JPH05339011A - Production of glass particulate deposited body - Google Patents

Production of glass particulate deposited body

Info

Publication number
JPH05339011A
JPH05339011A JP14741792A JP14741792A JPH05339011A JP H05339011 A JPH05339011 A JP H05339011A JP 14741792 A JP14741792 A JP 14741792A JP 14741792 A JP14741792 A JP 14741792A JP H05339011 A JPH05339011 A JP H05339011A
Authority
JP
Japan
Prior art keywords
glass
flow rate
starting material
deposit
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14741792A
Other languages
Japanese (ja)
Other versions
JP3221059B2 (en
Inventor
Yuichi Oga
裕一 大賀
Toshio Danzuka
俊雄 彈塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14741792A priority Critical patent/JP3221059B2/en
Publication of JPH05339011A publication Critical patent/JPH05339011A/en
Application granted granted Critical
Publication of JP3221059B2 publication Critical patent/JP3221059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To forme a glass particulate deposited body with tight adhesion, efficiently and columnarly or cylindrically on the outer periphery of starting material. CONSTITUTION:In the synthesis of the glass particulate deposited body on the outer periphery of starting material by sheathing, the flow rate of combustion gas which forms a flame is controlled, so that the bulk density of the glass particulate deposited body produced for 10min from start of supply of the raw material is controlled to a range from 0.4 to 0.9g/cm<3>. Because the generation of a crack, a cleavage and the stripping at the time of firing, etc., is prevented, large sized and high quality glass particulate deposited body or transparent glass body is produced in lower reject rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス微粒子の堆積体
を円柱状あるいは円筒状に出発材の外周部に形成する方
法に関し、特に高純度が要求される光ファイバ用母材製
造の際の中間製品に好適に用いられる、出発材とその外
周部に形成されたガラス微粒子堆積体からなる複合体の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a deposit of glass fine particles in a cylindrical or cylindrical shape on the outer peripheral portion of a starting material, and particularly when manufacturing a base material for an optical fiber which requires high purity. The present invention relates to a method for producing a composite body, which is preferably used for an intermediate product, and which includes a starting material and a glass fine particle deposit formed on the outer peripheral portion thereof.

【0002】[0002]

【従来の技術】従来、石英系ガラス管もしくは光ファイ
バ用母材の製造方法として特開昭48−73522号公
報に示されたようないわゆる「外付け法」がある。この
方法は、回転するカーボン、石英系ガラス又はアルミナ
などの耐火性出発材の外周部に、ガラス原料の火炎加水
分解反応により生成せしめたSiO2 などの微粒子状ガ
ラスを堆積させていき、所定量堆積させた後、堆積を止
め、出発材を引き抜き、パイプ状ガラス集合体を形成
し、このパイプ状ガラス集合体を高温電気炉中で焼結透
明ガラス化し、パイプ状ガラスを得ている。或いは、同
様の方法で出発材として中実の光ファイバ用ガラスを用
い、該出発材とガラス微粒子堆積体の複合体を形成した
のち、該出発材を引き抜かず該複合体を高温炉中で加熱
処理してガラス微粒子堆積体の部分を焼結することによ
り、出発材である光ファイバ用ガラス母材の外周部に更
に透明ガラス層を形成するという方法もある。
2. Description of the Related Art Conventionally, there is a so-called "external attachment method" as disclosed in JP-A-48-73522 as a method for producing a quartz glass tube or a base material for an optical fiber. This method involves depositing particulate glass such as SiO 2 produced by a flame hydrolysis reaction of a glass raw material on the outer periphery of a refractory starting material such as rotating carbon, quartz glass or alumina, and a predetermined amount. After the deposition, the deposition is stopped, the starting material is drawn out to form a pipe-shaped glass aggregate, and the pipe-shaped glass aggregate is sintered and transparent vitrified in a high temperature electric furnace to obtain a pipe-shaped glass. Alternatively, a solid glass for optical fiber is used as a starting material in the same manner to form a composite of the starting material and a glass fine particle deposit, and then the starting material is not pulled out and the composite is heated in a high temperature furnace. There is also a method in which a transparent glass layer is further formed on the outer peripheral portion of the glass base material for an optical fiber, which is a starting material, by processing and sintering the portion of the glass fine particle deposit.

