JPS63182234A - Production of optical fiber parent material - Google Patents

Production of optical fiber parent material

Info

Publication number
JPS63182234A
JPS63182234A JP1248387A JP1248387A JPS63182234A JP S63182234 A JPS63182234 A JP S63182234A JP 1248387 A JP1248387 A JP 1248387A JP 1248387 A JP1248387 A JP 1248387A JP S63182234 A JPS63182234 A JP S63182234A
Authority
JP
Japan
Prior art keywords
glass
temperature
temp
optical fiber
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1248387A
Other languages
Japanese (ja)
Inventor
Masahiro Takagi
政浩 高城
Hiroo Kanamori
弘雄 金森
Gotaro Tanaka
豪太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1248387A priority Critical patent/JPS63182234A/en
Publication of JPS63182234A publication Critical patent/JPS63182234A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0148Means for heating preforms during or immediately prior to deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce an optical fiber parent material stably and at high yield without causing foam generation nor stripping by controlling partly the surface temp. of deposit of fine glass particles formed at the external periphery of a cylindrical starting material. CONSTITUTION:An ejecting port 4 for cooling gas is provided to a foot of a burner 3 for synthesizing fine glass particles. Measurement of temp. of the part A where the fine glass particles begin to deposit to the rod 1 of the starting glass and the part B near the boundary between the rod 1 and the burner are executed with a temp. measuring sensor 51. Then, the flow rate of the cooling gas from an ejecting port 4 is increased in accordance with the result of this temp. measurement if it is higher than specified temp., or it is decreased if it is lower than the specified temp. Further, the part A is heated if necessary by providing another heat source to the foot of the ejecting port 4, whereby the temp. of the parts A, B, are controlled by cooling the part B. It is preferred that the temp. difference between the part A and the part B is within 200 deg.C and the temp. of the part A is >=600 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバ用母材の製造に関し、特に安定にか
つ高歩留りに光ファイバ用母材を製造できる新規な方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the production of optical fiber preforms, and more particularly to a novel method capable of producing optical fiber preforms stably and with high yield.

〔従来の技術〕[Conventional technology]

光ファイバ用母材の製造方法として、特開昭48−73
522号公報に記載されるような、謂る1外付法”がち
る。これは、出発材としての中実の石英製ロッドの周囲
に、s i c t4等のガラス原料を加水分解反応さ
せることにより生成せしめた5i02等のガラス微粒子
を堆積させてゆき、該出発材とガラス微粒子堆積体から
なる複合体を形成した後に、該複合体を高温炉中にて加
熱処理して、ガラス微粒子堆積体の部分を焼結すること
により、出発材の外周に、さらに透明ガラス層を形成し
て光ファイバ用母材を得る方法である。
As a method for manufacturing optical fiber base material, Japanese Patent Application Laid-Open No. 48-73
The so-called 1-external attachment method, as described in Japanese Patent No. 522, involves hydrolyzing a glass raw material such as SIC T4 around a solid quartz rod as a starting material. After depositing the glass particles such as 5i02 produced by this process to form a composite consisting of the starting material and the glass particle deposit, the composite is heat-treated in a high-temperature furnace to deposit the glass particles. In this method, a transparent glass layer is further formed on the outer periphery of the starting material by sintering the body part to obtain an optical fiber preform.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来法によって光ファイバ用母材となる透明ガラス
体を得る場合、焼結透明化の際に、上記出発材と外側ガ
ラス層との境界面上に気泡が発生する、或いは出発材と
外側ガラス層との剥離が生じる等の問題があった。
When obtaining a transparent glass body as a base material for an optical fiber by the above conventional method, bubbles may be generated on the interface between the starting material and the outer glass layer during sintering and transparentization, or bubbles may be generated on the interface between the starting material and the outer glass layer. There were problems such as peeling from the layer.

本発明はこのような問題点を解決して、出発材ガフスロ
ットとガラス微粒子堆積体からなる複合体を焼結、透明
化することによりガラス母材を製造するにおいて、気泡
発生や剥離なく、安定かつ高歩留りで製造できる新規な
方法を提供しようとするものである。
The present invention solves these problems and allows stable and stable production of a glass base material by sintering and making transparent a composite consisting of a starting material gaff slot and a glass fine particle deposit without generating bubbles or peeling. The aim is to provide a new method that can be manufactured with high yield.

