JPH02164733A - Production of glass fine particle deposited body - Google Patents

Production of glass fine particle deposited body

Info

Publication number
JPH02164733A
JPH02164733A JP31644788A JP31644788A JPH02164733A JP H02164733 A JPH02164733 A JP H02164733A JP 31644788 A JP31644788 A JP 31644788A JP 31644788 A JP31644788 A JP 31644788A JP H02164733 A JPH02164733 A JP H02164733A
Authority
JP
Japan
Prior art keywords
glass
port
gas injection
burner
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31644788A
Other languages
Japanese (ja)
Inventor
Toshio Danzuka
彈塚 俊雄
Hiroshi Yokota
弘 横田
Masumi Ito
真澄 伊藤
Masahiro Takagi
政浩 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP31644788A priority Critical patent/JPH02164733A/en
Publication of JPH02164733A publication Critical patent/JPH02164733A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Gas Burners (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To prevent the deposition of the glass fine particles formed in an inner layer on the inner wall of a protruding outer layer by providing an inert gas injection port at a specified height between the inner and outer layers of a burner at the time of using the multiple-flame type burner to produce the glass fine particle deposited body by axial deposition in vapor phase. CONSTITUTION:A glass fine particle synthesizing port (inner layer) consisting of a raw gas injection port 2, a gaseous fuel injection port 3, and a combustion- improving gas injection port 4 is provided at the center of a concentric multiple- pipe burner. A flame forming port (outer layer) consisting of a gaseous fuel injection port 5, a combustion-improving gas injection port 6, and a combustion- controlling inert gas injection port 7 is provided around the inner layer, and allowed to protrude by the length L. An inert gas injection port 1 is provided between the inner and outer layers, and allowed to protrude by 0.4-0.8 L. The burner is used to produce the glass fine particle deposited body by axial deposition in vapor phase, external deposition, etc. By this method, the deposition of glass fine particles on the inner wall of the outer layer is prevented, and a stable glass fine particle deposited body is synthesized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス微粒子堆積体をVAD法(気相軸付法)
あるいはOVD法(外付法)などのスート合成法により
合成する方法に関し、特に高品質の要求される光フアイ
バ用プリフォームに用いられる中間製品に用いられるガ
ラス微粒子堆積体の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to the production of glass fine particle deposits using the VAD method (vapor deposition method).
Or, it relates to a method of synthesis using a soot synthesis method such as the OVD method (external deposition method), and in particular relates to a method of manufacturing a glass fine particle deposit body used as an intermediate product used in an optical fiber preform that requires high quality. .

〔従来の技術〕[Conventional technology]

ガラス微粒子堆積体を製造する一方法として、燃焼バー
ナから燃焼ガス及び原料ガスを混合噴出し、火炎中での
加水分解反応または酸化反応により粒状ガラスを生成し
、この粒状ガラスを回転する出発材の先端に堆積させ、
ガラス微粒子堆積体を形成させ、該堆積体の成長に合わ
せて出発材を燃焼バーナと相対的に移動させることによ
り、ガラス微粒子堆積体を製造するVAD法がある。
One method for producing a glass fine particle deposit is to eject a mixture of combustion gas and raw material gas from a combustion burner, generate granular glass through a hydrolysis reaction or oxidation reaction in a flame, and rotate the granular glass as a starting material. deposited on the tip,
There is a VAD method in which a glass particulate deposit is produced by forming a glass particulate deposit and moving a starting material relative to a combustion burner as the deposit grows.

また、出発材の外周部に燃焼バーナにより生成した粒状
ガラスを堆積させ、出発材または燃焼バーナを1回以上
トラバースすることにより、ガラス微粒子堆積体を製造
するOVD法(例えば特開昭48−73522号公報参
照)がある。
In addition, the OVD method (for example, disclosed in Japanese Patent Application Laid-Open No. 73522-1983) produces a glass particle deposit by depositing granular glass produced by a combustion burner on the outer periphery of the starting material and traversing the starting material or the combustion burner one or more times. (See Publication No.).

