JPS61281025A - Production of deposited material of glass fine particles - Google Patents

Production of deposited material of glass fine particles

Info

Publication number
JPS61281025A
JPS61281025A JP11972385A JP11972385A JPS61281025A JP S61281025 A JPS61281025 A JP S61281025A JP 11972385 A JP11972385 A JP 11972385A JP 11972385 A JP11972385 A JP 11972385A JP S61281025 A JPS61281025 A JP S61281025A
Authority
JP
Japan
Prior art keywords
glass
glass fine
fine particles
deposited
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11972385A
Other languages
Japanese (ja)
Other versions
JPH0717390B2 (en
Inventor
Toshio Danzuka
彈塚 俊雄
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60119723A priority Critical patent/JPH0717390B2/en
Publication of JPS61281025A publication Critical patent/JPS61281025A/en
Publication of JPH0717390B2 publication Critical patent/JPH0717390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To stably and easily produce a deposited material glass fine particles without causing cracks, by attaching firstly a thin deposited layer of glass fine particles to the outer peripheral part of a starting raw material and forming a deposited material of glass fine particles on the thin deposited layer. CONSTITUTION:A combustion gas H2, an auxiliary combustion gas O2 and a raw material gas are sent to the burner 13 for synthesizing glass fine particles, the glass fine particles are formed in the formed flame 14 by a hydrolysis reaction and the glass fine particles are deposited on the outer peripheral part of the starting material 11 which is transferred relatively to the burner 13 for synthesizing the glass particles while being rotated, to form the deposited material 12 of glass fine particles. Besides this constitution, the burner 15 is set in front of the burner 13 forming the deposited material 12 of glass fine particles and the thin deposited layer 17 of glass fine particles are attached to the material. This deposited layer 17 of glass fine particles has a heat insulating effect to prevent heat losses caused by thermal conductivity of the starting material, and the deposited material 12 of glass fine particles formed in this shape does not lower the temperature of soot particles, consequently, the deposited material is effective for forming a hard deposited material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス微粒子の集合体を円柱状出発材の外周
部に形成する方法に関し、特に高純度が要求される元フ
ァイバ用母材裂造の際の中間製品として好適に用いられ
る、出発材外周部に堆積せしめられたガラス微粒子堆積
体の形成方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for forming an aggregate of glass fine particles on the outer periphery of a cylindrical starting material. The present invention relates to a method for forming a glass fine particle deposit deposited on the outer periphery of a starting material, which is suitably used as an intermediate product during manufacturing.

〔従来の技術〕[Conventional technology]

゛従来、石英系ガラス管或いは光フアイバ用母材の製造
方法として、特開昭48−73522号公報に示された
Lうな謂る1外付法”がある。
``Conventionally, as a method for manufacturing a base material for a quartz-based glass tube or an optical fiber, there is a so-called 1-external method disclosed in Japanese Patent Application Laid-Open No. 48-73522.

この方法は、回転するカーボン或いは石英系ガラス、ア
ルミナなどの耐火性出発材の外周部に、ガラス原料の加
水分解反応によシ生成せしめたslc、  などの微粒
子状ガラスを堆積させていき、所定量堆積させたあと堆
積をやめ、出発材を引き抜き、パイプ状ガラス集合体を
形成し、このパイプ状ガラス集合体を高温電気炉中で焼
結透明ガラス化しパイプ状ガラスを得ている。或いは、
同様の方法で出発材として中実の元ファイバ用ガラス母
材を用い、出発材とその外周部に形成されたガラス微粒
子堆積体の複合体を形成したのち、出発材を引き抜かず
該複合体全高温炉中で加熱処理しガラス微粒子堆積一体
の部分を焼結することにより出発材である元ファイバ用
ガラス母材の外周部にさらに透明ガラス層を形成すると
いう方法も考えられる。
In this method, fine particulate glass such as SLC produced by the hydrolysis reaction of glass raw materials is deposited on the outer periphery of a rotating refractory starting material such as carbon, quartz glass, or alumina. After depositing a certain amount, the deposition is stopped, the starting material is pulled out, a pipe-shaped glass aggregate is formed, and this pipe-shaped glass aggregate is sintered into transparent glass in a high-temperature electric furnace to obtain a pipe-shaped glass. Or,
Using the same method as a starting material, a solid glass base material for fiber is used as a starting material to form a composite of the starting material and the glass fine particle deposits formed on its outer periphery. Another possible method is to further form a transparent glass layer on the outer periphery of the original fiber glass base material, which is the starting material, by heat-treating in a high-temperature furnace and sintering the part where the glass fine particles are deposited.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