〔問題点を解決するための手段〕 本発明は自らの軸を回転軸として回転している実質的に
円柱状の出発材の片端近傍から、該出発材の外周部上に
、ガラス微粒子合成用バーナーの火炎内にガラス原料を
供給することによ多発生させたガラス微粒子を堆積させ
始め該バーナーを出発材の軸と平行に相対的に移動させ
ていくことによりガラス微粒子堆積体を出発材の外周部
に形成していく方法に於いて、上記ガラス微粒子堆積体
の表面温度を部分的に制御することを特徴とする光ファ
イバ用母材の製造方法でちり、これにより前記の問題点
をうまく解決できるものである。
[Means for Solving the Problems] The present invention provides a material for synthesizing glass fine particles from near one end of a substantially cylindrical starting material that rotates about its own axis, onto the outer periphery of the starting material. The glass particles generated by supplying the glass raw material into the flame of the burner begin to be deposited, and by moving the burner relatively parallel to the axis of the starting material, the glass particle deposit body is deposited on the starting material. This method of manufacturing an optical fiber base material is characterized by partially controlling the surface temperature of the glass particle deposit in the method of forming it on the outer periphery. It is something that can be solved.

本発明の特に好ましい実施態様としては、ガラス微粒子
堆積体が出発ロッドに堆積し始める部分と、ガラス微粒
子堆積体の出発ロッドとの界面付近の部分との温度差が
200℃以内であり、かつ、前者の温度が600’C以
上となるように温度制御を行なう上記方法が挙げられる
In a particularly preferred embodiment of the present invention, the temperature difference between the part where the glass particulate deposit starts to be deposited on the starting rod and the part of the glass particulate deposit near the interface with the starting rod is within 200°C, and The above-mentioned method includes controlling the temperature so that the former temperature is 600'C or higher.

また、ガラス微粒子堆積体の表面温度の制御手段として
冷却用ガスを用いる上記方法も特に好ましい。この際冷
却用ガスはその温度が常温以下である不活性ガスを用い
ることが好ましい。
Also particularly preferred is the above method in which a cooling gas is used as a means for controlling the surface temperature of the glass particle deposit. At this time, it is preferable to use an inert gas whose temperature is below room temperature as the cooling gas.

前記したような種々の問題は、ガラス微粒子堆積体のカ
サ密度が局所的に、特に出発ガラスロッド表面付近で急
激に変化していることが原因となって、焼結透明化の際
に不均一に収縮が進むためと考えられる。第2図はガラ
ス微粒子堆積体の径方向のカサ密度分布を示すが、破線
口で示されるものは従来法によるものであって、出発ロ
ッド近傍でカサ密度が急激に上昇し、これに続く外周方
向に向かって急に下がっていることがわかる。
The various problems described above are caused by the fact that the bulk density of the glass fine particle deposit varies rapidly locally, especially near the starting glass rod surface, resulting in non-uniformity during sintering and transparency. This is thought to be because the contraction progresses. Figure 2 shows the bulk density distribution in the radial direction of the glass particle deposit, and the one indicated by the broken line is the result of the conventional method, in which the bulk density rapidly increases near the starting rod, and then the outer periphery. It can be seen that there is a sudden drop in direction.

そこで本発明者らは、光ファイバ用母材となるガラスロ
ッド・ガラス微粒子堆積体の複合体の製造において、ガ
ラスロッドとガラス微粒子堆積体との界面付近のガラス
微粒子堆積体のカサ密度をコントロールして均一化する
ことにより、ガラス微粒子堆積体の焼結・透明化時に発
生する気泡や、出発ロッドと外側ガラス層の剥離の問題
を防止することを考えついた。
Therefore, the present inventors controlled the bulk density of the glass fine particle deposit near the interface between the glass rod and the glass fine particle deposit in the production of a composite of a glass rod and glass fine particle deposit, which is a base material for an optical fiber. We came up with the idea of preventing the problems of bubbles generated during sintering and transparency of the glass particle deposit and peeling of the starting rod from the outer glass layer by making the glass particle uniform.

すなわち、カサ密度と堆積温度の間には下記(1)式の
ような実験式が見出されており、カサ密度は一般に高温
になるほど大きくなることがわかる。
That is, an experimental equation such as the following equation (1) has been found between the bulk density and the deposition temperature, and it is understood that the bulk density generally increases as the temperature increases.

