JPS61281037A - Production of deposited glass soot - Google Patents

Production of deposited glass soot

Info

Publication number
JPS61281037A
JPS61281037A JP11873685A JP11873685A JPS61281037A JP S61281037 A JPS61281037 A JP S61281037A JP 11873685 A JP11873685 A JP 11873685A JP 11873685 A JP11873685 A JP 11873685A JP S61281037 A JPS61281037 A JP S61281037A
Authority
JP
Japan
Prior art keywords
starting material
glass
burner
heating
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11873685A
Other languages
Japanese (ja)
Inventor
Toshio Danzuka
彈塚 俊雄
Hiroshi Yokota
弘 横田
Hiroo Kanamori
弘雄 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11873685A priority Critical patent/JPS61281037A/en
Publication of JPS61281037A publication Critical patent/JPS61281037A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0148Means for heating preforms during or immediately prior to deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce deposited glass soot easily and stably in high yield, by rotating a starting material under heating, and depositing glass soot generated from a glass-soot synthesis burner to the starting material. CONSTITUTION:A columnar or cylindrical starting material 11 (e.g. quartz tube) is rotated around its own axis. A glass-soot synthesis burner 13 placed near one end of the starting material is supplied with fuel gas (H2), combustion- assisting gas (O2) and glass raw material to form a flame 14, in which glass soot is generated. A starting material heating burner 15 is placed close to the synthesis burner 13. The starting material 11 is heated with the flame 16 of the burner 15, and the burner 13 is transferred relative to the starting material 11 parallel to the axis of the material 11 to effect the formation of the deposited glass soot 12 on the circumference of the starting material 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス微粒子の集合体を円柱状出発材の外周
部に形成する方法に関し、特に高純度が要求される光フ
アイバ用母材製造の際の中間製品として好適に用いられ
る、出発材外周部に堆積せしめられたガラス微粒子堆積
体の形成方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for forming an aggregate of glass particles on the outer periphery of a cylindrical starting material, and is particularly applicable to the production of an optical fiber base material that requires high purity. The present invention relates to a method for forming a glass fine particle deposit deposited on the outer periphery of a starting material, which is suitably used as an intermediate product in the process.

〔従来の技術〕[Conventional technology]

従来、石英系ガラス管或いは光フアイバ用母材の製造方
法として、特開昭48−73522号公報に示されたよ
うな謂る 外付法がある。
Conventionally, as a method for manufacturing a base material for a quartz-based glass tube or an optical fiber, there is a so-called external method as disclosed in Japanese Patent Application Laid-open No. 73522/1983.

この方法は、第3図に示すように回転するカーボン或い
は石英系ガラス、アルミナなどの耐火性出発材11の外
周部に、ガラス原料の加水分解反応により生成せしめた
8i0.などの微粒子状ガラスを堆積させてガラス微粒
子堆積体12を形成していき、所定量堆積させたあと堆
積をやめ、出発材11を引き抜き、パイプ状ガラス集合
体を形成し、このパイプ状ガラス集合体を高温電気炉中
で焼結透明ガラス化しパイプ状ガラスを得ている。或い
は、同様の方法で出発材11として中実の光フアイバ用
ガラス母材を用い、出発材とその外周部′に形成された
ガラス微粒子堆積体12の複合体を形成したのち、出発
材11を引き抜かず該複合体を高温炉中で加熱処理しガ
ラス微粒子堆積体の部分を焼結することにより出発材で
ある光フアイバ用ガラス母材の外周部にさらに透明ガラ
ス層を形成するという方法も考えられる。
In this method, as shown in FIG. 3, 8i0. A fine glass particle deposit body 12 is formed by depositing fine glass particles such as, etc., and after depositing a predetermined amount, the deposition is stopped, the starting material 11 is pulled out, a pipe-shaped glass aggregate is formed, and the pipe-shaped glass aggregate is The body is sintered into transparent glass in a high-temperature electric furnace to obtain pipe-shaped glass. Alternatively, by using a solid glass base material for optical fiber as the starting material 11 in a similar manner, a composite of the starting material and the glass fine particle deposit 12 formed on its outer peripheral part' is formed, and then the starting material 11 is We have also considered a method of forming an additional transparent glass layer on the outer periphery of the starting glass base material for optical fiber by heat-treating the composite in a high-temperature furnace and sintering the part of the glass particle deposit without drawing it out. It will be done.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