従“来、上記方法においては、第5図に示す如く、ガラ
ス微粒子生成用バーナ13を1本、ないし多数本用いて
ガラス微粒子堆積体12を合成している。一般にバーナ
先端から燃料ガスとしてH2a○T14 e C*”m
等、助燃ガスとしてOs、空気等が供給され、火炎14
を形成する。ここにガラス原料として5iC4、Gs(
、!、等が供給され、加水分解反応を起こすことによシ
ガラス微粒子8101 、 Gaol等が生成される。
Conventionally, in the above method, as shown in FIG. 5, the glass particle deposit body 12 is synthesized using one or more burners 13 for producing glass particles.Generally, H2a is produced as fuel gas from the tip of the burner. ○T14 e C*”m
etc., Os, air, etc. are supplied as combustion auxiliary gas, and the flame 14
form. Here, 5iC4, Gs(
,! , etc. are supplied, and by causing a hydrolysis reaction, shigasu fine particles 8101, Gaol, etc. are produced.

該ガラス微粒子が回転する出発材1)に付着し、ガラス
微粒子堆積体12が形成される。
The glass particles adhere to the rotating starting material 1) to form a glass particle deposit 12.

この方法によるガラス微粒子堆積体製造において特に問
題となるのは、ガラス微粒子堆積体の割れの問題である
。該ガラス微粒子堆積体の割れは、堆積体の嵩密度が低
いために生ずるものでアシ、通常この対策としては、燃
料ガスの流量を増加させて、ガラス微粒子堆積体を硬く
する方法がとられる。ところが回転する出発材の外周部
に形成するガラス微粒子堆積体の場合、燃料ガスを少々
増加させても堆積体の割れ対策としては不十分であった
。まな、燃料ガスを大きく増加させると出発材が変形を
起こし、ふれまわるという問題が発生した。出発材にフ
レまわシが生ずると、合成され九ガラス微粒子堆積体中
の出発材は偏心し、軸対称は良好母材を得ることができ
なくなる。この母材の割れの問題は、出発材の外径が大
きくなるにつれ顕著なものとなっている。また燃料ガス
を大きく増加させた場合には、火炎温度が上が9すぎる
こと、バーナー火炎流が速くなることから原料の収率が
悪くなるという問題も生じてくる。
A particular problem in producing a glass fine particle deposit by this method is the problem of cracking of the glass fine particle deposit. The cracking of the glass particle deposit occurs because the bulk density of the glass particle deposit is low, and the usual countermeasure is to increase the flow rate of fuel gas to harden the glass particle deposit. However, in the case of a glass particle deposit formed on the outer periphery of a rotating starting material, even a slight increase in fuel gas was insufficient as a countermeasure against cracking of the deposit. However, when the amount of fuel gas was increased significantly, a problem occurred in that the starting materials were deformed and moved around. When flaring occurs in the starting material, the starting material in the synthesized glass fine particle deposit becomes eccentric, making it impossible to obtain a base material with good axial symmetry. This problem of cracking of the base material becomes more noticeable as the outer diameter of the starting material increases. Further, when the amount of fuel gas is greatly increased, the flame temperature becomes too high and the burner flame flow becomes fast, resulting in a problem that the yield of the raw material becomes poor.