ここでP:カサ密度9/−3 R:気体定数 cul/に−mol T:絶対温度 そこで本発明は、ガラスロッド・ガラス微粒子堆積体の
複合体の製造において、ガラス微粒子体の出発ガフスロ
ットとガラス微粒子堆積体の界面付近の部分Bを、ガス
を用いて冷却することにより、従来法では第2図の口に
示したように急激に上昇していたカサ密度を低減させて
、この部分でのカサ密度の急激な差を低減し、カサ密度
の均一化を実現するのである。さらに冷却ガスによシ出
発ロッドが冷却されすぎる場合には、別に設けた加熱源
により予め出発ロッドを加熱しておくこともよい。この
ような調整は温度をモニターすることにより可能であシ
、カサ密度を精密に均一化できる。
Here, P: Bulk density 9/-3 R: Gas constant cul/-mol T: Absolute temperature Therefore, in the production of a composite of a glass rod/glass fine particle deposit, the present invention aims to connect the starting gaff slot of the glass fine particle body with the glass By cooling the part B near the interface of the fine particle deposit using gas, the bulk density, which had risen rapidly in the conventional method as shown at the mouth in Figure 2, can be reduced, and the bulk density in this part can be reduced. This reduces the sudden difference in bulk density and makes the bulk density uniform. Furthermore, if the starting rod is cooled too much by the cooling gas, the starting rod may be heated in advance using a separately provided heat source. Such adjustment is possible by monitoring the temperature, and the bulk density can be made uniform precisely.

以下、図面を参照しつつ本発明を具体的に説明する。第
1図は本発明の概略図であって、ガラス微粒子合成用バ
ーナー5の下部に、冷却用ガス噴出口4を設けである。
Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic diagram of the present invention, in which a cooling gas outlet 4 is provided at the bottom of a burner 5 for synthesizing glass fine particles.

また、ガラス微粒子が出発ガラスロッド1に堆積し始め
る部分Aと、ガラス微粒子体の出発ロッド1との界面近
傍部分Bの温度計測を、温度計測用センサー51により
行う。この温度計測の結果に従がい、冷却用ガス噴出口
4からの冷却用ガスの流量を、所定温度より高温の場合
には増量する。所定温度より低温の場合は減量するとい
うように変化させる。また前記のように、冷却用ガス噴
出口4の下部に別の熱源を設けて、第1図のA部分は必
要とすれば加熱し、Bの部分は冷却して両者の温度をコ
ントローμすればよい。
In addition, the temperature measurement sensor 51 measures the temperature of a portion A where glass fine particles begin to accumulate on the starting glass rod 1 and a portion B near the interface between the glass fine particles and the starting rod 1. Based on the result of this temperature measurement, the flow rate of the cooling gas from the cooling gas outlet 4 is increased if the temperature is higher than a predetermined temperature. When the temperature is lower than a predetermined temperature, the amount is reduced. Further, as mentioned above, another heat source is provided below the cooling gas outlet 4 to heat the part A in FIG. 1 if necessary and cool the part B to control the temperature of both parts. Bye.

本発明においては、ガラス微粒子体が出発ロッドに堆積
し始める部分Aと、ガラス微粒子体の出発ロッドとの界
面近傍部分Bの温度差は200℃以内であること、又A
の温度は600℃以上であることが好ましい。これはA
の温度が600℃に未たないとガラス微粒子堆積体の成
長が不安定となり、非常に割れ易くなるためであり、ま
たAとBの温度差が2oo℃を越えると、焼結透明化し
た際に、気泡の残存する割合が非常に大きくなるためで
ある。
In the present invention, the temperature difference between a portion A where the glass fine particles begin to accumulate on the starting rod and a portion B near the interface of the glass fine particles with the starting rod is within 200°C;
The temperature is preferably 600°C or higher. This is A
If the temperature of A and B does not reach 600°C, the growth of the glass fine particle deposit becomes unstable and it becomes very easy to break.If the temperature difference between A and B exceeds 200°C, it will become sintered and transparent. This is because the proportion of remaining bubbles becomes extremely large.

本発明に用いる冷却用ガスとしては、例えばN2 、 
Hew Ar 等の不活性ガスが好ましく、その温度は
常温以下が好ましい。
Examples of the cooling gas used in the present invention include N2,
An inert gas such as Hew Ar is preferred, and the temperature thereof is preferably room temperature or lower.