こうしたスート合成法において、燃焼バーナにより生成
された粒状ガラスのガラス微粒子堆積体への堆積効率を
向上させる手段として、多重火炎方式のバーナか提案さ
れている。多重火炎方式のバーナは、たとえば実公昭6
0−4797号公報、特公昭62−50418号公報に
示されるように、同心円状多重管バーナで、中心部に少
なくともガラス原料噴出ポート、燃料ガス噴出ポート、
支燃性ガスポートの各ポートを持つガラス微粒子合成用
ポートを有し、この外周に上記ガラス微粒子合成用ポー
トの出口に対して、ガスの流れ方向に長さだけ突き出し
た、少なくとも燃料がスポート、支燃性ガスポートを持
つ火炎形成用ポートを1組あるいは複数組何したバーナ
である。従来、この多重火炎方式のバーナを使用するこ
とにより、粒状ガラスの堆積効率が改浮されてきた。
In such a soot synthesis method, a multiple flame type burner has been proposed as a means for improving the efficiency of depositing granular glass produced by a combustion burner onto a glass fine particle deposit. The multiple flame type burner is, for example,
As shown in Japanese Patent Publication No. 0-4797 and Japanese Patent Publication No. 62-50418, a concentric multi-tube burner has at least a frit injection port, a fuel gas injection port, and a fuel gas injection port in the center.
It has a glass particulate synthesis port having each of the combustion-supporting gas ports, and has at least a fuel port on its outer periphery that protrudes by a length in the gas flow direction with respect to the outlet of the glass particulate synthesis port. This burner has one or more sets of flame-forming ports with combustion-supporting gas ports. Conventionally, the efficiency of depositing granular glass has been improved by using this multiple flame type burner.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多重火炎方式のバーナは第2図に示すように、単
一火炎方式のバーナに比べて中心部のガラス微粒子合成
用ポート(内層と呼び、このポートにより形成される火
炎を内側火炎と称する。)の外周に、ポート先端部を内
層に対して長さLだけ突き出させて、燃料ガス噴出ポー
ト及び支燃性ガス噴出ポートからなる火炎形成用ポート
を1組あるいは複数組(これらのポート群を外層、形成
される火炎を外側火炎と称する)有しており、この外側
火炎の存在により、全体の火炎が大きくなり、合成され
るガラス微粒子堆積体全体が加熱されやすくなった。ま
た、突き出しff1Lの存在により内側火炎を安定に長
くすることができ、ガラス原料の反応を十分に進めるこ
とが可能となった。
As shown in Figure 2, conventional multiple flame type burners have a central glass particle synthesis port (called the inner layer, and the flame formed by this port is called the inner flame) than single flame type burners. ), one or more sets of flame forming ports consisting of a fuel gas injection port and a combustion-supporting gas injection port (a group of these ports) are provided on the outer circumference of the The outer layer has an outer layer, and the flame formed is called an outer flame), and the presence of this outer flame increases the overall flame size, making it easier to heat the entire glass particle deposit to be synthesized. Furthermore, the presence of the protrusion ff1L made it possible to stably lengthen the inner flame, making it possible to sufficiently proceed with the reaction of the glass raw materials.

しかし、一方、内側火炎中ではガラス原料の反応により
、粒状ガラスか生成され、外層に囲まれた突き出し部I
7を流れる間に、この粒状ガラスの一部が外周方向に拡
散し、外層ポートの最内壁に、第3図に示す如く付着す
る現象がみられる。粒状ガラスの堆積量は経時的に増加
するため、内側火炎の流れは次第に狭められ、あるいは
周方向の付着か不均一な場合には、流れはバーナの中心
軸に対して非対称な流れとなり、定常で安定したガラス
微粒子堆積体を得ることができない場合があった。さら
に著しい場合は付着した粒状ガラスか突き出し部を詰ま
らせ、バーナを破損させることがあった。
However, on the other hand, in the inner flame, granular glass is generated due to the reaction of the glass raw materials, and the protruding portion I surrounded by the outer layer
7, a part of this granular glass diffuses in the outer circumferential direction and adheres to the innermost wall of the outer layer port as shown in FIG. 3. As the amount of granular glass deposits increases over time, the inner flame flow becomes progressively narrower, or in the case of non-uniform circumferential deposition, the flow becomes asymmetrical with respect to the central axis of the burner, resulting in a steady flow. In some cases, it was not possible to obtain a stable glass particle deposit. In even more serious cases, the adhering granular glass could clog the protrusion, causing damage to the burner.

