JP2751176B2 - Manufacturing method of base material for optical fiber - Google Patents

Manufacturing method of base material for optical fiber

Info

Publication number
JP2751176B2
JP2751176B2 JP63023975A JP2397588A JP2751176B2 JP 2751176 B2 JP2751176 B2 JP 2751176B2 JP 63023975 A JP63023975 A JP 63023975A JP 2397588 A JP2397588 A JP 2397588A JP 2751176 B2 JP2751176 B2 JP 2751176B2
Authority
JP
Japan
Prior art keywords
flame
glass
burner
optical fiber
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63023975A
Other languages
Japanese (ja)
Other versions
JPH01201040A (en
Inventor
俊雄 彈塚
真澄 伊藤
弘 横田
政浩 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63023975A priority Critical patent/JP2751176B2/en
Priority to KR1019890701321A priority patent/KR960016030B1/en
Publication of JPH01201040A publication Critical patent/JPH01201040A/en
Application granted granted Critical
Publication of JP2751176B2 publication Critical patent/JP2751176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4147Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by using a programmable interface controller [PIC]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34388Detect correct moment, position, advanced, delayed, then next command
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45244Injection molding
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50234Synchronize two spindles, axis, electronic transmission, line shafting

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多重管バーナを用いてVAD法(気相軸付法)、O
VPO法(外付気相酸化法)等の粒状ガラス(スート)生
成により光フアイバ用多孔質母材を製造する方法におい
て、粒状ガラスの堆積効率を向上できる製造方法い関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application field] The present invention uses a multi-tube burner to perform VAD
The present invention relates to a method for producing a porous preform for an optical fiber by producing a granular glass (soot) such as a VPO method (external vapor phase oxidation method), which can improve the deposition efficiency of the granular glass.

〔従来の技術〕[Conventional technology]

スート生成法では、燃焼用バーナの火炎中にガラス原
料を供給して、該ガラス原料を火炎加水分解又は酸化反
応させることにより粒状ガラスを合紙し、これを回転す
る出発材又は心棒の周囲に堆積させて多孔質ガラス母材
を製造する。この時の燃焼用バーナとして同心円状多重
管構造で、ガラス原料用と火炎形成用として燃焼ガス
用,助燃ガス用,不活性ガス用の複数噴出ポートを有す
るものが通常用いられている。
In the soot generation method, a glass raw material is supplied into a flame of a combustion burner, and the glass raw material is subjected to a flame hydrolysis or oxidation reaction to interpose granular glass, which is then rotated around a rotating starting material or mandrel. Deposit to produce a porous glass preform. At this time, a burner for combustion having a concentric multiple pipe structure and having a plurality of ejection ports for combustion gas, auxiliary gas, and inert gas for glass raw material and flame formation is usually used.

この種の燃焼バーナとして、上記の同心円状多重構造
で一組のガラス原料用と火炎形成用のポートからなる内
側火炎形成用ノズルの外側に、さらに円心円状多重構造
で一組のガラス原料用及び/又は火炎形成用のポートか
らなる外側火炎形成用ノズルを設けてなり、外側火炎形
成用ノズルを内側火炎形成用ノズルに対して、粒状ガラ
スの合成が終了するに足る距離だけ高くなるよう段差を
設けたバーナが提案されている(実公昭60−4979号公
報)。このように二重構造とすることで、粒状ガラスの
合成と堆積面の温度制御を別個に行なうことができる。
As a combustion burner of this kind, a set of glass raw materials having a concentric multi-layer structure is provided outside the inner flame forming nozzle comprising a pair of glass raw materials and a port for forming a flame in the above concentric multi-layer structure. And / or an outer flame forming nozzle comprising a flame forming port, wherein the outer flame forming nozzle is higher than the inner flame forming nozzle by a distance sufficient to complete the synthesis of the granular glass. A burner having a step has been proposed (Japanese Utility Model Publication No. 60-4979). With such a double structure, the synthesis of the granular glass and the temperature control of the deposition surface can be performed separately.