上記母材側れの現象をさらに詳細に調べたところ、母材
が割れるときにはガラス微粒子堆積体が、はじけるよう
に割れ、出発材からほとんどはがれ落ちてしまうことが
判かった。このことから、出発材の表面近くに付着して
いるガラス微粒子堆積体は非常に柔らかいものでるるこ
とが予想され念。そこで合成に成功し次ガラス微粒子堆
積体の半径方向の嵩密度分布を測定したところ、第4図
に示す如く、出発材の表面近くの嵩密度は、その外側よ
りも低くなっていることがわかった。このことから、ガ
ラス微粒子堆積体の割れの主原因はガラス微粒子堆積体
を厚く形成する際に出発材表面近傍に柔らかいガラス微
粒子が堆積するためであることが明らかとなつ九。
A more detailed investigation of the above-mentioned phenomenon of base material side deviation revealed that when the base material cracks, the glass fine particle deposits crack as if to burst, and most of them peel off from the starting material. From this, it is expected that the glass particle deposits attached near the surface of the starting material will be extremely soft. After successful synthesis, we measured the bulk density distribution in the radial direction of the glass particle deposit, and as shown in Figure 4, we found that the bulk density near the surface of the starting material was lower than that outside. Ta. From this, it has become clear that the main cause of cracks in glass fine particle deposits is that soft glass particles are deposited near the surface of the starting material when the glass fine particle deposit is formed to be thick.

出発材表面近傍に柔らかいガラス微粒子が堆積するのは
、出発材の伝導性によって出発材自体の熱が奪われこの
ため、表面近傍に付着するガラス微粒子の温度が十分に
上がらないためと考えられる。この対、策として本発明
者らは第5図に示すように、ガラス微粒子堆積体を合成
するバーナー15の手前に、加熱用バーナ19全設けて
、出発材1)′t−加熱しつつ、ガラス微粒子堆積体1
2を形成していく方法も考案した。
It is thought that the reason why soft glass particles are deposited near the surface of the starting material is that the conductivity of the starting material removes heat from the starting material itself, which prevents the temperature of the glass particles adhering near the surface from rising sufficiently. As a countermeasure to this, the present inventors installed all heating burners 19 in front of the burner 15 for synthesizing the glass fine particle deposit as shown in FIG. 5, and while heating the starting material 1)'t-, Glass fine particle deposit 1
We also devised a method to form 2.

この方法で−は出発材の熱伝導による温度低下をある程
度防げる。しかしながらこの方法でも出発材加熱用バー
ナ19は、ガラス微粒子合成用バーナー15の火炎14
を乱さないような位置に設置しなければならないため、
ガラス微粒子堆積体の堆積面に十分に近ずけることがで
きな゛いので、さらに本発明はこのような間層を克服し
た方法を提供せんと意図したものである。
This method can prevent temperature drop due to heat conduction of the starting materials to some extent. However, even in this method, the starting material heating burner 19 is replaced by the flame 14 of the glass particle synthesis burner 15.
It must be installed in a position that does not disturb the
Since it is not possible to get sufficiently close to the deposition surface of the glass particle deposit, the present invention is further intended to provide a method that overcomes such interlayers.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を克服し、ガラス微粒子堆積体を
安定に製造することを目的とし、回転する出発材の外周
部にガラス微粒子堆積体上形成するに先だち、最初に、
薄いガラス微粒子堆積層を付着させ、この上に上記ガラ
ス微粒子堆積体を形成していくことにエフ、安定かつ容
易に上記ガラス微粒子堆積体Xt−製造するもσである
The present invention aims to overcome the above-mentioned problems and stably produce a glass fine particle deposit. Prior to forming the glass fine particle deposit on the outer periphery of a rotating starting material, first:
By depositing a thin glass particle deposit layer and forming the glass particle deposit thereon, it is possible to stably and easily manufacture the glass particle deposit Xt.