上記方法において、従来、第3図に示す如くガラス微粒
子生成用バーナー15を1本ないし多数本用いてガラス
微粒子堆積体を合成している。一般にバーナー先端から
燃料ガスとしてHl。
In the above method, conventionally, one or more burners 15 for producing glass particles are used to synthesize a glass particle deposit as shown in FIG. Generally, Hl is used as fuel gas from the burner tip.

cH4,Cs& 等助燃ガスとしてOs、空気等が供給
され、火炎14を形成する。ここにガラス原料として、
5iC4t GeCt4  等が供給され、加水分解反
応を起こして、ガラス微粒子、 Sing、 Ge01
等が生成される。該微粒子が回転する出発材11に付着
し、ガラス微粒子堆積体12が形成される。
Os, air, etc. are supplied as combustion assisting gases such as cH4, Cs&, etc., and a flame 14 is formed. Here, as a raw material for glass,
5iC4t GeCt4 etc. are supplied, causing a hydrolysis reaction to produce glass fine particles, Sing, Ge01
etc. are generated. The fine particles adhere to the rotating starting material 11, and a glass fine particle deposit 12 is formed.

この方法によるガラス微粒子堆積体製造において特に問
題となるのは、ガラス微粒子堆積体12の割れの問題で
ある。該ガラス微粒子堆積体12の割れは、堆積体12
の嵩密度が低いために生ずるものでアシ、通常この対策
としては燃料ガスの流量を増加させて、ガラス微粒子堆
積体12を硬く合成する、すなわち、嵩密度を大きくす
る方法がとられる。ところが回転する出発材11の外周
部に形成する、ガラス微粒子堆積体12の場合、燃料ガ
スを少々増加させても堆積体12の割れ対策としては不
十分でちった。
A particular problem in producing a glass particle deposit by this method is the problem of cracks in the glass particle deposit 12. The cracks in the glass fine particle deposit 12 are caused by
This is caused by the low bulk density of the glass particles, and the usual countermeasure is to increase the flow rate of the fuel gas to make the glass particle deposit 12 harder, that is, to increase the bulk density. However, in the case of the glass particle deposit 12 formed on the outer periphery of the rotating starting material 11, even if the amount of fuel gas was slightly increased, it was insufficient to prevent the deposit 12 from cracking.

また、燃料ガスを大きく増加させると、出発材11が変
形を起こし、出発材11の中心軸が回転軸とずれ、出発
材11がふれまわるという問題が発生した。出発材11
にふれまわりが生ずると合成されたガラス微粒子堆積体
12中の出発材11は偏心し、軸対称性の良好な母材を
得ることはできなくなる。との母材の割れの問題は特に
、出発材11の外径が大きくなるにつれ顕著なものとな
っている。また火炎温度が上がシすぎるために、粒子温
度が最高温度よシ高くなシ、原料の収率が悪くなるとい
う問題も生じてくる。
Furthermore, when the amount of fuel gas was increased significantly, the starting material 11 was deformed, causing the central axis of the starting material 11 to be misaligned with the rotating axis, causing the problem that the starting material 11 moved around. Starting material 11
When whirling occurs, the starting material 11 in the synthesized glass fine particle deposit 12 becomes eccentric, making it impossible to obtain a base material with good axial symmetry. The problem of cracking of the base material becomes particularly noticeable as the outer diameter of the starting material 11 increases. Furthermore, since the flame temperature is too high, the particle temperature is higher than the maximum temperature, resulting in a problem of poor raw material yield.

