas, or hydrogen gas to flow as required, as described above. 2nd boat 6
Oxygen gas is supplied to the E6 boat 10, seal gas is supplied to the third boat 7 and fifth boat 9, and hydrocarbon gas is supplied to the fourth boat 8. In other words, oxygen gas and seal gas are supplied to the second and subsequent boats. , hydrocarbon gas, seal gas, and oxygen gas in that order.

本発明において使用する多重管バーナは同心円筒形に限
らず、テーパ形状を持つもの、また、矩形、あるいは非
軸対称であって良く、ガラス原料ボートを囲むように火
炎構成用ガスのボートが配置されているものであればよ
い。
The multi-tube burner used in the present invention is not limited to a concentric cylindrical shape, but may have a tapered shape, a rectangular shape, or a non-axisymmetric shape, and a flame-forming gas boat is arranged to surround a frit boat. It is acceptable as long as it is

本発明方法による製造工程は、本発明が本質的に炭化水
素系ガスを燃焼ガスとして用いて、ガラス微粒子を堆積
させる工程のガスの流し方に特徴を有するものであるの
で、堆積工程以後ファイバとするまでの工程はいかなる
方法によってもよい。
The manufacturing process according to the method of the present invention is characterized in that the present invention essentially uses a hydrocarbon gas as a combustion gas and the method of gas flow in the process of depositing glass particles. Any method may be used for the steps up to this point.

〔実施例〕〔Example〕

以下実施例および比較例をあげて本発明の詳細な説明す
る。
The present invention will be described in detail below with reference to Examples and Comparative Examples.

実施例1 M1図に示す6重管バーナを用いて、第2ポートから酸
素ガス5々9.第3ボートからアルゴンガス4t/分、
第4ボートからメタンガスを主成分とする天然ガスs 
t/分、第5ボートから窒素ガスS t/分、第6ボー
トから酸素ガス10t/分、をそれぞれ流して火炎を形
成し、中心ボートからアルゴンガスをキャリアガスとし
て16砂流して、4塩化ケイ素α36t/分を投入した
Example 1 Using the six-tube burner shown in Fig. M1, five oxygen gases were supplied from the second port9. Argon gas 4t/min from the third boat,
Natural gas whose main component is methane gas from the 4th boat
t/min, nitrogen gas S t/min from the 5th boat, and oxygen gas 10 t/min from the 6th boat to form a flame, and 16 sand was flowed from the center boat using argon gas as a carrier gas to produce tetrachloride. Silicon α was charged at 36 t/min.

火炎の根本をガラス棒で探って、炭素微粒子の付着が認
められないことを確認した。
The root of the flame was probed with a glass rod and confirmed that no carbon particles were observed.

出発材は、外径&5鱈の純シリカガラス棒を口伝させ、
火炎をこの上で往復させて、ガラス微粒子を堆積させた
。多孔質ガラス体のカサ密度の径方向の変動を抑えるた
めに、キャリアガスは、該多孔質ガラス体の外径に応じ
て、徐々にα4 t/分 まで下げた。多孔質ガラス体
の外径が80IIII+になるまで堆積を行なったが、
炭素微粒子の混入は認められなかった。該出発材と該多
孔質ガラス体の複合構造体をヘリウムガス5t/分、塩
素ガスQ、05t/分、6フツ化硫黄ガス11.2t/
分、の雰囲気中、温度1300℃、下降速度5露/分の
条件にて脱水及び弗素のドーピングを行った。次に、ヘ
リウムガス10t/分の雰囲気中、温116so℃、下
降速度37mInの条件にて透明ガラス化を行った。更
に、該透明ガラス体を延伸して、外径?flとし、第1
回目と同条件で外径が70mmとなるまでガラス微粒子
を堆積させた後、脱水及び弗素のドーピングと透明ガラ
ス化を、上と同じ条件で行った。
The starting material was a pure silica glass rod with an outer diameter of 5 mm.
A flame was passed back and forth over this to deposit glass particles. In order to suppress radial variation in the bulk density of the porous glass body, the carrier gas was gradually lowered to α4 t/min depending on the outer diameter of the porous glass body. Deposition was carried out until the outer diameter of the porous glass body was 80III+.
No inclusion of carbon particles was observed. The composite structure of the starting material and the porous glass body was heated with helium gas at 5 t/min, chlorine gas Q at 0.5 t/min, and sulfur hexafluoride gas at 11.2 t/min.
Dehydration and fluorine doping were performed in an atmosphere of 1,300° C. and a descending rate of 5 dew/min. Next, transparent vitrification was performed in an atmosphere of helium gas at 10 t/min under conditions of a temperature of 116 soC and a descending speed of 37 mIn. Furthermore, the transparent glass body is stretched to obtain an outer diameter of ? fl and the first
Glass particles were deposited under the same conditions as the first time until the outer diameter reached 70 mm, and then dehydration, fluorine doping, and transparent vitrification were performed under the same conditions as above.