【0003】[0003]

【発明が解決しようとする課題】従来、上記方法におい
ては、図1に示す如く、ガラス微粒子生成用バーナ2を
1本ないし多数本用いてガラス微粒子堆積体を合成して
いる。一般にバーナ4の先端から燃料ガスとして例えば
2 ,CH4 ,C3 8 等、助燃ガスとしてO2、空気
等が供給され、火炎3を形成する。この火炎3中にガラ
ス原料としてSiCl4 ,GeCl4 等が供給され、加
水分解反応によりガラス微粒子SiO2 ,GeO2 等が
生成される。該ガラス微粒子を回転する出発材1の外周
部に堆積させることにより、ガラス微粒子堆積体4が形
成される。ガラス微粒子堆積体を形成し始める初期の段
階においては、図2に示す如く、ガラス微粒子堆積体は
小さい。この初期の段階での堆積体のカサ密度が小さい
とスス割れ又は、出発材を残して焼結する際にガラス微
粒子堆積体の出発材からの剥離を起こし、良好な母材が
得られないという問題があった。本発明はこうした不良
の発生を防止し、品質の高いガラス微粒子体又はガラス
体を製造することを目的としてなされたものである。
Conventionally, in the above method, as shown in FIG. 1, one or a plurality of burners 2 for producing glass particles are used to synthesize a glass particle deposit. Generally, H 2 , CH 4 , C 3 H 8 or the like as a fuel gas and O 2 , air or the like as a supporting gas are supplied from the tip of the burner 4 to form the flame 3. SiCl 4 , GeCl 4 or the like is supplied as a glass raw material into the flame 3, and glass particles SiO 2 , GeO 2 or the like are generated by the hydrolysis reaction. The glass particle deposit body 4 is formed by depositing the glass particles on the outer peripheral portion of the rotating starting material 1. As shown in FIG. 2, the glass particle deposit is small in the initial stage of forming the glass particle deposit. If the bulk density of the deposit at this early stage is low, soot cracking or peeling of the glass particulate deposit from the starting material occurs when sintering with the starting material left, and a good base material cannot be obtained. There was a problem. The present invention has been made for the purpose of preventing the occurrence of such defects and producing high-quality glass fine particles or glass bodies.

【0004】[0004]

【課題を解決するための手段】本発明は自らの軸を回転
軸として回転している実質的に円柱状もしくは円筒状の
出発材の片端近傍から該出発材の外周部上に、ガラス微
粒子合成用バーナの火炎内にガラス原料を供給すること
により生成させたガラス微粒子を堆積させ始め、該バー
ナを該出発材の軸と平行に相対的に移動させていくこと
によりガラス微粒子堆積体を該出発材の外周部に軸方向
に形成していく方法において、ガラス微粒子を堆積させ
るために原料を投入開始後10分間に合成されたガラス
微粒子堆積体のカサ密度が0.4〜0.9g/cm3
範囲にあることを特徴とし、本発明の方法によりガラス
微粒子体の割れ防止又は焼結中の剥離を防止でき、高品
質な母材を製造できる。本発明においては、火炎を形成
する燃焼ガス流量の供給パターンを、ガラス微粒子を堆
積させ始める初期においてはカサ密度が0.4〜0.9
g/cm3 になる量Q1 に設定し、その後燃焼ガス流量
を最低値のQ2 にまで減少させることによりガラス微粒
子の堆積を速やかに進行せしめ、次に原料流量の増加と
ともに燃焼ガス流量を定常時流量Q3 まで増量すること
を特に好ましい実施態様として挙げることができる。ま
た、本発明におけるガラス微粒子堆積体の堆積面温度は
950℃〜1200℃であることが特に望ましい。
According to the present invention, glass fine particles are synthesized from the vicinity of one end of a substantially cylindrical or cylindrical starting material rotating around its own axis on the outer peripheral portion of the starting material. Starting to deposit glass fine particles generated by supplying the glass raw material into the flame of the burner for use, and moving the burner relatively parallel to the axis of the starting material In the method of forming the glass particles in the outer peripheral portion in the axial direction, the bulk density of the glass particle deposit body synthesized within 10 minutes after starting the introduction of the raw material for depositing glass particles has a bulk density of 0.4 to 0.9 g / cm 3. It is characterized in that it is in the range of 3 , and by the method of the present invention, it is possible to prevent cracking of glass fine particles or peeling during sintering, and it is possible to manufacture a high quality base material. In the present invention, the supply pattern of the flow rate of the combustion gas that forms the flame is set so that the bulk density is 0.4 to 0.9 at the beginning of the deposition of the glass particles.
The amount of fine particles of glass is rapidly set by setting the amount Q 1 to be g / cm 3 and then decreasing the combustion gas flow rate to the minimum value Q 2 , and then the combustion gas flow rate is increased as the raw material flow rate increases. Increasing the flow rate to the constant flow rate Q 3 can be mentioned as a particularly preferable embodiment. Further, the deposition surface temperature of the glass particulate deposit in the present invention is particularly preferably 950 ° C to 1200 ° C.