上記の母材割れの現象をさらに詳細に調べたところ、母
材が割れるときにははじけるように割れ、出発材外周部
に堆積していたガラス微粒子堆積体はほとんど出発材か
らはがれおちてしまっていることが判かった。このこと
から、出発材の表面近くに付着しているガラス微粒子堆
積体は非常に柔らかいものであることが予想された。そ
こで、合成されたガラス微粒子堆積体の半径方向の嵩密
度(215113)分布を測定し九七の結果、第4図に
示す如く、出発材の表面近くの嵩密度は、その外側より
も低くなっていることがわかった。このことから、ガラ
ス微粒子堆積体の割れの主原因は出発材表面近くに柔ら
かいガラス微粒子が堆積するためであることが判明した
。さて、柔らかいガラス微粒子が堆積する原因は出発材
自体にあると考えられる。すなわち、出発材は特に加熱
されることなく、ガラス微粒子堆積部に達つしているた
め、ガラス微粒子形成用のバーナーによってガラス微粒
子の付着とともに加熱されることになる。このため、出
発材表面近くに付着したガラス微粒子は、出発材に熱を
うばわれ、このため、温度が低下し、柔らかい堆積体と
なっているものと考えられる。また出発材自体に熱伝導
性があるため、出発材は長手方向に熱を常に奪われてい
ると考えられ、ガラス微粒子を安定につけるためには出
発材の温度をコントロールすることが必要と考えられる
。このことは出発材外径が大きくなるにつれて、特に大
きな問題となることは自明である。
A more detailed investigation of the above-mentioned base material cracking phenomenon revealed that when the base material cracks, it cracks as if it were to burst open, and that most of the glass particle deposits that had accumulated around the outer periphery of the starting material had peeled off from the starting material. I found out. From this, it was predicted that the glass fine particle deposits attached near the surface of the starting material were very soft. Therefore, we measured the bulk density (215113) distribution in the radial direction of the synthesized glass fine particle deposit and found that the bulk density near the surface of the starting material was lower than that outside, as shown in Figure 4. I found out that From this, it was found that the main cause of cracks in the glass particle deposit was the accumulation of soft glass particles near the surface of the starting material. Now, it is thought that the cause of the accumulation of soft glass particles lies in the starting material itself. That is, since the starting material reaches the glass fine particle depositing part without being particularly heated, it is heated by the glass fine particle forming burner while the glass fine particles are attached. For this reason, it is thought that the glass particles adhering near the surface of the starting material absorb heat from the starting material, resulting in a decrease in temperature and a soft deposit. In addition, since the starting material itself has thermal conductivity, it is thought that heat is constantly removed from the starting material in the longitudinal direction, and it is thought that it is necessary to control the temperature of the starting material in order to stably attach the glass particles. It will be done. It is obvious that this becomes a particularly serious problem as the outer diameter of the starting material becomes larger.

〔問題点を解決する丸めの手段〕 本発明は、上記問題点を克服し、ガラス微粒子堆積体を
安定に製造することを目的とし、ガラス微粒子合成用バ
ーナーに隣接して、出発材加熱用装置を設宣し出発材の
加熱をしつつ、ガラス微粒子堆積体を合成し製造を安定
かつ容易にするものである。
[Means for rounding to solve the problem] The present invention aims to overcome the above-mentioned problems and stably produce a glass fine particle deposit. The aim is to synthesize glass fine particle deposits while heating the starting materials, making production stable and easy.

すなわち本発明は自らの軸を回転軸として回転している
実質的に円柱状或いは円筒状の出発材の片端近傍から、
該出発材の外周部上にガラス微粒子合成用バーナーの火
炎内にガラス原料を供給することにより発生させたガラ
ス微粒子を堆積させ始め、該バーナーを出発材の軸と平
行に相対的に移動させていくことにより、ガラス微粒子
の堆積体を出発材の外周部に軸方向に形成していく方法
に於いて上記ガラス微粒子合成用バーナーと隣接して上
記出発材加熱用装置を設置し、上記出発材を加熱しつつ
ガラス微粒子堆積体を製造することを特徴とするガラス
微粒子堆積体の製造方法である。
That is, in the present invention, from near one end of a substantially cylindrical or cylindrical starting material rotating about its own axis,
Glass particles generated by supplying a glass raw material into the flame of a burner for glass particle synthesis are started to be deposited on the outer periphery of the starting material, and the burner is moved relatively parallel to the axis of the starting material. In the method of forming a deposit of glass fine particles in the axial direction on the outer periphery of the starting material, the starting material heating device is installed adjacent to the glass fine particle synthesis burner, and the starting material is This is a method for manufacturing a glass fine particle deposit, characterized in that the glass fine particle deposit is manufactured while heating the glass fine particle deposit.