以上の工程によシ、第2図に示すような屈折率構造をも
つ光ファイバ中間体が得られた。この光ファイバ中間体
の比屈折率差11は0.3 X。
Through the above steps, an optical fiber intermediate having a refractive index structure as shown in FIG. 2 was obtained. The relative refractive index difference 11 of this optical fiber intermediate is 0.3X.

コア径12とクラツド径13の比は9倍であった。The ratio of core diameter 12 to cladding diameter 13 was 9 times.

これに更にジャケット用石英ガラス管を被せた後、線引
して第3図に示すような屈折率構造のファイバ外径14
が125μm、クラツド径15が65pm、コア径16
が7pm、の光ファイバが得られた。この光ファイバの
伝送特性は波長1.3pm において損失14B/に@
以下で、シングルモードファイバとして良好なものでお
った。
After covering this with a quartz glass tube for a jacket, a fiber with a refractive index structure as shown in FIG. 3 is drawn with an outer diameter of 14
is 125μm, cladding diameter 15 is 65pm, core diameter is 16
An optical fiber with a diameter of 7 pm was obtained. The transmission characteristics of this optical fiber are a loss of 14B/@ at a wavelength of 1.3pm.
In the following, it was found to be good as a single mode fiber.

比較例1 第4図に示した様な4重管バーナーを用いて、中心ボー
ト1からは4塩化ケイ素をα36t/分おヨヒキャリャ
ガスとしてアルゴンガxを1617分、第2ボート2か
らはメタンが主成分の天然ガスを2.1t/分、第5ポ
ート3からはアルゴンガスを1.3々扮、第4ボート4
からは酸素ガスを15t/分、それぞれ流して、外径6
−の純シリカガラス棒上に火炎を往復させて、ガラス微
粒子を堆積させたとζろ、外径が20.になった頃から
多孔質ガラス化が灰色みを帯び、炭素微粒子混入が認め
られた。
Comparative Example 1 Using a quadruple tube burner as shown in Fig. 4, silicon tetrachloride was fed from the center boat 1 at α36t/min, argon gas was used as a carrier gas for 1617 minutes, and methane was the main component from the second boat 2. 2.1 t/min of natural gas, 1.3 t/min of argon gas from 5th port 3, 4th boat 4
Oxygen gas was flowed at 15 t/min from each, and the outer diameter was 6.
Glass fine particles were deposited on a pure silica glass rod with an outer diameter of 20. Around this time, the porous vitrification became grayish, and carbon fine particles were observed to be mixed in.

上の方法でキャリアガスを酸素IIL6t/分とし、他
は同条件で行ったとζろ、外径50−になった頃から炭
素微粒子混入が認められた。
When the above method was carried out with the carrier gas being oxygen IIL 6 t/min and the other conditions being the same, contamination of carbon fine particles was observed from around the time when the outer diameter reached 50 mm.

更に酸素キャリアのtま、バーナを5αだけ遠ざけて多
孔質ガラス体の外径が70鱈になるまで火炎の炭素を含
有する部分が多孔質ガラス体に到達しないようにしたと
ころ、外径5〇−に成長したところで多孔質ガラス体は
破裂した。
Furthermore, when the burner was moved away from the oxygen carrier by 5α to prevent the carbon-containing portion of the flame from reaching the porous glass body until the outer diameter of the porous glass body became 70 mm, the outer diameter was 50 mm. The porous glass body burst when it grew to -.

このガラス体のカサ密度を測定したところ、α21/d
  以下であった。
When the bulk density of this glass body was measured, α21/d
It was below.