また、特公昭62−50418号公報には、第4図に示すよ
うに二重構造多重管バーナ(二重火炎バーナ)で、内側
火炎形成用ノズル41を外側火炎形成用ノズル42に対して
退行可能とし、両ノズル先端部の段差L′を調整できる
ようにしたものが提案されており、このバーナは、バー
ナ火炎長を長くすることにより粒状ガラス径を大きくす
ることができると共に、径方向に火炎を二重化すること
で粒状ガラス堆積量が増加し、光フアイバ用多孔質母材
の高速合成を実現できると記載されている。
In Japanese Patent Publication No. Sho 62-50418, as shown in FIG. 4, a double-structure multi-tube burner (double flame burner) is used to retreat the inner flame forming nozzle 41 with respect to the outer flame forming nozzle 42. There has been proposed a burner capable of adjusting the step L ′ between the tip portions of both nozzles. This burner can increase the diameter of granular glass by increasing the burner flame length, and can increase the diameter in the radial direction. It is described that doubling the flame increases the amount of granular glass deposited, thereby realizing high-speed synthesis of a porous preform for optical fiber.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

光フアイバ用多孔質母材の合成においては、バーナに
より合成される粒状ガラスをいかに効率よく母材に堆積
させるかが重要な課題となつている。合成される粒状ガ
ラスに対して、母材に付着する割合を収率という。収率
が低い場合には、多孔質母材の合成速度を上げることが
できないばかりか、光フアイバ用母材合成用反応容器
(マツフルと呼ぶ)内を、母材に付着しなかつた粒状ガ
ラス(浮遊スス)が浮遊するため、下記のように種々の
弊害を生じる。
In the synthesis of a porous preform for an optical fiber, it is an important issue how to efficiently deposit the particulate glass synthesized by the burner on the preform. The ratio of the granular glass to be synthesized attached to the base material is called the yield. If the yield is low, not only the rate of synthesis of the porous base material cannot be increased, but also the inside of the reaction vessel (referred to as Matsufuru) for the synthesis of the base material for the optical fiber, the granular glass that has not adhered to the base material ( Since the floating soot floats, various adverse effects occur as described below.

浮遊ススが堆積面に付着すると、多孔質母材を透明ガ
ラス化した際、ガラス内に気泡を生じるので、高品質な
母材を得ることができない。
If the floating soot adheres to the deposition surface, when the porous base material is turned into a transparent glass, bubbles are generated in the glass, so that a high-quality base material cannot be obtained.

マツフル内壁にススが付着し、特にモニター用窓等に
付着した場合、製造状況のモニターが不能となり、安定
に母材を製造することができない。
If soot adheres to the inner wall of Matsufuru, particularly to a monitor window or the like, it becomes impossible to monitor the production status, and the base material cannot be produced stably.

合成速度向上のために原料流量を上げていつた場合の
弊害については、特公昭62−50418号公報に記載されて
いるが、粒状ガラスの成長(粒子サイズ)が不十分であ
ることが、1つの要因として考えられる。そこで本発明
者らは第4図の従来バーナにおいて、内層41と外層42の
段差L′を、粒径を大きくする目的でさらに長くして堆
積を試みてみたが、L′を長くしすぎると逆に収率が劣
化し、さらに内外層の境界である内壁43の先端部に粒状
ガラスが付着するという弊害を生じることが判つた。第
5図に段差L′(mm)を変化したときの収率の変化を示
す。また長さL′が短かくてもバーナと光フアイバ用母
材の距離を離し火炎長さえ長くすれば粒径は大きくなる
と考えてバーナを母材から離して製造を行なつたが、収
率は変化したままであつた。また粒径は火炎を離しても
0.3μm程度に成長するのみでそれ以上成長しないこと
が判つた。
The adverse effect of increasing the flow rate of the raw material in order to increase the synthesis rate is described in JP-B-62-50418. One of the disadvantages is that the growth (particle size) of the granular glass is insufficient. It is considered as a factor. Thus, the present inventors tried to increase the step L 'between the inner layer 41 and the outer layer 42 in order to increase the grain size in the conventional burner shown in FIG. 4, but tried to make L' too long. On the contrary, it has been found that the yield is deteriorated, and furthermore, there is an adverse effect that the granular glass adheres to the tip of the inner wall 43 which is the boundary between the inner and outer layers. FIG. 5 shows the change in yield when the step L ′ (mm) is changed. Further, even if the length L 'is short, the burner was separated from the base material, and the production was carried out. Remained changed. Also, the particle size is
It was found that it grew only to about 0.3 μm and did not grow any more.