また出発材加熱用装置としては出発材加熱用バーナーを
用い、該バーナーの形成する火炎にて出発材を加熱する
ことが好ましい。
Further, it is preferable to use a burner for heating the starting material as the device for heating the starting material, and to heat the starting material with a flame formed by the burner.

以下実施例に基ずいて本発明の詳細な説明する。本発明
の実施態様の構成を第1図に示す。
The present invention will be described in detail below based on Examples. The configuration of an embodiment of the present invention is shown in FIG.

第1図においてガラス微粒子合成用バーナー13に燃料
ガス馬、助熱ガスORN原料ガスを流しとのバーナーに
よ多形成される火炎14中で火炎加水分解によりガラス
微粒子が生成される。このガラス微粒子を、回転しつつ
ガラス微粒子合成用バーナーと相対的に移動する出発材
11の外周部に堆積しガラス微粒子堆積体12を形成す
る。本発明においてはこの構成に加えて出発材11の温
度コント日−ル用として、ガラス微粒子合成用バーナー
13に隣接して出発材加熱用バーナー15を設置し、該
バーナーよシ、燃料ガスH意、助熱ガス0!およびシー
ルガスAr  ヲ流すことにより、火炎16を形成し、
この火炎16によって出発材11の加熱を行っている。
In FIG. 1, glass particles are generated by flame hydrolysis in a flame 14 formed by a burner 13 for synthesizing glass particles with a fuel gas and a heating gas ORN source gas flowing through the burner. The glass particles are deposited on the outer periphery of a starting material 11 that rotates and moves relative to a burner for synthesizing glass particles to form a glass particle deposit 12. In addition to this configuration, in the present invention, a burner 15 for heating the starting material is installed adjacent to the burner 13 for synthesizing glass particles in order to control the temperature of the starting material 11. , 0 heating gas! and by flowing seal gas Ar, a flame 16 is formed,
The starting material 11 is heated by this flame 16.

出発材加熱用バーナー15に投入する燃料ガスの流量は
、出発材11がこの熱によって変形しないように調整す
ること、および該火炎16がガラス微粒子合成用バーナ
ー13の火炎14を乱さないような位置に上記出発材加
熱用バーナーを設置することが必要である。
The flow rate of the fuel gas fed into the starting material heating burner 15 should be adjusted so that the starting material 11 is not deformed by this heat, and the flame 16 should be positioned so as not to disturb the flame 14 of the glass particle synthesis burner 13. It is necessary to install a burner for heating the starting material at

(実施例) 第1図に示す構成において、ガラス微粒子合成用バーナ
ー15としては同心円状多重管バーナーを用い、石英ガ
ラス管を出発材11とし、その外周部にガラス微粒子堆
積体を形成した。
(Example) In the configuration shown in FIG. 1, a concentric multi-tube burner was used as the glass particle synthesis burner 15, a quartz glass tube was used as the starting material 11, and a glass particle deposit was formed on the outer periphery thereof.

燃料ガスとしてH鵞、助燃ガスとして03を用い、原料
として5iC4を用いた。流量条件としては、SiC’
4 =2000CC/m、H2=501/m、O。
03 was used as the fuel gas, 03 was used as the auxiliary combustion gas, and 5iC4 was used as the raw material. As for the flow rate conditions, SiC'
4=2000CC/m, H2=501/m, O.

=4 o t/= 、 Ar=20 t/―であった。=4 ot/=, Ar=20 t/-.