実施例2 第1図に示す6重管バーナを用いて、第2ないし第6ボ
ートに酸素ガス7t/分、アルゴンガス317分、アセ
チレンガス7L/分、窒素ガス2、217分、酸素ガス
12t/分をこの順に流して火炎を形成し、中心ポート
から酸素ガス17々勿とともに4塩化ケイ素蒸気α42
t/分を投入した。このように形成した火炎を回転する
外径8mφの純シリカガラス棒上で往復させて、ガラス
微粒子を堆積させた。このようにして、外径?O■の多
孔質ガラスとガラス棒の複合構造体を得たが、炭素微粒
子の混入は認められなかった。
Example 2 Using the six-tube burner shown in Fig. 1, oxygen gas 7 t/min, argon gas 317 min, acetylene gas 7 L/min, nitrogen gas 2,217 min, and oxygen gas 12 t/min were supplied to the second to sixth boats. /min in this order to form a flame, and silicon tetrachloride vapor α42 is released from the center port along with oxygen gas 17.
t/min was input. The flame thus formed was reciprocated on a rotating pure silica glass rod having an outer diameter of 8 mφ to deposit glass particles. In this way, the outer diameter? A composite structure of O■ porous glass and glass rod was obtained, but no inclusion of carbon particles was observed.

該複合構造体をヘリウムガス5t/分、塩素ガスα05
t/’分、67フ化硫黄ガスα2t/分の雰囲気中、温
度1300℃、下降速度3帽勢の条件にて脱水及び弗素
のドーピングを行った。次にヘリウムガス10t/分の
雰囲気中、温度1650℃。
The composite structure was heated with helium gas 5t/min, chlorine gas α05
Dehydration and fluorine doping were performed in an atmosphere of 67 sulfur fluoride gas α2 t/min at a temperature of 1300° C. and a descending rate of 3 times. Next, the temperature was 1650°C in an atmosphere of helium gas at 10 t/min.

下降速度5岬傍の条件にて透明ガラス化させた。Transparent vitrification was achieved at a descending speed of 5.

更に該透明ガラス体を外径10■に延伸し、第1回目と
同条件で外径が40mとなるまで堆積を行った上、第1
回目と同じ条件で脱水及び弗素ドーピングと透明ガラス
化を行った。
Further, the transparent glass body was stretched to an outer diameter of 10 cm, and the deposition was carried out under the same conditions as the first time until the outer diameter became 40 m.
Dehydration, fluorine doping, and transparent vitrification were performed under the same conditions as the first time.

以上の工程によシ得られた光ファイバ中間体は屈折率構
造が第2図に示すような、比屈折率差11がα3X、コ
ア径12とクラツド径13の比が10倍のものであった
。これに更に、ジャケット用石英ガラス管を被せた後、
線引して、第5図に示すような屈折率構造の、ファイバ
外径14が125μm、クラツド径15が70μm。
The optical fiber intermediate obtained through the above steps has a refractive index structure as shown in FIG. 2, with a relative refractive index difference 11 of α3X and a ratio of core diameter 12 to cladding diameter 13 of 10 times. Ta. After covering this with a quartz glass tube for jacket,
When drawn, the fiber has a refractive index structure as shown in FIG. 5, with an outer diameter 14 of 125 μm and a cladding diameter 15 of 70 μm.

コア径16が7μm、の光ファイバが得られた。An optical fiber with a core diameter of 16 7 μm was obtained.

この光ファイバの伝送特性は波長t3μm において損
失1dB/&jl以下で、シングルモードファイバとし
て良好なものであった。
The transmission characteristics of this optical fiber were good as a single mode fiber, with a loss of 1 dB/&jl or less at a wavelength of t3 μm.

比較例2 第4図に示した様な4重管の中心ボート1から酸素ガス
のみ[lL7々扮、第2ボート2ないし第4ボート4か
らはアセチレンガスIO1/分、アルゴンガスt2L/
分、酸素ガス17t/分をこの順に夫々流して、火炎を
形成させた。この火炎内の炭素微粒子の付着の様子をみ
るために、石英棒を火炎中に挿入し観察したととる、多
孔質ガラス体が外径約50mに成長した時点よシ以後に
触れると予想される火炎部位で炭素微粒子の顕しい付着
がみられた。
Comparative Example 2 Only oxygen gas [1 L/min] was supplied from the center boat 1 of the quadruple tube as shown in Fig. 4, and acetylene gas IO 1/min and argon gas IO/min from the second boat 2 to fourth boat 4.
17 t/min of oxygen gas were flowed in this order to form a flame. In order to observe the adhesion of carbon particles within the flame, a quartz rod was inserted into the flame and observed.It is expected that the porous glass body will be touched after it has grown to an outer diameter of approximately 50 m. Significant adhesion of carbon particles was observed at the flame site.

更に、中心ボート1と第4ボート4の酸素ガス流量を夫
々t5t/分、191/分とすることで炭素微粒子の生
成を抑制し、バーナを2cmだけ遠ざけた後、5ICt
4 を中心ボート1からIIL42L/分を上記酸素と
ともに投入し、外径61IIIの石英棒を回転させ、火
炎をこの上で往復させて堆積を行ったところ、外径が7
0鱈に成長した時点よシ、ガラス多孔質体の表面に炭素
微粒子が認められ、外径80mで亀裂が発生した。この
ガラス多孔質体を解体して内部を観察したところ、外径
約40−以上の部分で炭素微粒子の混入が認められた。
Furthermore, the generation of carbon fine particles was suppressed by setting the oxygen gas flow rates of the center boat 1 and the fourth boat 4 to t5t/min and 191/min, respectively, and after moving the burner 2cm away,
4 was injected from the center boat 1 at 42 L/min of IIL together with the above oxygen, a quartz rod with an outer diameter of 61III was rotated, and the flame was reciprocated over it to perform deposition.
When the cod had grown to zero, carbon fine particles were observed on the surface of the glass porous body, and cracks occurred at an outer diameter of 80 m. When this glass porous body was disassembled and the inside was observed, it was found that carbon fine particles were mixed in at a portion having an outer diameter of about 40 mm or more.

〔発明の効果〕〔Effect of the invention〕

以上の説明および実施例からも明らかな如く本発明方法
は、ガラス原料を炭化水素系ガスを燃料とする火炎中に
投入して、火炎加水分解してガラス微粒子を合成し、ガ
ラス母材を作成する方法において、多孔質ガラス体の嵩
密度を大きくとれ、割れにくい多孔質ガラス体を作成で
きるという長所はそのまま有し、かつ従来法の欠点であ
った多孔質ガラス体への炭素微粒子混入はないので、安
定して多孔質ガラス体を製造でき、得られる光ファイバ
ー用母材および光ファイバーは伝送損失特性に優れ、又
製造途中の割れもないので、経済上も優れた方法である
As is clear from the above description and examples, the method of the present invention involves introducing a glass raw material into a flame fueled by a hydrocarbon gas, and subjecting it to flame hydrolysis to synthesize glass fine particles to create a glass base material. This method still has the advantages of increasing the bulk density of the porous glass body and creating a porous glass body that is difficult to break, and there is no contamination of carbon particles into the porous glass body, which was a drawback of the conventional method. Therefore, it is possible to stably produce a porous glass body, the resulting optical fiber base material and optical fiber have excellent transmission loss characteristics, and there is no cracking during production, so it is an economically superior method.

また本発明方法は簡単な構造のバーナーで実施できると
いう長所も有する。
The method of the present invention also has the advantage that it can be carried out with a burner of simple construction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実地態様例にて用いる6重管バーナー
の断面図、 第2図は本発明の実施例により作成された光ファイバ中
間体の屈折率分布を承1猪危、田、第5図は第2図の光
ファイバ中間体より作成された光ファイバの屈折率分布
1rririaa、i、第4図は従来方法(比較例)に
て用いられる4重管バーナーの断面図である。
FIG. 1 is a cross-sectional view of a six-tube burner used in a practical embodiment of the present invention, and FIG. 2 shows a refractive index distribution of an optical fiber intermediate produced according to an embodiment of the present invention. 5 is a refractive index distribution 1rrriaa,i of an optical fiber made from the optical fiber intermediate shown in FIG. 2, and FIG. 4 is a sectional view of a quadruple tube burner used in the conventional method (comparative example).