〔課゛1を解決するための手段及び作用〕上記の課題を
解決するための本発明の構成は、気体のガラス原料を燃
焼バーナから噴出させて火炎中で加水分解反応させて、
これによって生成する粒状ガラスを回転する出発材の先
端または心棒の外周に堆積させ、該出発材または心棒を
回転軸方向に粒状ガラスの堆積に合わせて燃焼バーナと
相対的に移動することにより、ガラス微粒子堆積体を製
造する方法において、同心円状の多重管バーナであって
、中心部に少なくともガラス原料噴出ポート、燃料ガス
噴出ポート、支燃性ガス噴出ポートを持つガラス微粒子
合成用ポートを有し、この外周にガラス微粒子合成用ポ
ートよりもガス噴出方向に長さ■、たけ突き出して、少
なくとも燃料ガス噴出ポート。
[Means and operations for solving problem 1] The structure of the present invention for solving the above problem is to eject a gaseous glass raw material from a combustion burner and cause a hydrolysis reaction in a flame,
The granular glass thus produced is deposited on the tip of the rotating starting material or the outer periphery of the mandrel, and the starting material or the mandrel is moved in the direction of the rotation axis relative to the combustion burner in accordance with the deposition of the granular glass. In a method for producing a particulate deposit, a concentric multi-tube burner has a port for synthesizing glass particulates having at least a frit injection port, a fuel gas injection port, and a combustion-supporting gas injection port in the center; At least a fuel gas injection port protrudes from this outer periphery by a length ■ in the gas injection direction than the glass particle synthesis port.

支燃性ガス噴出ポートを持つ火炎形成用ポートを1組あ
るいは複数組有する多重火炎方式のノjラス微粒子堆積
体製造用バーナにおいて、上記ガラス微粒子合成用ポー
トと火炎形成用ポートの間に不活性ガス噴出ポートを設
け、該不活性ガス噴出ポートの噴出口をガラス微粒子合
成用ポートから長さ0.4Lから0.8L突き出して設
けた上記ガラス微粒子堆積体製造用バーナを用いること
を特徴とするものである。
In a burner for producing a nolas particulate deposit of a multiple flame type having one or more sets of flame forming ports each having a combustion-supporting gas ejection port, there is an inert space between the glass particulate synthesis port and the flame forming port. It is characterized by using the burner for producing a glass particle deposit as described above, which is provided with a gas ejection port, and the ejection port of the inert gas ejection port is provided to protrude from the glass particle synthesis port by a length of 0.4L to 0.8L. It is something.

以下本発明を具体的実施例に沿って説明する。The present invention will be described below with reference to specific examples.

第1図は本発明の基本的な構成を示す概略図であり、燃
焼バーナは同心円状多重管バーナであって、バーナ中心
部に原料ガス噴出ポート3゜支燃性ガス噴出ポート4か
らなるガラス微粒子合成用ポート(内層)が構成され、
この外周部に長さしだけ突き出して燃料ガス噴出ポート
5゜支燃性ガス噴出ポート6および燃焼制御用不活性ガ
ス噴出ポート7からなる火炎形成用ポート(外層)が構
成されている。さらにこの内層、外層の間に不活性ガス
噴出ポートIが長さ0.4Lから0.8L突き出して設
置される。
FIG. 1 is a schematic diagram showing the basic configuration of the present invention, in which the combustion burner is a concentric multi-tube burner, and the burner has a glass gas injection port with a 3° source gas injection port and a combustion-supporting gas injection port 4 in the center of the burner. A port for fine particle synthesis (inner layer) is configured,
A flame forming port (outer layer) consisting of a fuel gas ejection port 5, a combustion-supporting gas ejection port 6, and a combustion control inert gas ejection port 7 is configured so as to protrude from the outer peripheral portion by a length. Further, an inert gas ejection port I is installed between the inner layer and the outer layer so as to protrude by a length of 0.4L to 0.8L.