以下実施例に基づいて、本発明の構成t−81図を参照
して説明する。ガラス微粒子合成用バーナ13に燃料ガ
スH!、助熱ガス01、原料ガス1)IEし、このバー
ナ15により形成−される火炎14中で加水分解反応に
ニジガラス微粒子が形成される。このガラス微粒子を回
転しつつガラス微粒子合成用バーナと相対的に移動する
出発材1)の外周部に堆積し、ガラス微粒子堆積体12
を形成する。本発明においては、この構成に加えて、ガ
ラス微粒子堆積体12t″形成するバーナ15の前方に
バーナ15を設置し、薄いガラス微粒子堆積層17を付
着させる。該ガラス微粒子堆積層17は、出発材中の熱
伝導による熱損失を防ぐ断熱効果を有しておシ、この上
に形成される。ガラス微粒子堆積体において、スス粒子
の温度を下げることなく、従って硬い堆積体を形成する
のに有効でおる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described below based on embodiments with reference to diagram t-81. Fuel gas H to burner 13 for glass particle synthesis! , heating gas 01, raw material gas 1) IE, and in the flame 14 formed by this burner 15, rainbow glass fine particles are formed by a hydrolysis reaction. The glass fine particles are deposited on the outer periphery of the starting material 1) which rotates and moves relative to the glass fine particle synthesis burner, and the glass fine particle deposit body 12
form. In the present invention, in addition to this configuration, a burner 15 is installed in front of the burner 15 that forms the glass fine particle deposit body 12t'', and a thin glass fine particle deposit layer 17 is deposited. It has an insulating effect that prevents heat loss due to heat conduction inside the glass, and is formed on this.In glass fine particle deposits, it is effective in forming a hard deposit without lowering the temperature of the soot particles. I'll go.

一般に出発材としては、石英ガラス、sla。Generally the starting material is quartz glass, SLA.

グラファイトおよび金属性のものが用いられることが考
えられるが、これらの熱伝導率は、グラファイトで約1
00 kCal/mh2”℃、N1で約7゜kaal、
/mhrc、810で約50 kaa1/mhrcと高
く、最も熱伝導率の悪い石英ガラスでも約1〜2koa
l/mhrTl:の熱伝導率を有する。これに対して、
ガラス微粒子堆積体の熱伝導率は実測結果によれば1約
(L O’ 5 keal/mhrcと石英ガラスよシ
も2ケタも熱伝導率は小さく、熱の損失は小さい。
Graphite and metallic materials may be used, but the thermal conductivity of these materials is approximately 1 for graphite.
00 kCal/mh2”℃, about 7°kaal at N1,
/mhrc, 810 is as high as about 50 kaa1/mhrc, and even silica glass, which has the worst thermal conductivity, has a high thermal conductivity of about 1 to 2 koa.
It has a thermal conductivity of l/mhrTl:. On the contrary,
According to actual measurement results, the thermal conductivity of the glass fine particle deposit is about 1 (L O' 5 keal/mhrc), which is two digits lower than that of quartz glass, and the heat loss is small.

したがっていったんガラス微粒子の薄い層が形成される
と、該ガラス微粒子層の断熱効果によシ、この上に形成
されるガラス微粒子は出発材から熱金奪われることがな
く、嵩密度の高い堆積体を形成しやすくなる。また、固
体表面に粉末状の集積体全付着させる場合、付着性がわ
るく、ガラス微粒子集積体製造後の集積体剥落の一因と
なるが、ガラス微粒子の薄層の外周部であれば、ガラス
微粒子の付着性は良好で1)、この問題に対しても有効
である。
Therefore, once a thin layer of glass fine particles is formed, due to the heat insulating effect of the glass fine particle layer, the glass fine particles formed thereon are not deprived of heat from the starting material, and form a deposit with high bulk density. becomes easier to form. In addition, when the entire powder aggregate is attached to the solid surface, the adhesion is poor and causes the aggregate to peel off after the glass particle aggregate is manufactured. The adhesion of fine particles is good (1), and it is effective in solving this problem.

しかしながら、最初に付着させるガラス微粒子堆積層の
厚さが厚すぎる場合には、該堆積層の出発材表面近傍か
らは出発材に熱を奪われるために、従来法と同様の問題
が生ずることになる。この点を十分に検討した結果、最
初に付着させるガラス微粒子堆積層の厚さを出発材の径
の50%以下にすれば、上記問題が生じないことがわか
った。
However, if the thickness of the glass fine particle deposit layer that is initially deposited is too thick, the same problem as in the conventional method will occur because heat will be taken away from the vicinity of the starting material surface of the deposited layer by the starting material. Become. As a result of careful consideration of this point, it was found that the above-mentioned problem does not occur if the thickness of the deposited layer of glass particles initially deposited is 50% or less of the diameter of the starting material.