なお、冷却ガス流量の原料流量に対する割合や、その絶
対量等は、バーナ位置その他の条件によυ異なるので、
−概に限定することはできないが、原料流量に対する影
響は無視できる範囲の量で、十分に本発明の効果が保証
できる。
Note that the ratio of the cooling gas flow rate to the raw material flow rate and its absolute amount vary depending on the burner position and other conditions, so
- Although it cannot be generally limited, the effect on the raw material flow rate is within a negligible range, and the effects of the present invention can be fully guaranteed.

上記のように行なうことにより、冷却ガスの効果により
ロッドとの界面付近のガラス微粒子体のカサ密度を局所
的に変化させることができて、カサ密度を径方向に均一
化できる。この結果、焼結透明化を行った際に収縮がよ
り均一に進行するので、気泡残存や出発ロッドと外側ガ
ラス体とのずれ等の問題をうまく解決することができる
By doing as described above, the bulk density of the glass fine particles near the interface with the rod can be locally changed by the effect of the cooling gas, and the bulk density can be made uniform in the radial direction. As a result, shrinkage progresses more uniformly during sintering and transparency, so problems such as remaining bubbles and misalignment between the starting rod and the outer glass body can be successfully solved.

第2図のイの実線が、本発明により製造したガラス微粒
子堆積体の径方向のカサ密度分布を示す曲線であって、
従来法による口の曲線と比較すると、イは非常に均一化
されていることがら、本発明の効果が明らかである。な
お同図中の斜線部分は出発ロッド部分をあらゎす。
The solid line A in FIG. 2 is a curve showing the bulk density distribution in the radial direction of the glass fine particle deposit body produced according to the present invention,
Compared to the mouth curve created by the conventional method, the curve of the mouth is very uniform, which clearly shows the effect of the present invention. The shaded area in the figure represents the starting rod.

〔実施例〕〔Example〕

実施例1 第1図に示した構成において、本発明により光ファイバ
用母材を製造した。出発ロッドとして外径15mの石英
棒を用いた。ガラス微粒子合成用バーナは同心円状バー
ナを用いて、該バーナに原料、燃料、助燃ガスとして5
iC4600cc/分、H240t/分、0,251/
分、Ar15t/分を流すことにょシ、ガラスロッド・
ガラス微粒子堆積体の複合体を製造した。
Example 1 In the configuration shown in FIG. 1, an optical fiber preform was manufactured according to the present invention. A quartz rod with an outer diameter of 15 m was used as the starting rod. The burner for glass particle synthesis uses a concentric burner, and the burner is charged with 5 liters of raw material, fuel, and auxiliary gas.
iC4600cc/min, H240t/min, 0,251/
The glass rod
A composite of glass particulate deposits was manufactured.

その際に、温度計測を行ないながら、冷却用ガス噴出口
よりHe を517分程変流した。このとき界面付近B
の温度は8501:、ロッド表面付近Aの温度は730
℃であった。
At this time, while measuring the temperature, He was flown through the cooling gas outlet for approximately 517 minutes. At this time, near the interface B
The temperature of is 8501:, the temperature near the rod surface A is 730
It was ℃.

以上で得られた本発明の複合体を、温度1650℃でH
e雰囲気中にて焼結・透明化した。同様にして計5本の
複合体を得て透明化したが、気泡残存やガフスロットと
外側ガラス層との剥離はいずれも皆無で、非常にうまく
透明化できた。
The composite of the present invention obtained above was heated at a temperature of 1650°C.
Sintered and made transparent in e atmosphere. A total of 5 composites were obtained and made transparent in the same manner, and there were no residual bubbles or peeling between the gaff slot and the outer glass layer, and the transparentization was very successful.

比較例1 上記実施例1において、冷却用ガスを流さない以外は同
様の条件にして光ファイバ用母材製造を行ったところ、
界面付近Bの温度は約900℃、ロッド表面付近の温度
は約680’Cと200℃を越える差があった。得られ
た複合体を実施例1と同様に焼結したところ、割れは生
じなかったが、出発ロッド界面に、全長にわたって気泡
が残存した。
Comparative Example 1 An optical fiber base material was manufactured under the same conditions as in Example 1 except that the cooling gas was not flowed.
The temperature near the interface B was about 900°C, and the temperature near the rod surface was about 680'C, a difference of more than 200°C. When the obtained composite was sintered in the same manner as in Example 1, no cracks occurred, but air bubbles remained at the starting rod interface over the entire length.