【0005】[0005]

【作用】種付初期の段階において、堆積したガラス微粒
子のカサ密度が小さいと、円柱状または円筒状出発材と
ガラス微粒子との密着性が充分でなく、ガラス微粒子堆
積体の重量が増えてくると自重に耐えきれず、割れ(ク
ラック)を生じる。また、たとえガラス微粒子堆積体の
段階では良好な製品が得られたとしても、焼結中に該ロ
ッドとガラス微粒子とが剥離し、高品質なガラス体は得
られない。本発明者等は研究を重ねた結果、良好な焼結
母材(ガラス体)を得るには、種付初期の段階でのガラ
ス微粒子のカサ密度が0.4g/cm3 以上必要なこと
を見いだした。カサ密度が0.4g/cm3 以上あれ
ば、上記出発材とガラス微粒子の密着性も十分となり、
20kgのガラス微粒子堆積体を合成しても高品質なガ
ラス体が得られた。一方、カサ密度を大きくしていく
と、出発材とガラス微粒子堆積体の密着性は向上するも
のの、カサ密度向上のためには燃焼ガスの流量を増やす
必要があり、これにより火炎温度が上昇するため、ガラ
ス微粒子の堆積が少ない初期の段階では出発材1(ロッ
ド)自体の温度も上がりやすく、この結果出発材1の中
心が回転中心とずれる現象、いわゆる“振れ回り” を
生じてしまうことがわかった。振れ回りを抑えられるカ
サ密度は0.9g/cm3 以下であった。上述した範囲
0.4〜0.9g/cm3 のカサ密度のガラス微粒子を
堆積させるためには、堆積面温度を950〜1200℃
程度に抑制する必要があることも見いだした。つまり、
堆積初期の段階でのカサ密度はある程度大きくしておく
必要があり、0.4g/cm3 以上とするが、初期の段
階を過ぎれば、ガラス微粒子の堆積成長を優先させる必
要がある。
When the bulk density of the deposited glass particles is low in the initial stage of seeding, the adhesion between the cylindrical or cylindrical starting material and the glass particles is not sufficient, and the weight of the glass particle deposit increases. And cannot bear the weight of itself, and cracks occur. Further, even if a good product is obtained at the stage of depositing glass fine particles, the rod and the glass fine particles are separated during sintering, and a high quality glass body cannot be obtained. As a result of repeated studies by the present inventors, it was found that the bulk density of glass fine particles in the initial stage of seeding should be 0.4 g / cm 3 or more in order to obtain a good sintered base material (glass body). I found it. When the bulk density is 0.4 g / cm 3 or more, the adhesion between the above-mentioned starting material and the glass fine particles becomes sufficient,
A high-quality glass body was obtained even when 20 kg of glass particle deposits were synthesized. On the other hand, when the bulk density is increased, the adhesion between the starting material and the glass particulate deposits is improved, but the flow rate of combustion gas must be increased to improve the bulk density, which increases the flame temperature. Therefore, the temperature of the starting material 1 (rod) itself is likely to rise in the initial stage where the deposition of glass particles is small, and as a result, a phenomenon in which the center of the starting material 1 is displaced from the center of rotation, that is, so-called "whip around" may occur. all right. The bulk density capable of suppressing whirling was 0.9 g / cm 3 or less. In order to deposit the glass particles having a bulk density of 0.4 to 0.9 g / cm 3 described above, the deposition surface temperature is set to 950 to 1200 ° C.
I also found that it needs to be suppressed to a certain degree. That is,
The bulk density in the initial stage of deposition needs to be increased to some extent and is set to 0.4 g / cm 3 or more, but after the initial stage, deposition growth of glass particles needs to be prioritized.