Claims (3)

【特許請求の範囲】[Claims] (1)多重管バーナを用いて火炎を形成し、該火炎中に
ガラス合成用原料を導入してガラス微粉体を合成し、出
発材上に堆積させた後、該堆積体を加熱透明化する工程
を含む光ファイバ用ガラス母材の製造方法において、該
火炎用燃料として炭化水素系ガスを用い、多重管から流
すガス配置として、該炭化水素系ガスの両隣りにシール
ガスを配置し、かつ、さらにその両隣りに酸素ガスを配
置せしめることを特徴とする光ファイバ用ガラス母材の
製造方法。
(1) A flame is formed using a multi-tube burner, raw materials for glass synthesis are introduced into the flame to synthesize glass fine powder, and after being deposited on the starting material, the deposited body is heated to make it transparent. A method for manufacturing a glass base material for optical fibers, which includes using a hydrocarbon gas as the flame fuel, arranging seal gas on both sides of the hydrocarbon gas as a gas arrangement for flowing from multiple pipes, and A method for producing a glass base material for optical fibers, further comprising arranging oxygen gas on both sides thereof.
(2)該シールガスとして、アルゴンガス、窒素ガスま
たはヘリウムガスを含むガスを用いる特許請求の範囲第
(1)項記載の光ファイバ用ガラス母材の製造方法。
(2) The method for manufacturing a glass preform for optical fibers according to claim (1), wherein a gas containing argon gas, nitrogen gas, or helium gas is used as the sealing gas.
(3)該炭化水素系ガスとして、メタンガスまたはアセ
チレンガスを主成分とするガスを用いる特許請求の範囲
第(1)項記載の光ファイバ用ガラス母材の製造方法。
(3) The method for producing a glass preform for an optical fiber according to claim (1), wherein the hydrocarbon gas is a gas whose main component is methane gas or acetylene gas.
JP19048084A 1984-09-13 1984-09-13 Production of parent glass material for optical fiber Granted JPS6168340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19048084A JPS6168340A (en) 1984-09-13 1984-09-13 Production of parent glass material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19048084A JPS6168340A (en) 1984-09-13 1984-09-13 Production of parent glass material for optical fiber

Publications (2)

Publication Number Publication Date
JPS6168340A true JPS6168340A (en) 1986-04-08
JPH0559053B2 JPH0559053B2 (en) 1993-08-30

Family

ID=16258804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19048084A Granted JPS6168340A (en) 1984-09-13 1984-09-13 Production of parent glass material for optical fiber

Country Status (1)

Country Link
JP (1) JPS6168340A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558661A (en) * 1991-08-27 1993-03-09 Fujikura Ltd Production of parent material for optical fiber
DE102006061931B3 (en) * 2006-12-21 2008-04-17 Institut für Physikalische Hochtechnologie e.V. Production of synthetic, highly pure quartz glass with a less hydroxyl content comprises producing a separation gas flow between carrier gas stream and gaseous fuel stream and adding carbon-containing gas to gaseous fuel stream
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558661A (en) * 1991-08-27 1993-03-09 Fujikura Ltd Production of parent material for optical fiber
DE102006061931B3 (en) * 2006-12-21 2008-04-17 Institut für Physikalische Hochtechnologie e.V. Production of synthetic, highly pure quartz glass with a less hydroxyl content comprises producing a separation gas flow between carrier gas stream and gaseous fuel stream and adding carbon-containing gas to gaseous fuel stream
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Also Published As

Publication number Publication date
JPH0559053B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
EP0185106B1 (en) Method of producing a rod containing fluorine
JPS5927728B2 (en) Manufacturing method of sooty glass rod
JPS6168340A (en) Production of parent glass material for optical fiber
GB2128982A (en) Fabrication method of optical fiber preforms
JPS6126532A (en) Production of base material for optical fiber
JPH0761831A (en) Production of porous glass preform for optical fiber
US5238479A (en) Method for producing porous glass preform for optical fiber
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPS60264338A (en) Manufacture of optical fiber preform
JPH0324417B2 (en)
AU643451B2 (en) Method for producing porous glass preform for optical fiber
JPH0460930B2 (en)
JPS6261541B2 (en)
JPS61183140A (en) Production of base material for optical fiber
JPS6117432A (en) Manufacture of optical fiber preform
JPS5915092B2 (en) Method of manufacturing optical transmission glass
JP3118723B2 (en) Method for producing porous glass preform for optical fiber
JPH0558665A (en) Production of parent material of glass fiber for light transmission passage
JPS6259063B2 (en)
JPS60260431A (en) Manufacture of porous base material for optical fiber
CA1241240A (en) Method for producing optical fiber preform
JPH0558666A (en) Production of parent material of glass fiber for light transmission passage
JPH02263725A (en) Production of porous preform for optical fiber
JPS6317236A (en) Production of preform for optical fiber
JPS61281039A (en) Production of optical fiber