本発明はこのような現状に鑑みてなされたもので、こ
のような二重火炎形成型バーナを用いて、粒状ガラスの
堆積効率を向上して光フアイバ用母材を合成できる方法
を提供することを目的とするものである。
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method capable of synthesizing a base material for an optical fiber by improving the deposition efficiency of granular glass using such a double flame forming type burner. It is intended for.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、ガラス原料流量と二重火炎形成型バー
ナ構造との関係を詳細に検討の結果、ガラス原料流量と
バーナの段差L、原料噴出用ポートサイズの関係を一定
の関係式を満足するように選択することで、上記の目的
を達成できることを見出し、本発明に到達し得たのであ
る。
The present inventors have examined the relationship between the glass material flow rate and the double flame forming type burner structure in detail, and as a result, the relation between the glass material flow rate, the step L of the burner, and the material ejection port size satisfy a certain relational expression. It has been found that the above-mentioned object can be achieved by making the selection so as to achieve the present invention.

すなわち本発明は気体のガラス原料を多重管バーナの
火炎中に供給して火炎加水分解させることにより合成し
た粒状ガラスを堆積して光フアイバ用多孔質母材を製造
する方法において、該多重管バーナとして、原料噴出用
中心部ポートの外周に火炎形成用の多重噴出ポートが設
けられてなる内側火炎形成部と、該火炎形成部の外周に
配置された火炎形成用の多重噴出ポートからなる外側火
炎形成部とを有してなる二重火炎形成型バーナを用い、
かつ該内側火炎形成部と該外側火炎形成部の先端部での
段差をL(mm)、原料噴出ポートの内径d(mm)、ガラ
ス原料流量Q(cc/min)とするときに0.4Q≦L×d2≦0.
6Qの関係を満足して粒状ガラスを堆積させることを特徴
とする光フアイバ用母材の製造方法に関する。
That is, the present invention relates to a method for producing a porous preform for an optical fiber by depositing particulate glass synthesized by supplying a gaseous glass material into a flame of a multi-tube burner and subjecting it to flame hydrolysis. An outer flame comprising an inner flame forming portion provided with a multiple ejection port for flame formation on the outer periphery of a central port for material ejection, and a multiple ejection port for flame formation arranged on the outer periphery of the flame forming portion. Using a double flame forming type burner having a forming part,
In addition, when the step between the inner flame forming part and the outer flame forming part is L (mm), the inner diameter d of the raw material ejection port (mm), and the glass raw material flow rate Q (cc / min), 0.4Q ≦ L × d 2 ≦ 0.
The present invention relates to a method for producing a base material for an optical fiber, wherein granular glass is deposited while satisfying the relationship of 6Q.

以下、本発明の方法を図面を参照して説明すると、第
1図は本発明方法に用いる二重火炎形成型バーナの一具
体例の概略説明図であつて、図中1〜8は噴出ポートで
あり、この例では中心ポート1から第4ポート4までが
内側火炎形成部であり、中心ポート1は原料ガス用、第
2ポート2は燃焼ガス用、第3ポート3は助燃ガス用、
第4ポート4は不活性ガス用である。また第5ないし第
8ポートが外側火炎形成部であつて、第5ポート5は不
活性ガス用、第6ポート6は燃焼ガス用、第7ポート7
は不活性ガス用、第8ポート8は助燃ガス用である。ま
た9は内壁である。ガラス原料ガス用の中心ポート1の
内径はd(mm)であり、内側火炎形成部先端と外側火炎
形成部先端の段差がL(mm)であるとき、本発明ではガ
ラス原料の流量Q(cc/min)に対し、 0.4Q≦L×d2≦0.6Q の関係を満足するように堆積を行なうことを特徴とする
ものである。なお、第1図はあくまで例示であつて、噴
出ポート数はこれに限定されるものではない。
The method of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory view of a specific example of a double flame forming type burner used in the method of the present invention. In this example, from the center port 1 to the fourth port 4 is an inner flame forming part, the center port 1 is for the raw material gas, the second port 2 is for the combustion gas, the third port 3 is for the auxiliary gas,
The fourth port 4 is for an inert gas. The fifth to eighth ports are outer flame forming parts, the fifth port 5 is for inert gas, the sixth port 6 is for combustion gas, and the seventh port 7
Is for inert gas, and the eighth port 8 is for auxiliary gas. 9 is an inner wall. In the present invention, when the inner diameter of the center port 1 for the glass raw material gas is d (mm) and the level difference between the tip of the inner flame forming portion and the tip of the outer flame forming portion is L (mm), the flow rate Q (cc) / min), the deposition is performed so as to satisfy the relationship of 0.4Q ≦ L × d 2 ≦ 0.6Q. FIG. 1 is merely an example, and the number of ejection ports is not limited to this.

〔作用〕[Action]

本発明者らは燃焼バーナの火炎中で生成された粒状ガ
ラスの光フアイバ用母材への堆積のメカニズムを詳細に
研究した結果、第2図に示すように火炎12中を粒状ガラ
ス11はガス流線13に沿つて流れ、母材10の表面を流れて
いく間に拡散又はサーモホレシス効果(微粒子が温度の
高いところから低い方へと力を受け移動する現象)によ
り、母材10の堆積面表面に到達することが判つた。つま
り、粒状ガラス11が母材10に堆積するためには、できる
だけ火炎12の中心に近い部分を流れることが必要であ
る。
The present inventors have studied in detail the mechanism of the deposition of the granular glass generated in the flame of the combustion burner on the base material for the optical fiber. As shown in FIG. Due to the diffusion or thermophoresis effect (a phenomenon in which fine particles move from a high temperature to a low temperature under a force) while flowing along the streamline 13 and flowing on the surface of the base material 10, the deposition surface of the base material 10 It was found to reach the surface. That is, in order for the granular glass 11 to be deposited on the base material 10, it is necessary to flow through a portion as close to the center of the flame 12 as possible.

このような知見に基き、第1図のバーナを用いて、ガ
ラス原料の流量をQ=5500cc/minで一定として、L(m
m),d(mm)のパラメータを変えて収率を検討したとこ
ろ、第3図のグラフに示す結果を得た。L×d2/Qは、原
料ガスがバーナの段差L内を通過する時間に相当するパ
ラメータ(このパラメータにπ/4を乗ずると時間に換算
できる)で、時間にして0.02〜0.03sec程度に相当す
る。第3図から0.4≦Ld2/Q≦0.6において、70%前後の
高い収率を得られることがわかる。Lが短かい場合は、
外側火炎形成部を出た後、ガラス粒子が外側へ拡散して
しまい堆積効率が劣化するし、Lが長すぎる場合は内側
火炎形成部で混合してしまうため、ガラス微粒子が内壁
9に付着しやすく、また拡散により、やはり堆積効率が
劣化する。
Based on such findings, using the burner shown in FIG. 1, the flow rate of the glass raw material was fixed at Q = 5500 cc / min, and L (m
When the yield was examined by changing the parameters of m) and d (mm), the results shown in the graph of FIG. 3 were obtained. L × d 2 / Q is a parameter corresponding to the time when the raw material gas passes through the step L of the burner (this parameter can be converted to time by multiplying by π / 4). Equivalent to. FIG. 3 shows that a high yield of about 70% can be obtained when 0.4 ≦ Ld 2 /Q≦0.6. If L is short,
After exiting the outer flame forming portion, the glass particles are diffused to the outside and the deposition efficiency is deteriorated. If L is too long, the glass particles are mixed in the inner flame forming portion, so that the glass fine particles adhere to the inner wall 9. And the diffusion efficiency also degrades the deposition efficiency.

なお以上は同心円状多重管からなる二重火炎形成型バ
ーナにより説明したが、断面が円形以外の多重管バーナ
であつても、断面積sについて とする円とみなした場合の想定内径dについて、0.4≦L
d2/Q≦0.6の関係を満たすように堆積を行なえば、同様
の作用効果が期待できる。
Although the above description has been made with reference to a double flame forming type burner composed of concentric multi-tubes, the cross-sectional area s of a multi-tube burner having a cross section other than circular is also considered 0.4 ≦ L for the assumed inner diameter d assuming a circle
Similar effects can be expected if the deposition is performed so as to satisfy the relationship of d 2 /Q≦0.6.

〔実施例〕〔Example〕

実施例1 第1図に示した同心円状8重管二重火炎形成型バーナ
を用いて、本発明により粒状ガラスの合成と堆積を行な
い光フアイバ用多孔質母材を製造した。条件は次のとお
り。
Example 1 Using a concentric octuple tube double flame forming type burner shown in FIG. 1, a granular glass was synthesized and deposited according to the present invention to produce a porous preform for an optical fiber. The conditions are as follows.

バーナパラメータ:L=80mm,d=6mm 内側火炎形成層(中心ポート1〜第4ポート):ガラ
ス原料は中心ポート1のみに流す。SiCl4 5.5l/min、H2
12l/min,O2 25l/min,Ar 3l/min. 外側火炎形成層(第5〜第8ポート):第5及び第7
ポートにArガスを流す。Ar 8l/min,H2 40l/min,O2 26l/
min。
Burner parameters: L = 80 mm, d = 6 mm Inner flame forming layer (center port 1 to port 4): Glass material flows only to center port 1. SiCl 4 5.5 l / min, H 2
12 l / min, O 2 25 l / min, Ar 3 l / min. Outer flame forming layer (5th to 8th ports): 5th and 7th
Flow Ar gas through the port. Ar 8l / min, H 2 40l / min, O 2 26l /
min.

このときL×d2/Q=80×36÷5500=0.52であつた。以
上で合成された多孔質ガラス母材の堆積速度は10.6g/mi
n、収率は約72%と良好であつた。
At this time, L × d 2 /Q=80×36÷5500=0.52. The deposition rate of the porous glass preform synthesized above was 10.6 g / mi.
n, The yield was as good as about 72%.

比較例1 実施例1において、Lのみ120mmとし、他は全く同様
の条件で多孔質ガラス母材を製造した。このときL×d2
/Q=0.78と本発明の範囲をはずれていた。この結果、堆
積速度7g/minと低く、収率は〜48%しかなかつた。また
バーナ内壁9にはススが堆積し、固着してしまつた。上
記実施例1と本比較例1の堆積速度、収率を比べれば、
本発明の効果が明らかに理解できる。
Comparative Example 1 A porous glass base material was produced under the same conditions as in Example 1 except that only L was 120 mm. Then L × d 2
/Q=0.78, out of the range of the present invention. As a result, the deposition rate was as low as 7 g / min, and the yield was only about 48%. In addition, soot was deposited on the inner wall 9 of the burner and was fixed. Comparing the deposition rate and yield of Example 1 and Comparative Example 1 above,
The effect of the present invention can be clearly understood.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の方法はガラス原料流
量、二重火炎形成型バーナの段差サイズ、原料噴出ポー
トの内径を調整して粒状ガラスの合成及び堆積を行なう
ことにより、向上した堆積速度で、しかも高収率で光フ
アイバ用母材を製造することができる。従つて本発明は
所謂スート付けにより光フアイバ用母材を製造する方法
に広く利用して、その生産性を向上し、コストダウンに
も貢献できるものである。
As described above, the method of the present invention adjusts the glass raw material flow rate, the step size of the double flame forming type burner, and the inner diameter of the raw material ejection port to synthesize and deposit granular glass, thereby improving the deposition rate. In addition, a base material for optical fiber can be manufactured with a high yield. Therefore, the present invention can be widely applied to a method of manufacturing a base material for optical fiber by so-called sooting, thereby improving the productivity and contributing to cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明い用いる粒状ガラス合成用二重火炎形成
型バーナの一具体例のガス噴出部分を示す概略断面図、
第2図は粒状ガラスの火炎中の流れ方を説明する模式
図、第3図は本発明におけるL×d2/Q(横軸)と収率
(%、縦軸)の関係を示す図表、第4図は従来法で用い
たバーナのガス噴出部分の概略説明図、第5図は第4図
のバーナを用いて従来法で粒状ガラスの合成・堆積を行
つたときのL′(mm、横軸)を変化させたときの収率
(%、縦軸)の変化を示す図表である。
FIG. 1 is a schematic cross-sectional view showing a gas ejection portion of a specific example of a double flame forming type burner for synthesizing granular glass used in the present invention.
FIG. 2 is a schematic diagram for explaining how the granular glass flows in a flame, FIG. 3 is a table showing the relationship between L × d 2 / Q (horizontal axis) and yield (%, vertical axis) in the present invention, FIG. 4 is a schematic explanatory view of a gas ejection portion of a burner used in the conventional method, and FIG. 5 is L ′ (mm, mm) obtained when synthesis and deposition of granular glass are performed by the conventional method using the burner of FIG. 4 is a chart showing a change in yield (%, vertical axis) when the horizontal axis is changed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高城 政浩 神奈川県横浜市栄区田谷町1番地 住友 電気工業株式会社横浜製作所内 (56)参考文献 特開 昭61−186238(JP,A) 特開 昭61−270226(JP,A) 特開 昭62−87428(JP,A) 特開 昭61−186239(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masahiro Takagi 1 Tayacho, Sakae-ku, Yokohama City, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (56) References JP-A-61-186238 (JP, A) JP-A Sho 61-270226 (JP, A) JP-A-62-187428 (JP, A) JP-A-61-186239 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】気体のガラス原料を多重管バーナの火炎中
に供給して火炎加水分解させることにより合成した粒状
ガラスを堆積して光フアイバ用多孔質母材を製造する方
法において、該多重管バーナとして、原料噴出用中心部
ポートの外周に火炎形成用の多重噴出ポートが設けられ
てなる内側火炎形成部と、該火炎形成部の外周に配置さ
れた火炎形成用の多重噴出ポートからなる外側火炎形成
部とを有してなる二重火炎形成型バーナを用い、かつ該
内側火炎形成部と該外側火炎形成部の先端部での段差を
L(mm)、原料噴出ポートの内径d(mm)、ガラス原料
流量Q(cc/min)とするときに0.4Q≦L×d2≦0.6Qの関
係を満足して粒状ガラスを堆積させることを特徴とする
光フアイバ用母材の製造方法。
1. A method for producing a porous preform for an optical fiber by depositing particulate glass synthesized by supplying a gaseous glass raw material into a flame of a multi-tube burner and subjecting it to flame hydrolysis. As a burner, an inner flame forming part in which multiple flame-forming ports are provided on the outer periphery of a raw material discharging center port, and an outer flame comprising multiple flame-forming ports in the outer periphery of the flame forming part A double flame forming type burner having a flame forming portion is used, and a step at the tip of the inner flame forming portion and the outer flame forming portion is L (mm). ), A method of manufacturing a base material for an optical fiber, comprising depositing granular glass satisfying a relationship of 0.4 Q ≦ L × d 2 ≦ 0.6 Q when a glass raw material flow rate is Q (cc / min).
JP63023975A 1988-02-05 1988-02-05 Manufacturing method of base material for optical fiber Expired - Lifetime JP2751176B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63023975A JP2751176B2 (en) 1988-02-05 1988-02-05 Manufacturing method of base material for optical fiber
KR1019890701321A KR960016030B1 (en) 1988-02-05 1989-01-30 Method and apparatus for injection compression molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023975A JP2751176B2 (en) 1988-02-05 1988-02-05 Manufacturing method of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPH01201040A JPH01201040A (en) 1989-08-14
JP2751176B2 true JP2751176B2 (en) 1998-05-18

Family

ID=12125554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023975A Expired - Lifetime JP2751176B2 (en) 1988-02-05 1988-02-05 Manufacturing method of base material for optical fiber

Country Status (2)

Country Link
JP (1) JP2751176B2 (en)
KR (1) KR960016030B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183534A (en) * 2002-12-02 2004-07-02 Sanden Corp Compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186238A (en) * 1985-02-12 1986-08-19 Nippon Telegr & Teleph Corp <Ntt> Production unit for parent material for optical fiber

Also Published As

Publication number Publication date
KR960016030B1 (en) 1996-11-25
JPH01201040A (en) 1989-08-14
KR900700263A (en) 1990-08-13

Similar Documents

Publication Publication Date Title
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
RU2271341C2 (en) Multi-tubular burner and method of producing glass blank
JPH06247722A (en) Production of porous glass base material
JP2751176B2 (en) Manufacturing method of base material for optical fiber
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
JP4097982B2 (en) Method for producing porous preform for optical fiber
JPH02164733A (en) Production of glass fine particle deposited body
JP4530687B2 (en) Method for producing porous glass preform for optical fiber
JP3118822B2 (en) Method for manufacturing glass articles
JPS6355135A (en) Production of optical fiber preform
JPH04240125A (en) Manufacture of optical fiber preform
JPH06219764A (en) Production of perform for dispersed shift fiber
JPH09188522A (en) Torch for synthesizing glass fine particle
JPS63225540A (en) Production of deposit of fine glass particles
JPH04228440A (en) Production of glass article
JP3188515B2 (en) Burner for synthesis of silica fine particles
JPH0627624Y2 (en) Optical fiber base material manufacturing burner
JPH04260616A (en) Production of glass body
JPS63123828A (en) Production of porous preform for optical fiber
JPS60260433A (en) Manufacture of base material for optical fiber
JPS6172645A (en) Manufacture of optical fiber preform
JPH089488B2 (en) Method for manufacturing base material for optical fiber
JPH05147965A (en) Production of glass base material
JP2000063141A (en) Production of porous glass preform for optical fiber
JPH0672026B2 (en) Burner for manufacturing optical fiber preform

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term