従来、ガラス微粒子の生成は、第3図に示すように燃料
ガス噴出ポート3から一般に82.CH(等の燃料ガス
が、支燃性ガス噴出ポートから0□が噴出され、火炎1
0が外層の内壁8の中に形成される。この火炎の中に原
料ガスとして、Si CN4 、 Si HC&’3 
、 Si N2 Cj’2などのガラス原料を、また屈
折率をかえる場合にはドーパント原料としてC,6(:
、14.Bc13等が投入される。火炎中に投入された
原料は、si C14を代表例にとると下記(1)式 %式% のような反応によりガラス粒子Si 02が生成される
Conventionally, glass particles are generally generated from the fuel gas injection port 3 at 82.0 as shown in FIG. Fuel gas such as CH (0□) is ejected from the combustion-supporting gas ejection port, and flame 1
0 is formed in the inner wall 8 of the outer layer. In this flame, Si CN4, Si HC&'3 are contained as raw material gases.
, Si N2 Cj'2 and other glass raw materials, and when changing the refractive index, C,6 (:
, 14. Bc13 etc. are injected. Taking Si C14 as a representative example, the raw material introduced into the flame produces glass particles Si 02 through a reaction as shown in formula (1) below.

このガラス粒子は、ガラス粒子流9を形成し、火炎中を
流れ、ガラス微粒子堆積体に達する。
The glass particles form a glass particle stream 9 that flows through the flame and reaches the glass particle deposit.

このとき、ガラス粒子は拡散により外周方向に向かって
拡がっていくが、中には外層内壁8に達するものがある
。こうして、内壁8に付着する粒子が増加すると、付着
粒子堆積層11が形成され、流路が狭められてくる。流
路が狭まった場合には、火炎の大きさ、粒子流の流れ方
か微妙に変化し、ガラス微粒子堆積体の合成に大きく影
響し、安定な製造を行うことができない。
At this time, the glass particles spread toward the outer circumference due to diffusion, and some of them reach the inner wall 8 of the outer layer. As the number of particles adhering to the inner wall 8 increases in this way, an adhering particle accumulation layer 11 is formed, and the flow path becomes narrower. If the flow path is narrowed, the size of the flame and the flow of the particle flow will change slightly, which will greatly affect the synthesis of the glass fine particle deposit, making stable production impossible.

内壁8への粒子の付着は、火炎の流れに乱れがある場合
に特に顕著であり、こうした場合、付着粒子堆積層は大
きく成長し、バーナ出口の詰まりを招く場合もある。
The adhesion of particles to the inner wall 8 is particularly noticeable when there is turbulence in the flame flow, and in such a case, the adhering particle accumulation layer grows to a large extent, which may lead to clogging of the burner outlet.

このガラス粒子の付着は突き出し部の長さしに対して1
/2L程度の位置から始まる場合が多く、外層先端から
10〜20m+nの場所に特に多く付着する。
The adhesion of this glass particle is 1 for the length of the protruding part.
It often starts at a position of about /2L, and it adheres particularly in large quantities at a position 10 to 20m+n from the tip of the outer layer.

ガラス微粒子堆積体を安定して合成するためには、かか
る内壁8への粒子の付着を防止しつつ合成する必要があ
り、本発明者らは、種々検討を重ねた結果、第1図に示
すようなバーナ構造に到った。すなわち、内層(2,3
,4)と外層(5,6,7)の間にガラス粒子Si 0
2の吹き飛ばし用ポートlを設け、ここより不活性ガス
を流すことにより、5iOa粒子の壁面への拡散を防止
するものである。
In order to stably synthesize a glass particle deposit, it is necessary to synthesize it while preventing particles from adhering to the inner wall 8. As a result of various studies, the present inventors have developed a structure shown in FIG. We arrived at a burner structure like this. That is, the inner layer (2,3
, 4) and the outer layer (5, 6, 7) with glass particles Si 0
No. 2 blow-off ports 1 are provided, and inert gas is flowed through these ports to prevent the 5iOa particles from diffusing to the wall surface.

不活性ガス噴出ポート1の出口は、ガラス粒子の付着状
態から、内局出口より0.4Lから0゜8Lの位置が好
ましい。また、ガス流量としては内層の流れに乱れを与
えない流量が好ましい。
The outlet of the inert gas ejection port 1 is preferably located at a position 0.4L to 0.8L from the internal outlet in view of the adhesion of glass particles. Further, the gas flow rate is preferably a flow rate that does not cause disturbance to the flow in the inner layer.

例えば隣接して流れる支燃性ガスの流速に対して、±2
0%以内の流速になるように流量を設定することが、流
れを安定できる上で好ましい。
For example, with respect to the flow velocity of combustion-supporting gas flowing adjacently, ±2
It is preferable to set the flow rate so that the flow rate is within 0% in order to stabilize the flow.