このガラス微粒子合成用バーナーの下部に出発材加熱用
バーナー15として同心円状多重管バーナーを、ガラス
微粒子合成用バーナーと平行に設置し、H2= 10 
t/ m 、 OH= 15 L / m 、 Ar=
5t/−のガスを流し、出発材の加熱を行った。このと
きの出発材の表面温度は700℃〜800℃に保たれた
。この結果、母材の製造は非常に安定に行なうことがで
き、母材の割れ問題は解消することができた。
A concentric multi-tube burner as a starting material heating burner 15 is installed below this burner for glass particle synthesis in parallel with the burner for glass particle synthesis, and H2=10.
t/m, OH=15L/m, Ar=
The starting materials were heated by flowing 5 t/- of gas. The surface temperature of the starting material at this time was maintained at 700°C to 800°C. As a result, the base material could be manufactured very stably, and the problem of cracks in the base material could be solved.

またガラス微粒子合成用バーナー15の流量条件を、堆
積体合成のためだけに設定できたため、ガラス微粒子堆
積体12の収率も上が9、堆積速度工5f/m、収率6
2%で合成することができた。この堆積体12の半径方
向の嵩密度分布を測定したところ第2図のようになシ、
出発材表面での嵩密度の低下は+n正されていることが
わかった。
In addition, since the flow rate conditions of the burner 15 for glass particle synthesis could be set only for the synthesis of the deposit, the yield of the glass particle deposit 12 was as high as 9, with a deposition rate of 5 f/m and a yield of 6.
It was possible to synthesize it at 2%. When the bulk density distribution in the radial direction of this deposit 12 was measured, the results were as shown in FIG.
It was found that the decrease in bulk density at the surface of the starting material was +n positive.

本実施例においては、出発材加熱装置として、バーナー
によ多形成される火炎を用いたが、これは、他の加熱手
段であっても同様の効果が期待できる。また、投入原料
は5iCt4のみを用いたが、これに、GeCl4  
、 POC43等の原料が混入されていてもかまわない
し、ガラス微粒子合成用バーナーの本数は、複数本であ
って、も、本発明の効果はそこなわれない。
In this example, a flame formed by a burner was used as the starting material heating device, but the same effect can be expected even if other heating means are used. In addition, only 5iCt4 was used as the input raw material, but in addition to this, GeCl4
, POC43, etc. may be mixed, and the effects of the present invention will not be impaired even if the number of burners for glass particle synthesis is plural.

〔本発明の効果〕[Effects of the present invention]

本発明の方法は石英系ガラス等の出発材の外周部にガラ
ス微粒子堆積体を合成する場合に、該ガラス微粒子堆積
体を安定かつ容易に収率良く製造することができる。
When the method of the present invention synthesizes a glass fine particle deposit on the outer periphery of a starting material such as quartz-based glass, the glass fine particle deposit can be produced stably, easily, and with good yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様の概略説明図、第2図は本発
明により得られたガラス微粒子堆積体の無次元半径方向
の嵩密度分布を示すグラフ、 第3図は従来法の概略説明図、 第4図は従来法によυ得られたガラス微粒子堆積体の嵩
密度分布を示すグラフである。
FIG. 1 is a schematic illustration of an embodiment of the present invention, FIG. 2 is a graph showing the dimensionless radial bulk density distribution of the glass fine particle deposit obtained by the present invention, and FIG. 3 is a schematic explanation of the conventional method. FIG. 4 is a graph showing the bulk density distribution of the glass fine particle deposit obtained by the conventional method.

Claims (2)