【0006】そこで、本発明では燃焼ガスの流量パター
ンを原料投入直後である種付初期の段階での流量Q
1 (原料投入量により異なるが堆積面温度が1050〜
1150℃になるような流量が特に好ましい)に対し
て、徐々に減量させ、ある流量Q2(原料投入量により
異なるが堆積面温度が950〜1000℃になるような
流量が特に好ましい)を最小値として、その後原料の増
量に合わせて定常時の流量Q 3 (原料投入量により異な
るが堆積面温度が1000〜1050℃になるような流
量が特に好ましい)に再び増量するという設定で対応す
ることにより、種付初期でのカサ密度0.4〜0.9g
/cm3 を達成し、かつガラス微粒子の堆積、成長を効
率的に行なうことができる。
Therefore, in the present invention, the flow rate pattern of the combustion gas is used.
Flow rate Q at the initial stage of seeding, which is immediately after charging the raw material
1(Depending on the amount of raw material input, the deposition surface temperature is 1050-
A flow rate of 1150 ° C is particularly preferable)
And gradually reduce the volume to a certain flow rate Q2(Depending on the amount of raw material input
Although it is different, the deposition surface temperature may reach 950 to 1000 ° C.
Flow rate is especially preferable)
Flow rate Q in steady state according to the amount 3(Depending on the amount of raw material input
However, a flow that causes the deposition surface temperature to rise to 1000 to 1050 ° C.
(The amount is especially preferable).
As a result, the bulk density at the initial stage of seeding is 0.4 to 0.9 g.
/ Cm3Is achieved, and glass particles are effectively deposited and grown.
It can be done efficiently.

【0007】[0007]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるところはない。 〔実施例〕水素と酸素の組合せを3組もつ、3重火炎バ
ーナにてガラス微粒子堆積体の堆積を行った。原料流量
は4リットル/分より15リットル/分まで徐々に12
0分かけて増量させた。また、第2ポートに流す水素流
量は、初期流量Q1 =20リットル/分で5分間流し、
その後5分間かけてQ2 =8リットル/分まで減量し、
続いて更に90分間かけてQ3 =15リットル/分まで
増量するよう設定した。種付初期の段階である原料投入
後10分間で、ガラス微粒子の合成を止め、この時点で
の出発材とガラス微粒子の密着性及びガラス微粒子のカ
サ密度を測定したところ、密着力は十分あり、カサ密度
は0.67g/cm3 であった。また、赤外線温度画像
解析装置(サーモビュア)で温度測定したところ、堆積
面温度は1080℃程度であった。別の出発材を準備
し、同様の条件設定でガラス微粒子堆積体を製造した。
製造したガラス微粒子堆積体の直径は240mm、長さ
800mmで重量は約20kgあったが、割れもなく良
好なガラス微粒子堆積体を得た。このガラス微粒子堆積
体を1550℃に保った加熱炉に挿入し、透明ガラス化
したところ、直径100mm、長さ700mmの良好な
透明ガラス体を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. [Example] Glass fine particle deposits were deposited with a triple flame burner having three combinations of hydrogen and oxygen. The raw material flow rate is gradually increased from 4 liters / minute to 15 liters / minute by 12
The dose was increased over 0 minutes. The hydrogen flow rate to the second port is the initial flow rate Q 1 = 20 liters / minute for 5 minutes,
After that, reduce the volume to Q 2 = 8 liters / minute over 5 minutes,
Then, it was set to increase Q 3 = 15 liters / minute over 90 minutes. The synthesis of the glass fine particles was stopped 10 minutes after the raw material was charged, which is the initial stage of seeding, and the adhesion between the starting material and the glass fine particles and the bulk density of the glass fine particles at this time were measured. The bulk density was 0.67 g / cm 3 . When the temperature was measured with an infrared temperature image analyzer (thermoviewer), the deposition surface temperature was about 1080 ° C. Another starting material was prepared, and a glass particulate deposit was manufactured under the same condition settings.
The produced glass particle deposit had a diameter of 240 mm, a length of 800 mm and a weight of about 20 kg, but a good glass particle deposit was obtained without cracking. This glass fine particle deposit was inserted into a heating furnace maintained at 1550 ° C. to be transparent vitrified, and a good transparent glass body having a diameter of 100 mm and a length of 700 mm was obtained.

【0008】〔比較例1〕実施例と同様の構成にて、且
つ原料流量も同一に設定し、第2ポートに流す水素流量
1 =12リットル/分で5分間供給し、その後5分間
でQ2 =8リットル/分まで減量し、更に90分間かけ
て定常流量Q3 =15リットル/分まで増量するように
設定した。種付初期の段階である原料投入後10分間で
ガラス微粒子の合成を止め、この時点での出発材とガラ
ス微粒子の密着性及びガラス微粒子のカサ密度を測定し
たところ、密着力は実施例ほど強くなく、衝撃を与えれ
ば用意に剥離する状態であった。また、ガラス微粒子の
カサ密度も0.35g/cm3 と低かった。また堆積面
温度を測定したところ、850℃程度であった。別の出
発材を準備し、同様の条件設定でガラス微粒子堆積体を
製造したところ、直径は240mm、長さ800mmで
重量は約20kgあったが割れもなく良好なガラス微粒
子堆積体であった。このガラス微粒子堆積体を1550
℃に保った加熱炉に挿入し、透明ガラス化を試みたが、
焼結母材はガラス微粒子堆積体の種付上部で、種付初期
の密着力不足に起因すると考えられる剥離を起こしてい
た。
[Comparative Example 1] With the same configuration as that of the embodiment and the same flow rate of the raw material, the flow rate of hydrogen flowing through the second port Q 1 = 12 liters / minute was supplied for 5 minutes, and then for 5 minutes. The amount was reduced to Q 2 = 8 liters / minute, and further set to increase the steady flow rate Q 3 = 15 liters / minute over 90 minutes. The synthesis of the glass fine particles was stopped 10 minutes after the raw material was charged, which is the initial stage of seeding, and the adhesion between the starting material and the glass fine particles and the bulk density of the glass fine particles at this point were measured. However, it was in a state of being easily peeled off when an impact was applied. The bulk density of the glass particles was also low at 0.35 g / cm 3 . Further, the deposition surface temperature was measured and found to be about 850 ° C. When another starting material was prepared and a glass fine particle deposit was manufactured under the same condition settings, the glass fine particle deposit had a diameter of 240 mm, a length of 800 mm and a weight of about 20 kg, but was a good glass particulate deposit. This glass particle deposit is 1550
It was inserted into a heating furnace kept at ℃ and tried to make it transparent.
The sintered base material was peeled off at the upper part of the seed of the glass particle deposit, which is considered to be due to insufficient adhesion at the initial stage of seeding.

【0009】〔比較例2〕実施例と同様の構成にて、且
つ原料流量も同一に設定し、第2ポートに流すH 1 流量
を30リットル/分として5分間供給し、その後90分
かけて定常流量Q 3 =15リットル/分まで減量させ
た。種付初期の段階である原料投入後10分間でだらび
の合成を止め、この時点での出発材とガラス微粒子の密
着性、及びガラス微粒子のカサ密度を測定したところ、
密着力は十分強く、焼結後の割れもなかったが、カサ密
度は1.05g/cm3 と高くなり、ガラス微粒子の成
長も実施例に比べ抑制されていた。更に、原料投入前の
ロッド加熱が強すぎ、ロッドの温度が上昇して振り回り
を生じた。
[Comparative Example 2] With the same configuration as that of Example, and
Set the same raw material flow rate, and flow H to the second port 1Flow rate
At 30 liters / minute for 5 minutes, then 90 minutes
Steady flow rate Q 3= Reduce to 15 liters / minute
It was 10 minutes after the raw material is fed, which is the initial stage of seeding,
Of the starting material and glass particles at this point.
When the adhesion and the bulk density of the glass particles were measured,
Adhesion was strong enough and there were no cracks after sintering,
The degree is 1.05 g / cm3Becomes higher, and the formation of fine glass particles
The length was also suppressed as compared with the examples. In addition,
Rod heating is too strong and rod temperature rises and swings around
Occurred.

【0010】なお、本発明の方法では初期流量(ただし
原料ガスを除いたもの)で1〜5分程度ロッドを加熱し
てから原料投入を開始する。上記各例ではこの加熱は1
分である)。また、上記各例では2ポートのH2 を例に
とり説明したが、実施例で示す燃焼ガスの流量パターン
は2ポートの場合に限るものでないことは、勿論であ
る。
In the method of the present invention, the raw material is charged after the rod is heated at the initial flow rate (excluding the raw material gas) for about 1 to 5 minutes. In the above examples, this heating is 1
Minutes). Further, in each of the above-mentioned examples, the description has been made by taking H 2 of two ports as an example, but it goes without saying that the flow pattern of the combustion gas shown in the embodiment is not limited to the case of two ports.

【0011】以上の実施例では燃焼ガスとして水素を用
いる例を述べたが、燃焼ガスは水素に限定されるもので
はなく、CH4 、C3 8 、CO等にの場合でも同様の
効果を期待できる。また、水素流量の設定変更を連続的
に行ったが、設定は連続である必要はなく、不連続な設
定変更でも構わない。
In the above embodiments, an example in which hydrogen is used as the combustion gas has been described, but the combustion gas is not limited to hydrogen, and similar effects can be obtained when CH 4 , C 3 H 8 , CO or the like is used. Can be expected. Further, although the setting of the hydrogen flow rate is continuously changed, the setting does not have to be continuous, and the setting may be changed discontinuously.

【0012】[0012]

【発明の効果】本発明により、ガラス微粒子堆積体製造
初期の出発材とガラス微粒子の密着性を強化でき、かつ
その後のガラス微粒子の堆積、成長も効率的に行なうこ
とができる。従って,大型母材製造時にも割れや剥離を
生じさせることなく高品質なガラス体を製造することが
できる。
According to the present invention, the adhesion between the starting material and the glass particles at the initial stage of manufacturing the glass particle deposit can be enhanced, and the subsequent glass particle deposition and growth can be efficiently performed. Therefore, it is possible to manufacture a high-quality glass body without causing cracking or peeling even when manufacturing a large base material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様を説明する概略図である。FIG. 1 is a schematic diagram illustrating an embodiment of the present invention.

【図2】ガラス微粒子堆積体製造における初期のガラス
微粒子堆積状態を説明する概略図である。
FIG. 2 is a schematic diagram illustrating an initial state of glass particle deposition in the production of glass particle deposits.

【図3】本発明の方法における燃焼ガス流量の経時変化
の例を示すグラフ図であり、横軸は時間、縦軸は燃焼ガ
ス流量(実施例では水素)を示す。
FIG. 3 is a graph showing an example of a change over time in the combustion gas flow rate in the method of the present invention, in which the horizontal axis represents time and the vertical axis represents the combustion gas flow rate (hydrogen in the examples).

【符合の説明】[Explanation of sign]

1 出発材 2 バーナ 3 火炎 4 ガラス微粒子堆積体 41 堆積初期のガラス微粒子堆積体 1 Starting Material 2 Burner 3 Flame 4 Glass Fine Particle Deposit 41 Glass Early Particle Deposit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 自らの軸を回転軸として回転している実
質的に円柱状もしくは円筒状の出発材の片端近傍から該
出発材の外周部上に、ガラス微粒子合成用バーナの火炎
内にガラス原料を供給することにより生成させたガラス
微粒子を堆積させ始め、該バーナを該出発材の軸と平行
に相対的に移動させていくことによりガラス微粒子堆積
体を該出発材の外周部に軸方向に形成していく方法にお
いて、ガラス微粒子を堆積させ始めるために原料を投入
開始後10分間に合成されたガラス微粒子堆積体のカサ
密度が0.4〜0.9g/cm3 の範囲にあるように火
炎を形成する燃焼ガス流量を調節しつつ堆積させること
を特徴とするガラス微粒子堆積体の製造方法。
1. A glass in a flame of a burner for synthesizing glass particles, from the vicinity of one end of a substantially cylindrical or cylindrical starting material rotating around its own axis to the outer periphery of the starting material. Starting to deposit the glass fine particles generated by supplying the raw material, and moving the burner relatively in parallel to the axis of the starting material, thereby depositing the glass particulate deposit on the outer peripheral portion of the starting material in the axial direction. In the method of forming the glass fine particles, the bulk density of the glass fine particle deposits synthesized within 10 minutes after starting the introduction of the raw materials to start the deposition of the glass fine particles is in the range of 0.4 to 0.9 g / cm 3. A method for producing a glass particulate deposit, which comprises depositing while controlling a flow rate of a combustion gas that forms a flame in a glass.
【請求項2】 火炎を形成する燃焼ガス流量の供給パタ
ーンを、ガラス微粒子を堆積させ始める初期においては
カサ密度が0.4〜0.9g/cm3 になる量Q1 に設
定し、その後燃焼ガス流量を最低値のQ2 にまで減少さ
せることによりガラス微粒子の堆積を速やかに進行せし
め、次に原料流量の増加とともに燃焼ガス流量を定常時
流量Q3 まで増量することを特徴とする請求項1記載の
ガラス微粒子堆積体の製造方法。
2. A combustion gas flow rate supply pattern for forming a flame is set to an amount Q 1 at which a bulk density is 0.4 to 0.9 g / cm 3 in the initial stage of starting the deposition of glass particles, and thereafter combustion is performed. The gas flow rate is reduced to a minimum value Q 2 to accelerate the deposition of glass particles, and then the combustion gas flow rate is increased to a steady state flow rate Q 3 as the raw material flow rate is increased. 1. The method for producing a glass particle deposit according to 1.
【請求項3】 ガラス微粒子堆積体の堆積面温度が95
0℃〜1200℃であることを特徴とする請求項1又は
請求項2記載のガラス微粒子堆積体の製造方法。
3. The deposition surface temperature of the glass particulate deposit is 95.
It is 0 degreeC-1200 degreeC, The manufacturing method of the glass particle deposit body of Claim 1 or Claim 2 characterized by the above-mentioned.
JP14741792A 1992-06-08 1992-06-08 Method for producing glass particle deposit Expired - Lifetime JP3221059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14741792A JP3221059B2 (en) 1992-06-08 1992-06-08 Method for producing glass particle deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14741792A JP3221059B2 (en) 1992-06-08 1992-06-08 Method for producing glass particle deposit

Publications (2)

Publication Number Publication Date
JPH05339011A true JPH05339011A (en) 1993-12-21
JP3221059B2 JP3221059B2 (en) 2001-10-22

Family

ID=15429841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14741792A Expired - Lifetime JP3221059B2 (en) 1992-06-08 1992-06-08 Method for producing glass particle deposit

Country Status (1)

Country Link
JP (1) JP3221059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098219A3 (en) * 2000-06-19 2002-06-20 Heraeus Tenevo Ag Method for producing an sio2 blank and blank so produced
CN104098266A (en) * 2013-04-08 2014-10-15 信越化学工业株式会社 Glass optical fibre preform and method for its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098219A3 (en) * 2000-06-19 2002-06-20 Heraeus Tenevo Ag Method for producing an sio2 blank and blank so produced
CN104098266A (en) * 2013-04-08 2014-10-15 信越化学工业株式会社 Glass optical fibre preform and method for its manufacture
JP2015006971A (en) * 2013-04-08 2015-01-15 信越化学工業株式会社 Method for manufacturing glass preform for optical fiber, and glass preform for optical fiber
CN104098266B (en) * 2013-04-08 2018-02-06 信越化学工业株式会社 The manufacture method and glass base material for optical fiber of glass base material for optical fiber

Also Published As

Publication number Publication date
JP3221059B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
JP2003226544A (en) Method of manufacturing optical fiber porous preform
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
JPH05339011A (en) Production of glass particulate deposited body
JP3381309B2 (en) Method for producing glass particle deposit
JPS59174538A (en) Manufacture of base material for optical fiber
JPH05319849A (en) Production of silica porous preform
JP2000272929A (en) Production of optical fiber preform
WO2019044807A1 (en) Method for producing glass fine particle deposit, method for producing glass base material, and glass fine particle deposit
JP2004035282A (en) Process for manufacturing porous preform for optical fiber
JPH0258218B2 (en)
JPS62182131A (en) Production of piled material of glass fine particle
JPH0563417B2 (en)
JPH0776108B2 (en) Method for manufacturing base material for optical fiber
JPS60260433A (en) Manufacture of base material for optical fiber
JPS63182234A (en) Production of optical fiber parent material
JP2603472B2 (en) Manufacturing method of porous quartz glass base material
JPS62162646A (en) Production of glass fine particle deposit
JPS627641A (en) Production of deposited body of fine glass particle
JPS61266318A (en) Production of glass fine granular deposit
JPH0733469A (en) Production of preform for optical fiber
JPH0761877B2 (en) Method for manufacturing glass particulate deposit
JPH01108132A (en) Production of porous material for optical fiber and device therefor
JP2004026610A (en) Method for manufacturing porous preform for optical fiber
JPH0784331B2 (en) Method for manufacturing glass base material for optical fiber
JPH1121143A (en) Production of preform for optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

EXPY Cancellation because of completion of term