また、薄いガラス微粒子堆積層を形成しても、このガラ
ス微粒子層の嵩密度が小さい場合には、従来法とまつ九
〈同様の問題が生じ、堆積体の割れ防止にFiならない
ことが判明した。ガラス微粒子堆積層の嵩密度t一種々
変えて製造したところ、嵩密度がα2 f/−以上であ
れば、割れの問題が発生しないことがわかった。
In addition, even if a thin glass particle deposit layer is formed, if the bulk density of this glass particle layer is small, problems similar to those of the conventional method (Matsu9) occur, and it has been found that Fi is not effective in preventing cracks in the deposit. . When the bulk density t of the glass fine particle deposited layer was changed, it was found that the problem of cracking did not occur as long as the bulk density was α2 f/- or more.

ところで元ファイバー用ガラス材料として用いる場合に
は、元の伝送特性上、低損失でおることが要求される。
However, when used as a glass material for original fibers, it is required to have low loss due to the original transmission characteristics.

ガラス内部に含まれるO)I基’が多い場合には、OH
基による光の吸収損失が大きくなり、光ファイバーとし
ての特性がおちることになる。ガラス微粒子堆積体の場
合、OH基がぬけるかどうかが問題となるが、この脱O
H特性は堆積体の嵩密度に依存しており、一般には、α
69/を一以下であることが要求される。このことは、
本発明による薄いガラス微粒子堆積層の場合にも例外で
はなく、上記割れ対策を考え合わせると嵩密度は、α2
〜α6f/2であることが必要である。
If there is a large amount of O)I group' contained inside the glass, OH
The absorption loss of light by the base increases, and the properties of the optical fiber deteriorate. In the case of glass fine particle deposits, the issue is whether or not OH groups can escape.
The H characteristic depends on the bulk density of the deposit, and in general, α
69/ is required to be 1 or less. This means that
The case of the thin glass particle deposit layer according to the present invention is no exception, and considering the above-mentioned measures against cracking, the bulk density is α2
~α6f/2 is required.

〔実施例〕〔Example〕

第1図に示す構成において同心円状多重管バーナを用い
外径2(Isφの石英ガラス管の外周部に、ガラス微粒
子堆積体を形成した。最初に付−着させる薄いガラス微
粒子堆積層形成用バーナ15からは、Hg = 6 t
/win 、 02 = 10 t/min。
In the configuration shown in Figure 1, a concentric multi-tube burner was used to form a glass particle deposit on the outer periphery of a quartz glass tube with an outer diameter of 2 (Isφ). From 15, Hg = 6 t
/win, 02 = 10 t/min.

ムr = 5 t/winS81014 = 40 Q
Q/minのガスf流した。この上に形成するガラス微
粒子堆積体形成用バーナ16からは、Hg =52 t
/min 、 o。
Mr = 5 t/winS81014 = 40 Q
Gas f was flowed at Q/min. From the burner 16 for forming the glass fine particle deposit body formed on this, Hg = 52 t
/min, o.

= 65 t/min 、 Ar =  21 t/m
inの燃焼ガスおよび原料ガスとしてBICla = 
2500 cc/minを投入した。この結果、堆積速
度4.1t/Winで良好なガラス微粒子堆積体を得る
ことができ九。この堆積体製造においては、母材が割れ
るという問題は発生せずきわめて安定した展進を行なう
ことができ喪。製造した母材のうち1本について、母材
の構造、嵩密度分布を測定したところ、最初罠付着させ
た薄いガラス微粒子堆積層の厚さは、1゜8簡(出発材
外径の9%)であシ、嵩密度は(L 55 f/cn?
とガラス微粒子が硬く付着できていることがわかつ九。
= 65 t/min, Ar = 21 t/m
BICla = as combustion gas and raw material gas in
2500 cc/min was input. As a result, a good glass particle deposit could be obtained at a deposition rate of 4.1 t/Win. In the production of this deposit, there is no problem of the base material cracking, and the process can be carried out in an extremely stable manner. When we measured the structure and bulk density distribution of one of the manufactured base materials, we found that the thickness of the thin glass particle deposit layer initially attached to the trap was 1°8cm (9% of the outer diameter of the starting material). ), the bulk density is (L 55 f/cn?
It was found that the glass particles were firmly attached.