比較例2 上記実施例1において、5iCt4の流量を1t/分に
変更し、冷却用ガスを流さない以外は同様の条件にて、
光ファイバ用母材の製造を2回行った。このうちの1回
は、ガラス微粒子の堆積中に堆積面が変形し始め、約1
時間後に割れが生じた。又、他の一回については、焼結
途中で割れが生じた。この製造条件では、界面付近Bの
温度は約750℃、ロッド表面近傍Aの温度は570℃
で、両者の温度差は200℃以内であったものの、ロッ
ド表面近傍の温度が600℃に達していなかった。
Comparative Example 2 Under the same conditions as in Example 1 above, except that the flow rate of 5iCt4 was changed to 1 t/min and the cooling gas was not flowed,
The production of the optical fiber base material was carried out twice. In one of these cases, the deposition surface began to deform during the deposition of glass particles, and about 1
Cracks appeared after some time. In addition, in the other case, cracks occurred during sintering. Under these manufacturing conditions, the temperature near the interface B is approximately 750°C, and the temperature near the rod surface A is 570°C.
Although the temperature difference between the two was within 200°C, the temperature near the rod surface did not reach 600°C.

以上の実施例及び比較例の結果から、出発ガブスロツド
に堆積するガラス微粒子堆積体の表面温度を部分的に制
御し、特にこの制御には冷却用ガスを用いて出発ロッド
表面近傍の温度とロッドとの界面付近の温度差を200
℃以内とし、かつロッド表面近傍の温度を600℃以上
となるように行う本発明の方法によってこそ、割れなく
堆積体を形成でき、又その後の焼結において外側ガラス
層の剥離や気泡の残存のないガラス母材が得られること
がわかる。
From the results of the above Examples and Comparative Examples, it is possible to partially control the surface temperature of the glass particle deposit deposited on the starting rod, and in particular, for this control, a cooling gas is used to adjust the temperature near the starting rod surface and the temperature of the rod. The temperature difference near the interface of
℃ or less, and the temperature near the rod surface is 600℃ or higher, it is possible to form a deposited body without cracking, and also to avoid peeling of the outer glass layer or remaining bubbles during subsequent sintering. It can be seen that a glass base material with no carbon fiber can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、出発ガラスロッドとガ
ラス微粒子堆積体からなる複合体を、径方向のカサ密度
分布を均一化して製造できるので、割れ等の発生がなく
、さらに得られた複合体の焼結工程における外側ガラス
層剥離やガラス体中の気泡残存も防止できる。したがっ
て本発明は光ファイバ用母材の製造歩留りを向上し、こ
れにより高品質な母材を低コストにて製造しうるので、
経済上及び品質上の効果の大なる製法である。
As explained above, the present invention makes it possible to manufacture a composite consisting of a starting glass rod and a glass fine particle deposit with a uniform bulk density distribution in the radial direction. It is also possible to prevent the outer glass layer from peeling off during the sintering process of the glass body and bubbles remaining in the glass body. Therefore, the present invention improves the manufacturing yield of optical fiber preforms, thereby making it possible to manufacture high-quality preforms at low cost.
This is a manufacturing method with great economic and quality effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施順様を説明する概略の断面図、@
2図は、本発明又は従来法によシ製造したガラス微粒子
堆積体の径方向のカサ密度分布を示す図である。
FIG. 1 is a schematic cross-sectional view illustrating the implementation order of the present invention, @
FIG. 2 is a diagram showing the bulk density distribution in the radial direction of the glass fine particle deposit body manufactured by the present invention or the conventional method.

Claims (5)

【特許請求の範囲】[Claims] (1)自らの軸を回転軸として回転している実質的に円
柱状の出発材の片端近傍から、該出発材の外周部上に、
ガラス微粒子合成用バーナーの火炎内にガラス原料を供
給することにより発生させたガラス微粒子を堆積させ始
め該バーナーを出発材の軸と平行に相対的に移動させて
いくことによりガラス微粒子堆積体を出発材の外周部に
形成していく方法に於いて、上記ガラス微粒子堆積体の
表面温度を部分的に制御することを特徴とする光ファイ
バ用母材の製造方法。
(1) From near one end of a substantially cylindrical starting material that is rotating about its own axis, onto the outer periphery of the starting material,
Glass particles generated by supplying a glass raw material into the flame of a burner for glass particle synthesis are started to be deposited, and the burner is moved relatively parallel to the axis of the starting material, thereby starting a glass particle deposit body. A method for manufacturing an optical fiber base material, characterized in that the surface temperature of the glass fine particle deposit is partially controlled in the method of forming the glass fine particle deposit on the outer periphery of the material.
(2)ガラス微粒子堆積体が出発ロッドに堆積し始める
部分と、ガラス微粒子堆積体の出発ロッドとの界面付近
の部分との温度差が200℃以内であり、かつ、前者の
温度が600℃以上となるように温度制御を行なう特許
請求の範囲第1項に記載される光ファイバ用母材の製造
方法。
(2) The temperature difference between the part where the glass particulate deposit starts to accumulate on the starting rod and the part of the glass particulate deposit near the interface with the starting rod is within 200°C, and the temperature of the former is 600°C or more. A method for manufacturing an optical fiber preform according to claim 1, wherein the temperature is controlled so that the following is achieved.
(3)ガラス微粒子堆積体の表面温度の制御の手段とし
て冷却用ガスを用いる特許請求の範囲第1項又は第2項
に記載される光ファイバ用母材の製造方法。
(3) A method for manufacturing an optical fiber preform according to claim 1 or 2, in which a cooling gas is used as a means for controlling the surface temperature of the glass particle deposit.
(4)冷却用ガスが不活性ガスである特許請求の範囲第
3項に記載される光ファイバ用母材の製造方法。
(4) The method for manufacturing an optical fiber preform according to claim 3, wherein the cooling gas is an inert gas.
(5)冷却用ガスの温度が常温以下である特許請求の範
囲第3項に記載される光ファイバ用母材の製造方法。
(5) The method for manufacturing an optical fiber preform according to claim 3, wherein the temperature of the cooling gas is room temperature or lower.
JP1248387A 1987-01-23 1987-01-23 Production of optical fiber parent material Pending JPS63182234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1248387A JPS63182234A (en) 1987-01-23 1987-01-23 Production of optical fiber parent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248387A JPS63182234A (en) 1987-01-23 1987-01-23 Production of optical fiber parent material

Publications (1)

Publication Number Publication Date
JPS63182234A true JPS63182234A (en) 1988-07-27

Family

ID=11806642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248387A Pending JPS63182234A (en) 1987-01-23 1987-01-23 Production of optical fiber parent material

Country Status (1)

Country Link
JP (1) JPS63182234A (en)

Similar Documents

Publication Publication Date Title
US4627867A (en) Method for producing highly pure glass preform for optical fiber
JPH01148782A (en) Quartz crucible for pulling up single crystal
JP2000272930A (en) Production of optical fiber preform
JP2012017240A (en) Method for manufacturing silica glass crucible for pulling silicon single crystal
JPS63182234A (en) Production of optical fiber parent material
JPH02102146A (en) Production of glass fine particle deposit
JP2000272929A (en) Production of optical fiber preform
JP3816268B2 (en) Method for producing porous glass base material
JPH05339011A (en) Production of glass particulate deposited body
JP6784016B2 (en) Manufacturing method of base material for optical fiber
JPS59174538A (en) Manufacture of base material for optical fiber
WO2019044807A1 (en) Method for producing glass fine particle deposit, method for producing glass base material, and glass fine particle deposit
JP3567636B2 (en) Base material for optical fiber and method of manufacturing the same
JPS627641A (en) Production of deposited body of fine glass particle
JPS6044258B2 (en) synthesis torch
JPH05319849A (en) Production of silica porous preform
JPS63176326A (en) Production of preform for optical fiber
JP3169409B2 (en) Manufacturing method of preform for optical fiber
JP2542514B2 (en) Manufacturing method of synthetic quartz glass
JPH01108132A (en) Production of porous material for optical fiber and device therefor
JPH0776108B2 (en) Method for manufacturing base material for optical fiber
JPH09118539A (en) Production of optical fiber preform
JPS62162646A (en) Production of glass fine particle deposit
JPS60239340A (en) Preparation of parent material for optical fiber
US20110100061A1 (en) Formation of microstructured fiber preforms using porous glass deposition