【特許請求の範囲】[Claims] (1)自らの軸を回転軸として回転している実質的に円
柱状或いは円筒状の出発材の片端近傍から、該出発材の
外周部上にガラス微粒子合成用バーナーの火炎内にガラ
ス原料を供給することにより発生させたガラス微粒子を
堆積させ始め、該バーナーを出発材の軸と平行に相対的
に移動させていくことにより、ガラス微粒子の堆積体を
出発材の外周部に軸方向に形成していく方法に於いて上
記ガラス微粒子合成用バーナーと隣接して上記出発材加
熱用装置を設置し、上記出発材を加熱しつつガラス微粒
子堆積体を製造することを特徴とするガラス微粒子堆積
体の製造方法。
(1) From near one end of a substantially cylindrical or cylindrical starting material that is rotating about its own axis, a glass raw material is introduced into the flame of a burner for synthesizing glass fine particles onto the outer periphery of the starting material. By starting to deposit the glass particles generated by supplying the material and moving the burner relatively parallel to the axis of the starting material, a deposited body of glass particles is formed in the axial direction on the outer periphery of the starting material. A glass fine particle deposit body characterized in that the above starting material heating device is installed adjacent to the above glass fine particle synthesis burner, and the glass fine particle deposit body is manufactured while heating the above starting material. manufacturing method.
(2)出発材加熱用装置として、ガラス微粒子合成用バ
ーナーと隣接して、出発材加熱用バーナーを設置し、該
加熱用バーナーにより形成される火炎によつて出発材を
加熱する特許請求の範囲第(1)項に記載のガラス微粒
子堆積体の製造方法。
(2) A claim in which, as a starting material heating device, a starting material heating burner is installed adjacent to a glass particle synthesis burner, and the starting material is heated by a flame formed by the heating burner. The method for producing a glass particle deposit according to item (1).
JP11873685A 1985-06-03 1985-06-03 Production of deposited glass soot Pending JPS61281037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11873685A JPS61281037A (en) 1985-06-03 1985-06-03 Production of deposited glass soot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11873685A JPS61281037A (en) 1985-06-03 1985-06-03 Production of deposited glass soot

Publications (1)

Publication Number Publication Date
JPS61281037A true JPS61281037A (en) 1986-12-11

Family

ID=14743797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11873685A Pending JPS61281037A (en) 1985-06-03 1985-06-03 Production of deposited glass soot

Country Status (1)

Country Link
JP (1) JPS61281037A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629590A1 (en) * 1993-06-16 1994-12-21 Sumitomo Electric Industries, Limited Process for producing glass preform for optical fiber
JPH07180378A (en) * 1994-10-06 1995-07-18 Haseko Corp Multiple dwelling house
JP2016003162A (en) * 2014-06-17 2016-01-12 信越石英株式会社 Method for manufacturing hollow porous quartz glass preform, hollow porous quartz glass preform and quartz glass cylinder using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629590A1 (en) * 1993-06-16 1994-12-21 Sumitomo Electric Industries, Limited Process for producing glass preform for optical fiber
US5597398A (en) * 1993-06-16 1997-01-28 Sumitomo Electric Industries, Ltd. Process for producing glass preform for optical fiber
JPH07180378A (en) * 1994-10-06 1995-07-18 Haseko Corp Multiple dwelling house
JP2016003162A (en) * 2014-06-17 2016-01-12 信越石英株式会社 Method for manufacturing hollow porous quartz glass preform, hollow porous quartz glass preform and quartz glass cylinder using the same

Similar Documents

Publication Publication Date Title
KR880001607B1 (en) Preparation for making of glass fiber preform
JPH039047B2 (en)
US7165425B2 (en) Multi-tube burner and glass preform manufacturing method using the same
JPS61281037A (en) Production of deposited glass soot
JPS6126532A (en) Production of base material for optical fiber
JP4742429B2 (en) Method for producing glass particulate deposit
JPH02102146A (en) Production of glass fine particle deposit
JPS61281025A (en) Production of deposited material of glass fine particles
KR940006410B1 (en) Method of producing glass article
JPS62182131A (en) Production of piled material of glass fine particle
JP3221059B2 (en) Method for producing glass particle deposit
JPS604978Y2 (en) Glass particle synthesis torch
JPS627641A (en) Production of deposited body of fine glass particle
JPS61266318A (en) Production of glass fine granular deposit
JP3381309B2 (en) Method for producing glass particle deposit
JPH02275725A (en) Production of vitreous fine granule accumulation
JPS61186240A (en) Production of piled material of glass fine particles
JPS60260433A (en) Manufacture of base material for optical fiber
JPS6261542B2 (en)
JPH02133331A (en) Production of fine glass particle-deposited body
JPS63123828A (en) Production of porous preform for optical fiber
JPH0583497B2 (en)
JPS5939735A (en) Production of soot body of pulverized glass particle and its burner
JPH02120250A (en) Production of deposited glass soot material
JPS6287429A (en) Method for producing optical fiber preform and apparatus therefor