この外周部に形成されたガラス微粒子堆積体のカサ密度
(f10r/’ )分布は第2図に示すように出発材表
面(出発材外径は図中鎖線にて示す)近傍に近い部分で
少し変曲点がみられるものの第4図に示す工うな嵩密度
の凹こみはなく、良好な分布となっていることがわかっ
た。原料収率も6゜チと高いレベルでの母材製造を行な
うことができた。
As shown in Figure 2, the bulk density (f10r/') distribution of the glass fine particle deposits formed on the outer periphery is slightly smaller near the starting material surface (the outer diameter of the starting material is indicated by the chain line in the figure). Although there were inflection points, there were no dents in the bulk density as shown in Figure 4, indicating a good distribution. The base material could be manufactured at a high level of raw material yield of 6°.

本実施例においてはガラス原料として、5Icz4のみ
を用いた場合金示したが、これにaec14゜poaz
、等の原料が混入されていても、同様の効果を得ること
ができる。
In this example, gold was shown when only 5Icz4 was used as the glass raw material, but aec14゜poaz
Even if raw materials such as , etc. are mixed, the same effect can be obtained.

ま念、ガラス微粒子堆積体形成用のバーナーは、本実施
例では1本でおったが、複数本であってもかまわない。
Although only one burner was used for forming the glass particle deposit in this embodiment, a plurality of burners may be used.

〔発明の効果〕〔Effect of the invention〕

本発明は、石英系ガラス等の出発材の外周部にガラス微
粒子堆積体を合成する場合に、該ガラス微粒子堆積体の
製造上安定かつ容易にすることができる効果を奏す。
The present invention has the advantage that when a glass particle deposit is synthesized on the outer periphery of a starting material such as quartz glass, the glass particle deposit can be produced stably and easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を説明する図、第2図は本発
明の実施例で得られ念ガラス微粒子堆積体の半径方向の
嵩密度分布を示すグラフである。 第3図は従来法を説明する図、 第4図は従来法にょシ作成したガラス微粒子堆積体の半
径方向の嵩密度分布を示すグラフ、第5図は出発材加熱
用バーナーを用いる方法の説明図。
FIG. 1 is a diagram illustrating an embodiment of the present invention, and FIG. 2 is a graph showing a radial bulk density distribution of a glass fine particle deposit obtained in an example of the present invention. Figure 3 is a diagram explaining the conventional method, Figure 4 is a graph showing the radial bulk density distribution of the glass particle deposit produced by the conventional method, and Figure 5 is an explanation of the method using a burner for heating the starting material. figure.

Claims (4)

【特許請求の範囲】[Claims] (1)自らの軸を回転軸として回転している実質的に円
柱状或いは円筒状の出発材の片端近傍から、該出発材の
外周部上にガラス微粒子合成用バーナーの火炎内にガラ
ス原料を供給することにより発生させたガラス微粒子を
堆積させ始め、該バーナーを出発材の軸と平行に相対的
に移動させていくことにより、ガラス微粒子の堆積体を
出発材の外周部に軸方向に形成していく方法に於いて、
最初に薄いガラス微粒子堆積層を付着させ、この上にガ
ラス微粒子堆積体を形成していくことを特徴とするガラ
ス微粒子堆積体の製造方法。
(1) From near one end of a substantially cylindrical or cylindrical starting material that is rotating about its own axis, a glass raw material is introduced into the flame of a burner for synthesizing glass fine particles onto the outer periphery of the starting material. By starting to deposit the glass particles generated by supplying the material and moving the burner relatively parallel to the axis of the starting material, a deposited body of glass particles is formed in the axial direction on the outer periphery of the starting material. In terms of how to
1. A method for producing a glass particle deposit, which comprises first depositing a thin glass particle deposit layer, and then forming a glass particle deposit thereon.
(2)最初に付着させるガラス微粒子堆積層の厚さを出
発材外径の50%以下とする特許請求の範囲第(1)項
に記載のガラス微粒子堆積体の製造方法。
(2) The method for manufacturing a glass particle deposit according to claim (1), wherein the thickness of the glass particle deposit layer initially deposited is 50% or less of the outer diameter of the starting material.
(3)最初に付着させるガラス微粒子堆積層のカサ密度
を、0.2〜0.6g/cm^3とする特許請求の範囲
第(1)項又は第(2)項に記載のガラス微粒子堆積体
の製造方法。
(3) Glass fine particle deposition according to claim (1) or (2), wherein the bulk density of the glass fine particle deposition layer to be deposited first is 0.2 to 0.6 g/cm^3 How the body is manufactured.
(4)最初に付着させるガラス微粒子堆積層と、その上
に形成するガラス微粒子堆積体を、別々のバーナーを用
いて合成する特許請求の範囲第(1)項ないし第(3)
項のいずれかに記載のガラス微粒子堆積体の製造方法。
(4) Claims (1) to (3) in which the first glass particle deposit layer and the glass particle deposit layer formed thereon are synthesized using separate burners.
2. A method for producing a glass fine particle deposit according to any one of the above.
JP60119723A 1985-06-04 1985-06-04 Method for manufacturing glass particulate deposit Expired - Fee Related JPH0717390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60119723A JPH0717390B2 (en) 1985-06-04 1985-06-04 Method for manufacturing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60119723A JPH0717390B2 (en) 1985-06-04 1985-06-04 Method for manufacturing glass particulate deposit