本発明に用いる不活性ガスとしては、ArHe 、N2
等が使われるが、内壁最外層の支燃性ガス一般には02
を流しても反応に関与しないので、同様の効果が得られ
る。
Inert gases used in the present invention include ArHe, N2
etc. are used, but 02 is generally used as a combustion-supporting gas in the outermost layer of the inner wall.
The same effect can be obtained even if 2 is passed through, since it does not participate in the reaction.

〔実施例〕〔Example〕

比較例1 同心円状多重管バーナであって、第2図に示すような多
重火炎バーナを用いて、ガラス微粒子堆積体の合成を行
った。バーナの構造は、内層4層、外層4層の8重管で
あり、中心から原料Si CN4、燃料H2、不活性ガ
スΔr、支燃性ガス02、不活性ガスAr、燃料H2、
不活性ガスAr、支燃性ガス02の順で流した。内層と
外層の突き出しムには150fflI11のものを使用
した。このときの流量はSi CN4517分、内層H
,141/分、外層ト1゜601/分、内層02301
/分、外層Ox 5017分、Ar 151/分とした
Comparative Example 1 A glass particulate deposit was synthesized using a concentric multi-tube burner, such as a multi-flame burner as shown in FIG. The structure of the burner is an 8-layer tube with 4 inner layers and 4 outer layers, starting from the center with raw material Si CN4, fuel H2, inert gas Δr, combustion supporting gas 02, inert gas Ar, fuel H2,
Inert gas Ar and combustion supporting gas 02 were flowed in this order. For the protrusions of the inner and outer layers, 150fflI11 was used. The flow rate at this time is Si CN4517 min, inner layer H
, 141/min, outer layer 1°601/min, inner layer 02301
/min, outer layer Ox 5017 min, Ar 151/min.

この条件にてガラス微粒子堆積体を出発材の先端に合成
した結果、母材の外径はスス付は開始側から終了側にか
けて次第に太くなり(第4図参照、13は出発材、14
はガラス微粒子堆積体)、安定な母材合成を行えなかっ
た。5時間の母材合成の後、バーナの壁面8を観察した
ところ、外層先端部にはガラス微粒子が厚さ2ffl[
11程度に付着しているのが観察された。付着は出口か
ら上流側に25〜30[nff1迄に亘っていた。
As a result of synthesizing the glass particle deposit at the tip of the starting material under these conditions, the outer diameter of the base material gradually becomes thicker from the start side to the end side of the soot coating (see Figure 4, 13 is the starting material, 14
(glass fine particle deposit), stable base material synthesis could not be achieved. After 5 hours of base material synthesis, the wall surface 8 of the burner was observed, and it was found that the tip of the outer layer had glass particles with a thickness of 2ffl [
It was observed that about 11 particles were attached. The adhesion extended from the outlet to 25 to 30 [nff1] on the upstream side.

実施例1 比較例1のバーナとほぼ同一の構成で、第1図に示す不
活性ガス噴出ポートを内層と外層の間、すなわち内層支
燃性ガスポートと外層の最内層の不活性ガスポートの間
に設けた)<−すを使用してガラス微粒子堆積体の合成
を行った。
Example 1 The burner has almost the same configuration as the burner of Comparative Example 1, and the inert gas injection port shown in FIG. A glass fine particle deposit was synthesized using a space () provided between the two.

この不活性ガス噴出ポートは内層出口から100 mm
のところ(0,67L)に設定した。不活性ガスとして
はArを用い、流量は151/分使用した。その他のガ
スは流し方、流量ともに比較例1と同一とした。内層支
燃性ガス02の出口での流速は2.1m/秒であり、不
活性ガスA「の流速は1.9m/秒であり、火炎流は安
定であった。この状態で合成した母材の外径は、スス付
は開始から終了にかけて、定常な合成部ではほぼ均一に
なっており、±I n+m以内に変動を抑えることがで
きた。また、比較例1と同じ5時間の母材合成後のバー
ナ壁面8にはガラス微粒子の付4は全く見られなかった
This inert gas injection port is 100 mm from the inner layer outlet.
I set it to (0.67L). Ar was used as the inert gas, and the flow rate was 151/min. The flow method and flow rate of other gases were the same as in Comparative Example 1. The flow velocity of the inner layer combustion-supporting gas 02 at the outlet was 2.1 m/sec, and the flow velocity of the inert gas A was 1.9 m/sec, and the flame flow was stable. The outer diameter of the material was almost uniform from the start to the end of the soot application in the steady composite part, and the variation could be suppressed to within ±I n+m. No glass particles were observed on the burner wall surface 8 after the material synthesis.

比較例2 比較例Iとほぼ同一の構成で、第1図に示す不活性ガス
噴出ポートを内層と外層の間、すなわち内層支燃性ガス
ポートと外層の最内層の不活性がスポートの間に設けた
バーナを使用して、ガラス微粒子堆積体の合成を行った
。この不活性ガス噴出ポートは内層出口から40市のと
ころ(0,27L)に設定した。不活性ガスとしてはA
rを用い、流量としては151/分から2017分まで
変えて流した。流速は1.9 m 7秒から2.5 m
 7秒であった。この条件ではバーナ先端に10〜15
市にわたって、スス粒子の付着が見られた。7時間にわ
たる母材合成の後付首ススの厚さを調べたところ、約0
.5市厚て付着していた。これらのススは完全に取り去
ることはできず、10本のスートを合成したところスー
ト外径は次第に大径となる傾向が見られ、初期の外径に
対して31nffl太径化してしまった。
Comparative Example 2 Almost the same configuration as Comparative Example I, with the inert gas injection port shown in Figure 1 placed between the inner layer and the outer layer, that is, between the inner layer combustion-supporting gas port and the innermost inert gas port of the outer layer. A glass fine particle deposit was synthesized using the provided burner. This inert gas blowout port was set at 40 points (0.27L) from the inner layer outlet. A as an inert gas
r, and the flow rate was varied from 151/min to 2017 min. Flow velocity: 1.9 m 7 seconds to 2.5 m
It was 7 seconds. Under these conditions, 10 to 15
Soot particles were observed throughout the city. When we investigated the thickness of the soot after 7 hours of base material synthesis, we found that it was approximately 0.
.. Five parts were thick and adhered. These soots could not be completely removed, and when 10 soots were synthesized, there was a tendency for the outer diameter of the soot to gradually increase, increasing by 31 nffl from the initial outer diameter.

以上の実施例及び比較例の結果から、本発明のように内
層と外層の間に不活性ガス噴出ポートを設けることによ
る効果か明らかに理解される。更に該不活性ガス噴出ポ
ートの突き出し壜は本発明に眼定する範囲内が佇効であ
ることも理解できる。
From the results of the above Examples and Comparative Examples, it is clearly understood that the effect is due to providing an inert gas ejection port between the inner layer and the outer layer as in the present invention. Furthermore, it can be understood that the protruding bottle of the inert gas ejection port has an aesthetic effect within the scope of the present invention.

上記実施例においては、原料ガスと燃料ガスを完全に異
なるポートから噴出する場合について説明したか、互い
に混合して流しても本発明の詳細な説明した効果かえら
れる。また、第1図、第2図では省略しているか、実施
例で述べたように、燃料ガスと支燃性ガスの間に不活性
ガスを燃焼制御用として入れても、同様に有効である。
In the above embodiments, the raw material gas and the fuel gas are ejected from completely different ports, or even if they are mixed with each other and flowed, the effects described in detail of the present invention can be obtained. Furthermore, it is equally effective to insert an inert gas between the fuel gas and the combustion-supporting gas for combustion control, either omitted in Figures 1 and 2, or as described in the example. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は内層、外層の間に不活性
ガス噴出口を設けることにより、内層で生成されるガラ
ス微粒子の突き出し部内壁8への付着を防止でき、安定
なガラス微粒子堆積体の合成を行うことができ、高品質
を要求される光フアイバ用母材の合成に非常に適した母
材を得ることができる。
As explained above, by providing an inert gas outlet between the inner layer and the outer layer, the present invention can prevent glass particles generated in the inner layer from adhering to the inner wall 8 of the protruding portion, thereby creating a stable glass particle deposit. It is possible to obtain a base material that is very suitable for the synthesis of optical fiber base materials that require high quality.

本発明により合成されたガラス微粒子堆積体は、使用目
的により含有水分の脱水を行った後に、高温電気炉にて
約1600℃以上に加熱することにより透明ガラス化し
、ガラスロッドとして用いることができる。
The glass fine particle deposit synthesized according to the present invention is heated to a temperature of about 1600° C. or higher in a high-temperature electric furnace after dehydration of the contained water depending on the purpose of use, and then turned into transparent glass, which can be used as a glass rod.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバーナ構造を示す概略断面図、第2図
は従来の多重火炎バーナの構成を示す概略断面図、第3
図は従来バーナにおいて内層で生成したガラス粒子が突
き出し部に拡散付着する様子の説明図、第4図はバーナ
内壁へのガラス粒子の付着がガラス微粒子堆積体外径変
動に及ぼす影響を示す図である。 ■は本発明の特徴とする不活性ガス噴出ポート、2は原
料ガス噴出ポート、3は燃料ガス噴出ポート、4は支燃
性ガス噴出ポート、5は燃料ガス噴出ポート、6は支燃
性ガス噴出ポート、7は不活性ガス(燃焼制御用)噴出
ポート、8は突き出し部内壁、9はガラス微粒子流、I
Oは内層で形成される火炎、11は内壁8に付着したガ
ラス粒子、12は内層で生成されるガラス粒子、13は
出発材、14はガラス微粒子堆積体を示す。
FIG. 1 is a schematic cross-sectional view showing the burner structure of the present invention, FIG. 2 is a schematic cross-sectional view showing the structure of a conventional multiple flame burner, and FIG.
The figure is an explanatory diagram of how glass particles generated in the inner layer of a conventional burner diffuse and adhere to the protruding part, and Figure 4 is a diagram showing the influence that the attachment of glass particles to the inner wall of the burner has on fluctuations in the outer diameter of the glass particle deposit body. . (2) is an inert gas injection port which is a feature of the present invention; 2 is a source gas injection port; 3 is a fuel gas injection port; 4 is a combustion-supporting gas injection port; 5 is a fuel gas injection port; 6 is a combustion-supporting gas Ejection port, 7 is an inert gas (for combustion control) ejection port, 8 is an inner wall of the protruding part, 9 is a glass particle flow, I
O is a flame formed in the inner layer, 11 is a glass particle attached to the inner wall 8, 12 is a glass particle generated in the inner layer, 13 is a starting material, and 14 is a glass particle deposit.

Claims (1)

【特許請求の範囲】[Claims] (1)気体のガラス原料を燃焼バーナから噴出させて火
炎中で加水分解反応させて、これによって生成する粒状
ガラスを回転する出発材の先端または心棒の外周に堆積
させ、該出発材または心棒を回転軸方向に粒状ガラスの
堆積に合わせて燃焼バーナと相対的に移動することによ
り、ガラス微粒子堆積体を製造する方法において、同心
円状の多重管バーナであって、中心部に少なくともガラ
ス原料噴出ポート、燃料ガス噴出ポート、支燃性ガス噴
出ポートを持つガラス微粒子合成用ポートを有し、この
外周にガラス微粒子合成用ポートよりもガス噴出方向に
長さLだけ突き出して、少なくとも燃料ガス噴出ポート
と支燃性ガス噴出ポートを持つ火炎形成用ポートを1組
あるいは複数組有する多重火炎方式のガラス微粒子堆積
体製造用バーナにおいて、上記ガラス微粒子合成用ポー
トと火炎形成用ポートの間に不活性ガス噴出ポートを設
け、該不活性ガス噴出ポートの噴出口をガラス微粒子合
成用ポートから長さ0.4Lから0.8L突き出して設
けた上記ガラス微粒子堆積体製造用バーナを用いること
を特徴とするガラス微粒子堆積体の製造方法。
(1) A gaseous glass raw material is ejected from a combustion burner and subjected to a hydrolysis reaction in a flame, and the resulting granular glass is deposited on the tip of a rotating starting material or the outer periphery of a mandrel, and the starting material or mandrel is A method for manufacturing a glass fine particle deposit by moving relative to a combustion burner in the direction of a rotational axis according to the deposition of glass particles, the method comprising: a concentric multi-tube burner having at least a glass raw material ejection port in the center; , has a glass particle synthesis port having a fuel gas injection port and a combustion-supporting gas injection port, and has a glass particulate synthesis port on its outer periphery that protrudes by a length L in the gas injection direction beyond the glass particle synthesis port, and has at least a fuel gas injection port. In a burner for manufacturing glass particle deposits using a multiple flame method having one or more sets of flame formation ports having combustion-supporting gas injection ports, an inert gas is ejected between the glass particle synthesis port and the flame formation port. Glass particles characterized by using the burner for producing a glass particle deposit as described above, which is provided with a port, and the outlet of the inert gas injection port is provided with a length of 0.4L to 0.8L protruding from the glass particle synthesis port. Method for manufacturing a deposited body.
JP31644788A 1988-12-16 1988-12-16 Production of glass fine particle deposited body Pending JPH02164733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31644788A JPH02164733A (en) 1988-12-16 1988-12-16 Production of glass fine particle deposited body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31644788A JPH02164733A (en) 1988-12-16 1988-12-16 Production of glass fine particle deposited body

Publications (1)

Publication Number Publication Date
JPH02164733A true JPH02164733A (en) 1990-06-25

Family

ID=18077192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31644788A Pending JPH02164733A (en) 1988-12-16 1988-12-16 Production of glass fine particle deposited body

Country Status (1)

Country Link
JP (1) JPH02164733A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207813A (en) * 1990-09-07 1993-05-04 Sumitomo Electric Industries, Ltd. Method for producing glass article
WO2002049976A1 (en) * 2000-12-19 2002-06-27 Pirelli S.P.A. Method and deposition burner for manufacturing optical fibre preforms
WO2002049975A1 (en) * 2000-12-19 2002-06-27 Pirelli S.P.A. Multi-flame deposition burner and method for manufacturing optical fibre preforms
WO2003093182A1 (en) * 2002-05-03 2003-11-13 Pirelli & C. S.P.A. Burner assembly for producing glass preforms and corresponding production process
KR100414668B1 (en) * 2001-07-21 2004-01-07 삼성전자주식회사 Flame stabilizer of burner for flame hydrolysis deposition process
JP2010196117A (en) * 2009-02-25 2010-09-09 Taiyo Nippon Sanso Corp Apparatus for and method of manufacturing metal particle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207813A (en) * 1990-09-07 1993-05-04 Sumitomo Electric Industries, Ltd. Method for producing glass article
WO2002049976A1 (en) * 2000-12-19 2002-06-27 Pirelli S.P.A. Method and deposition burner for manufacturing optical fibre preforms
WO2002049975A1 (en) * 2000-12-19 2002-06-27 Pirelli S.P.A. Multi-flame deposition burner and method for manufacturing optical fibre preforms
KR100414668B1 (en) * 2001-07-21 2004-01-07 삼성전자주식회사 Flame stabilizer of burner for flame hydrolysis deposition process
WO2003093182A1 (en) * 2002-05-03 2003-11-13 Pirelli & C. S.P.A. Burner assembly for producing glass preforms and corresponding production process
JP2010196117A (en) * 2009-02-25 2010-09-09 Taiyo Nippon Sanso Corp Apparatus for and method of manufacturing metal particle

Similar Documents

Publication Publication Date Title
WO2009107392A1 (en) Burner for manufacturing porous glass base material
JPH02164733A (en) Production of glass fine particle deposited body
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
JPS6126532A (en) Production of base material for optical fiber
JPH05323130A (en) Multifocus type burner and production of glass particulate deposited body by using this burner
JPH02275725A (en) Production of vitreous fine granule accumulation
JPH02102146A (en) Production of glass fine particle deposit
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
KR940006410B1 (en) Method of producing glass article
JP4530687B2 (en) Method for producing porous glass preform for optical fiber
JP3176949B2 (en) Method for producing porous silica preform
JPS61281037A (en) Production of deposited glass soot
JPS60260433A (en) Manufacture of base material for optical fiber
JPH02120250A (en) Production of deposited glass soot material
JPS63139030A (en) Production optical fiber of base material
JPS6321233A (en) Production of base material for optical fiber
JPH04228440A (en) Production of glass article
JPS6261542B2 (en)
JP2751176B2 (en) Manufacturing method of base material for optical fiber
JPH04240125A (en) Manufacture of optical fiber preform
JPH04219339A (en) Production of preform for optical fiber
JPS63123828A (en) Production of porous preform for optical fiber
JPS61141631A (en) Burner for making optical fiber parent material
JPH0712954B2 (en) Method for manufacturing base material for optical fiber
JPS6287429A (en) Method for producing optical fiber preform and apparatus therefor