Publications (2)

Publication Number Publication Date
JPS61281025A true JPS61281025A (en) 1986-12-11
JPH0717390B2 JPH0717390B2 (en) 1995-03-01

Family

ID=14768524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60119723A Expired - Fee Related JPH0717390B2 (en) 1985-06-04 1985-06-04 Method for manufacturing glass particulate deposit

Country Status (1)

Country Link
JP (1) JPH0717390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317029A (en) * 1987-06-20 1988-12-26 Otani Nobuko Culture device of spray type

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696739A (en) * 1980-01-07 1981-08-05 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber matrix
JPS60186429A (en) * 1984-03-01 1985-09-21 Sumitomo Electric Ind Ltd Manufacture of optical fiber preform
JPS61168544A (en) * 1985-01-21 1986-07-30 Sumitomo Electric Ind Ltd Production of glass tube mainly composed of quartz

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696739A (en) * 1980-01-07 1981-08-05 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical fiber matrix
JPS60186429A (en) * 1984-03-01 1985-09-21 Sumitomo Electric Ind Ltd Manufacture of optical fiber preform
JPS61168544A (en) * 1985-01-21 1986-07-30 Sumitomo Electric Ind Ltd Production of glass tube mainly composed of quartz

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317029A (en) * 1987-06-20 1988-12-26 Otani Nobuko Culture device of spray type
JPH0734696B2 (en) * 1987-06-20 1995-04-19 大谷 信子 Spray type cultivation device

Also Published As

Publication number Publication date
JPH0717390B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
JPS60191028A (en) Manufacture of high-purity glass body
US7165425B2 (en) Multi-tube burner and glass preform manufacturing method using the same
JPS61281025A (en) Production of deposited material of glass fine particles
EP2221281B1 (en) Burner for manufacturing porous glass base material, and manufacturing method of porous glass base material
JPS61281037A (en) Production of deposited glass soot
JP4742429B2 (en) Method for producing glass particulate deposit
JP3653902B2 (en) Glass base material synthesis burner and glass base material manufacturing method
JPH02102146A (en) Production of glass fine particle deposit
JP2999095B2 (en) Manufacturing method of soot preform
JPH02275725A (en) Production of vitreous fine granule accumulation
JPS627641A (en) Production of deposited body of fine glass particle
JPS62182131A (en) Production of piled material of glass fine particle
JPH0583497B2 (en)
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JPS604978Y2 (en) Glass particle synthesis torch
JPH05339011A (en) Production of glass particulate deposited body
JPS61186240A (en) Production of piled material of glass fine particles
JPS61266318A (en) Production of glass fine granular deposit
JPH0784331B2 (en) Method for manufacturing glass base material for optical fiber
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPH0397632A (en) Production of porous glass preform for optical fiber
JPS60260433A (en) Manufacture of base material for optical fiber
JPS6261542B2 (en)
JP3077107B1 (en) Chamber for manufacturing porous glass preform for optical fiber
JPS60200835A (en) Production of base material for optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees