JPS63176326A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPS63176326A
JPS63176326A JP329587A JP329587A JPS63176326A JP S63176326 A JPS63176326 A JP S63176326A JP 329587 A JP329587 A JP 329587A JP 329587 A JP329587 A JP 329587A JP S63176326 A JPS63176326 A JP S63176326A
Authority
JP
Japan
Prior art keywords
base material
glass
displacement
raw material
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP329587A
Other languages
Japanese (ja)
Other versions
JPH0742129B2 (en
Inventor
Toshio Danzuka
彈塚 俊雄
Masumi Ito
真澄 伊藤
Masahiro Takagi
政浩 高城
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP329587A priority Critical patent/JPH0742129B2/en
Publication of JPS63176326A publication Critical patent/JPS63176326A/en
Publication of JPH0742129B2 publication Critical patent/JPH0742129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To make it possible to produce preform free from residue foam and cracks even in a large amount of a raw material gas jetted in production of preform by soot formation method, by increasing displacement of gas from a reaction container at an early stage and then gradually reducing the displacement to the given amount. CONSTITUTION:Glass fine particles are formed and porous glass preform 4 is produced by setting a starting rod 2 and a burner 3 in a muffle furnace 1, forming flame by the burner 3 and feeding a raw material gas to the flame. The gas in the muffle furnace 1 and undeposited glass fine particles are exhausted from an exhaust pipe 5 to the outside. The exhaust pipe 5 is equipped with a pressure gauge 6 to monitor static pressure and displacement is adjusted by a valve 7 or 8 for controlling displacement. Then at an early stage before the preform 4 starts to grow normally, spray of glass raw material starts in a state wherein displacement is set in a larger amount than a given amount in a steady state and then the displacement is gradually reduced to the given amount.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバ用母材の製造方法に関するものであ
シ、VAD法(気相軸付法) 、ovp。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a base material for optical fibers, including the VAD method (vapor phase attachment method) and OVP.

法(外付気相酸化法)などのスート生成法によシ光ファ
イバ用多孔質ガラス母材を製造する方法に関するもので
ある。
The present invention relates to a method for manufacturing a porous glass preform for optical fibers by a soot generation method such as a method (external vapor phase oxidation method).

〔従来の技術〕[Conventional technology]

光フアイバ用多孔質ガラス母材を製造する1方法として
、燃焼バーナから燃焼ガスおよびガラス原料を混合噴出
して火炎中での加水分解反応または酸化反応によりガラ
ス微粒子を生成して、このガラス微粒子を回転する出発
材の先端に堆積させて、多孔質堆積体として、これの成
長に合わせて出発材をバーナと相対的に移動することに
よシ、多孔質ガラス母材t−夷造するVAD法がある。
One method for producing a porous glass base material for optical fibers is to eject a mixture of combustion gas and glass raw materials from a combustion burner, generate glass fine particles through a hydrolysis reaction or oxidation reaction in a flame, and then generate glass fine particles. A VAD method in which a porous glass base material is produced by depositing it on the tip of a rotating starting material to form a porous deposit and moving the starting material relative to a burner as it grows. There is.

また出発材の外周部に燃焼バーナによシ形成された火炎
中で酸化反応によシ生成され次ガラス微粒子を堆積させ
ながら、出発材または燃焼バーナを1回以上トラバース
することにより多孔質ガラス母材を製造する。vpo法
もある(特開昭48−73522号公報)。
In addition, by traversing the starting material or the combustion burner one or more times, a porous glass matrix is formed by traversing the starting material or the combustion burner one or more times while depositing glass fine particles generated by an oxidation reaction in the flame formed by the combustion burner on the outer periphery of the starting material. Manufacture materials. There is also the vpo method (Japanese Patent Application Laid-open No. 73522/1983).

従来、VAD法においては、マツフルと呼ばれる反応容
器中において多孔質ガラス母材を製造しておシ、火炎中
での加水分解反応によシ生成される8102  粒子の
うち多孔質ガラス母材に堆積しないもの、あるいは、反
応で生成されるHC/等を上記マンフ祷内より排気して
いる。この排気量はバーナからの原料ガス噴出量あるい
は、マツフル内のガラス微粒子浮遊状態によって調整さ
れておシ、多孔質ガラス母材製造中において微調整され
ることがある。しかし、一度設定されると製造中大きく
かえることはなく、むしろ排気量を一定とするよう努力
がはられれていた。
Conventionally, in the VAD method, a porous glass base material is produced in a reaction vessel called a Matsufuru, and 8102 particles produced by a hydrolysis reaction in a flame are deposited on the porous glass base material. HC/etc., which are not present or generated by the reaction, are exhausted from the above-mentioned manifold. This exhaust amount is adjusted by the amount of raw material gas ejected from the burner or the suspended state of glass particles in the matsuru, and may be finely adjusted during the production of the porous glass base material. However, once it was set, it did not change significantly during production; rather, efforts were made to keep the displacement constant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の一定排気量とする方法は原料ガスの噴出量が少な
い場合にに、都合が良かったが、母材の製造度向上の念
めに原料ガス流量を増量していくと、大きな問題が発生
してきた。まず、WAD法の場合、出発母材先端あるい
は出発ロッドの外周にガラス微粒子を堆積させる。第4
図(a)及び(blは、いずれも多孔質ガラス母材4t
−合成しはじめた初期の構成を示し、第4図(L)は出
発ロッド2の先端に、第4図(b)は出発ロッド2の外
周に堆積させる場合である。なお図中3はバーナを表す
。篤5図(al及び(b)は、それぞれ第4図(a)及
び+1))に示した状態から、合成が定常状態になった
とき(定常時という)の構成を示しており、@4図(a
)及び(blに示すように多孔質母材外径は最初小さい
が、しだいに大きく成長して一定時間経過後には一定の
外径となって、第5図(&)及び(blに示すような定
常製造状態に達する。また母材の引き上げ速度も同様で
定常時には一定速度となる。
The conventional method of maintaining a constant displacement was convenient when the amount of raw material gas ejected was small, but when the raw material gas flow rate was increased in order to improve the production rate of the base material, a big problem occurred. I've done it. First, in the case of the WAD method, glass particles are deposited on the tip of the starting base material or on the outer periphery of the starting rod. Fourth
Figures (a) and (bl) are both porous glass base material 4t
- The initial configuration after the synthesis is started is shown, with FIG. 4(L) showing the case of depositing on the tip of the starting rod 2, and FIG. 4(b) showing the case where it is deposited on the outer periphery of the starting rod 2. Note that 3 in the figure represents a burner. Figure 5 (al and (b) shows the configuration when the synthesis reaches a steady state (referred to as steady state) from the state shown in Figure 4 (a) and +1), respectively. Figure (a
) and (bl), the outer diameter of the porous base material is initially small, but it gradually grows larger and becomes a constant outer diameter after a certain period of time, as shown in Fig. 5 (&) and (bl). A steady state of production is reached.The rate at which the base material is pulled is also the same, and is constant during steady state.

多孔質ガラス母材が小さいときには、ガラス微粒子の堆
積する対象が小さくガラス微粒子の付着収率(付着する
重量/バーナから噴出する原料重量)は悪くなる。この
ような多孔質ガラス母材製造の初期段階においては、母
材に付着しなかったガラス微粒子がマツフル内に充満し
、マンフル内壁に多量のガラス微粒子が付着する、ある
いはまた第6図に斜線部10として示すように、多孔質
ガラス母材4上部の火炎で加熱されない部分に、堆積す
ることになる。
When the porous glass base material is small, the target on which the glass particles are deposited is small, and the deposition yield (weight of deposited/weight of raw material ejected from the burner) of the glass particles becomes poor. At the initial stage of producing such a porous glass base material, the glass particles that have not adhered to the base material fill the mantle, and a large amount of glass particles adhere to the inner wall of the mantle, or the shaded area in Fig. 6 can be seen. As shown at 10, the particles are deposited on the upper part of the porous glass base material 4 that is not heated by the flame.

こうした場合、マツフル内壁に付着したガラス微粒子は
ある程度大きくなるとマツフル内ガス流により運ばれ、
再び母材堆積面に付着する場合があり、この内部は、母
材中で硬さが異なるため透明ガラス化したときに、気泡
として残り、高品質のガラス母材が得られなくなる。ま
た付着ススの厚さが厚くなると壁から剥離し、マツフル
内へ落下し、スス粒子を飛散し、気泡の原因となったシ
最悪の場合は、母材に衝突し母材に割れを発生させたシ
する。  。
In such cases, when the glass particles attached to the inner wall of Matsuful grow to a certain extent, they are carried away by the gas flow inside Matsuful.
It may adhere to the base material deposition surface again, and since the hardness inside the base material differs, when it becomes transparent vitrification, it remains as bubbles, making it impossible to obtain a high-quality glass base material. Also, as the thickness of the attached soot increases, it will peel off from the wall and fall into the Matsufuru interior, scattering soot particles and causing bubbles.In the worst case, it will collide with the base material and cause cracks in the base material. Tashi. .

一方、火炎で加熱されない部分富0に付着したガラス微
粒子は、他の部分に比べて柔らかく、非常に割れやすい
状態となる。この場合、定常的にガラス微粒子が付着し
た部分とこの部分との硬さの違いによシ、母材が冷却さ
れる間の熱応力によりクランクを発生したシ、するいは
、透明化時、高温部に母材を挿入した場合にやけシフラ
ンクを生じ母材が割れてしまうという問題があった。
On the other hand, the glass fine particles adhering to the partial portion that is not heated by the flame are softer than other portions and are extremely susceptible to breakage. In this case, cracks may occur due to the difference in hardness between the part where glass particles are regularly attached and this part, or the crack may occur due to thermal stress while the base material is being cooled, or when it becomes transparent. There is a problem in that when the base material is inserted into a high-temperature part, a burnt shrinkage occurs and the base material cracks.

以上述べた問題点を解決すべく、例えば最初噴出する原
料ガス流量を少なくする処理が取られていたが、原料ガ
ス流量を少なくしても、付着収率は向上しないことがわ
かった。また原料ガス流量を少なくしすぎると、母材の
製造が定常になるまでの時間がきわめて長くなり、生産
性が著しく劣化してしまうことがわかつ九。
In order to solve the above-mentioned problems, treatments have been taken, for example, to reduce the flow rate of the raw material gas ejected initially, but it has been found that even if the flow rate of the raw material gas is reduced, the deposition yield does not improve. Furthermore, it has been found that if the flow rate of the raw material gas is reduced too much, it will take a very long time for the production of the base material to reach a steady state, resulting in a significant deterioration of productivity9.

本発明はこの問題点を解決して、原料ガス噴出量が大き
い場合であっても、気泡残留や割れ等の発生がない高品
質の母材金生産性良く製造できる方法を提案するもので
ある。
The present invention solves this problem and proposes a method that can produce high-quality base metal gold with high productivity without the occurrence of residual bubbles or cracks even when the amount of raw material gas ejected is large. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は気体のガラス原料全燃焼バーナから噴出させて
火炎加水分解し、これによって生成する粒状ガラスを回
転する出発材または心棒の周囲に堆積さぞ、回転軸方向
に成長させて多孔質ガラス母材t−製造する方法におい
て、上記燃焼バーナからガラス原料を噴出し始めてから
、多孔質ガラス母材が定常に成長し始めるまでの初期段
階において、多孔質ガラス母材を製造する容器からの排
気量を定常時の所定量よりも高く設定した状態でガラス
原料の噴出を開始し、次いで該排気量を徐々に所定量ま
で減量させることを特徴とする光フアイバ用母材の製造
方法であって、これによシ上記の問題点を解決できるも
のである。
In the present invention, gaseous glass raw material is ejected from a total combustion burner and subjected to flame hydrolysis, and the resulting granular glass is deposited around a rotating starting material or mandrel and grown in the direction of the rotation axis to form a porous glass base material. In the t-manufacturing method, the amount of exhaust from the container for manufacturing the porous glass base material is reduced in the initial stage from when the glass raw material starts to be ejected from the combustion burner until the porous glass base material starts to grow steadily. A method for manufacturing an optical fiber base material, characterized in that ejection of the glass raw material is started at a level higher than a predetermined amount in a steady state, and then the ejected amount is gradually reduced to a predetermined amount. Therefore, the above problems can be solved.

本発明において定常時とは、前述したように製造の初期
段階を経た後に母材の外径が一定となシ引上げ速度も一
定となった状態をいう。
In the present invention, the steady state refers to a state where the outer diameter of the base material is constant and the pulling rate is also constant after the initial stage of manufacturing as described above.

本発明の具体的″構成を、一実施例に基ずいて説明する
。第曹図は本発明に用いる多孔質ガラス母材製造の装置
を示したものであシ、マツフル1内に出発ロッド2、バ
ーナ3をセラ)して、バーナ3によう火炎を形成して、
これに原料ガスを投入することによシガラス微粒子を生
成して多孔質ガラス母材4を製造する。マツフルI内の
ガスおよび堆積しなかったガラス微粒子は。
The specific configuration of the present invention will be explained based on one embodiment. Figure 1 shows an apparatus for producing a porous glass base material used in the present invention. , burner 3 is turned on) to form a flame in burner 3,
By introducing raw material gas into this, glass fine particles are generated, and the porous glass base material 4 is manufactured. The gas and undeposited glass particles in Matsufuru I are as follows.

排気管5より外に排気される。排気管5には静圧監視用
の圧力計6が取シ付けられており、ま友、排気量調整用
の弁7または8によシ排気量が調整される。本発明はこ
のような構成において、第5図に示すように多孔質ガラ
ス母材製造の初期段階時間t、からt。〔ただしt。≦
定常状態になる時間+(t(1”1)=設定時間〕の間
に、排気管静圧がP、から定常時の排気tP。
It is exhausted to the outside through the exhaust pipe 5. A pressure gauge 6 for monitoring static pressure is attached to the exhaust pipe 5, and the exhaust amount is adjusted by a valve 7 or 8 for adjusting the exhaust amount. In the present invention, in such a configuration, as shown in FIG. 5, the initial stage of manufacturing the porous glass base material is from time t to time t. [However, t. ≦
During the steady state time + (t(1"1) = set time), the exhaust pipe static pressure changes from P to the steady state exhaust gas tP.

(P、> P、)に変化するよう調整弁7または8を操
作するものである。
The adjustment valve 7 or 8 is operated so as to change (P, > P,).

よシ具体的には、排気量の設定は母材の製造条件によシ
異なるが、−例を挙げるとp1’Ip。
Specifically, the setting of the displacement varies depending on the manufacturing conditions of the base material, but for example, p1'Ip.

の1.5〜2倍程度に設定しておき、1o−1,を20
分〜90分程度として、徐々に所定量に戻す、という如
くに行うのである。
Set it to about 1.5 to 2 times, and set 1o-1 to 20
This is done by gradually returning to the predetermined amount over a period of about 90 minutes.

このように排気量を調整することにより、初期段階にお
けるマツフル内ガラス微粒子を排気を効率よく行なうこ
とができる。また、定常多孔質母材製造時の条件も阻害
することはない。
By adjusting the evacuation amount in this way, the glass particles in the pineful at the initial stage can be efficiently evacuated. Furthermore, the conditions for producing the steady porous base material are not affected.

調整弁7または8の操作は圧力計6を圧カドランスデュ
ーサー9にかえこの出力を調整弁7または8に入力し、
自動制御を行なう方式に置きかえれば、より容易に作業
を行なうことができる。
To operate the regulating valve 7 or 8, replace the pressure gauge 6 with a pressure transducer 9, input this output to the regulating valve 7 or 8,
Replacing it with an automatic control system will make the work easier.

本発明の方法は、第2図に示すように、ガラス微粒子の
周囲に多孔質ガラス母材を合成する場合にも同一の効果
がある。
As shown in FIG. 2, the method of the present invention has the same effect when synthesizing a porous glass base material around glass particles.

〔実施例〕〔Example〕

比較例1 第1図に示す構成において多孔質母材の製造を行った。 Comparative example 1 A porous base material was manufactured using the configuration shown in FIG.

燃焼バーナとして同心円状8重管バーナを用いて、燃焼
ガスとして水素601/分、酸素45ぶ7分、アルゴン
+2J/分を流し、これに原料ガスとしてS工0r4t
−4A/分流し次。
A concentric 8-pipe burner is used as a combustion burner, and hydrogen 601/min, oxygen 45/min, and argon +2 J/min are flowed as combustion gases, and S 0r4t is used as a raw material gas.
-4A/divide flow next.

排気は内径80寵φの排気管を使用して、これに取シ付
けられた圧力計によシ静圧が5maQとなるように排気
調整弁7を調整し次。静圧は常に設定圧となるよう監視
した。マツフル内は初期の間浮遊ガラス微粒子が充満し
ているのが観察された。
For exhaust, an exhaust pipe with an inner diameter of 80 mm was used, and the exhaust adjustment valve 7 was adjusted so that the static pressure was 5 maQ based on the pressure gauge attached to the pipe. Static pressure was monitored to ensure that it was always at the set pressure. During the initial period, it was observed that the inside of the matsuful was filled with floating glass particles.

この結果、外径150mφの大型母材が合成され九が、
10本製造したうち2本には母材上部に、冷却中にクラ
ンクが入ってしまった。この母材の上部の硬さを調べた
ところ、0.+l/c!R3以下の柔らかさであること
がわかった。定常成長部分の硬さは、このとき平均0.
25.9 /crW5であつ友。
As a result, a large base material with an outer diameter of 150 mφ was synthesized.
Of the 10 units manufactured, two had cranks stuck in the upper part of the base material during cooling. When the hardness of the upper part of this base material was examined, it was found to be 0. +l/c! It was found that the softness was R3 or lower. At this time, the hardness of the steadily growing part is on average 0.
25.9 /crW5 and my friend.

クラックのなかった8本を透明ガラス化したところ3本
は炉内でやはシ上部にクランクが入ってしまった。また
ガラス母材の中には、平均6個の気泡が残った。
When we turned the 8 bottles that had no cracks into transparent glass, three of them ended up with cranks stuck in the upper part of the furnace. Moreover, an average of 6 bubbles remained in the glass base material.

実施例1 比較例1と同一の構成で多孔質ガラス母材の合成を行っ
た。本発明に従って排気圧を最初10111&Q  に
設定し、定常になるまでの時間1時間の間に徐々に減少
し、swaq  まで下げた。
Example 1 A porous glass base material was synthesized using the same configuration as Comparative Example 1. In accordance with the present invention, the exhaust pressure was initially set at 10111&Q and gradually decreased to swaq over a period of 1 hour until it became steady.

この結果、はぼ同様の多孔質ガラス母材が得られたが、
多孔質ガラス母材中にはクランクはまったく発生しなか
った。また透明ガラス化し次母材中の気泡についても、
激減し、気泡は10本製造し次うち1本に1コ入ってい
たのみで残りは良好な高品質ガラス体が得られた。
As a result, a porous glass matrix similar to Habo was obtained, but
No cranks were generated in the porous glass matrix. Also, regarding air bubbles in the base material after transparent vitrification,
The number of bubbles was drastically reduced, and after manufacturing 10 bottles, only one bubble was found in each of the bubbles, and the rest were good, resulting in a high-quality glass body.

〔発明の効果〕〔Effect of the invention〕

本発明は、マツフル内に浮遊するガラス微粒子は効率的
にマツフル外へ排気させるので、特にマツフル内壁に付
着しやすい初期の段階において、付着量を減少させるこ
とができるに加え、浮遊ガラス微粒子が、多孔質ガラス
母材上部に付着することがないため、多孔質ガラス母材
の熱応力によるクランク発生、割れの問題全解決できる
Since the present invention efficiently exhausts the glass particles floating inside the pine tree outside the pine tree, it is possible to reduce the amount of attached glass particles, especially in the early stages when they tend to adhere to the inner wall of the pine tree. Since it does not adhere to the top of the porous glass base material, it can completely solve the problems of cracking and cracking caused by thermal stress in the porous glass base material.

tた、マツフル内壁へのガラス微粒子付着量を激減する
ことができるので、母材中の気泡発生度数全減少させる
ことができる。
In addition, since the amount of glass fine particles adhering to the inner wall of the matsuru can be drastically reduced, the number of bubbles generated in the base material can be completely reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施態様例を説明する概略
の断面図、第3図は堆積開始時t。 からt。(1o≦定常となる時間)に到る時間での排気
圧力(Plの調整方法を示すグラフである。 第4図(Q及び(blは多孔質ガラス母材を合成しはじ
め之初期の構成を示す図であって、第4図(&)は出発
ロッド先端に合成する場合、第4図(blは出発ロッド
外周に合成する場合を示す。第5図(al及び(blは
、多孔質ガラス母材合成が定常状態となった時の構成を
示す図で、第5図(alは第4図(alが定常となった
時、$5図+btは第4図(blが定常となった時であ
る。第6図は従来法で合成開始時に母材上部に付着する
柔らかい多孔質母材部分を示す説明図である。
1 and 2 are schematic cross-sectional views illustrating an embodiment of the present invention, and FIG. 3 is a view taken at the time t when deposition is started. From t. This is a graph showing how to adjust the exhaust pressure (Pl) in the time it takes to reach (1o≦steady state). FIG. 4 (&) shows the case of synthesis on the tip of the starting rod, FIG. 4 (BL shows the case of synthesis on the outer periphery of the starting rod), and FIG. This is a diagram showing the configuration when the base material synthesis is in a steady state. FIG. 6 is an explanatory diagram showing a soft porous base material portion that adheres to the upper part of the base material at the start of synthesis in the conventional method.

Claims (1)

【特許請求の範囲】 気体のガラス原料を燃焼バーナから噴出させて火炎加水
分解し、これによつて生成する粒状ガラスを回転する出
発材または心棒の周囲に堆積させ、回転軸方向に成長さ
せて多孔質ガラス母材を製造する方法において、 上記燃焼バーナからガラス原料を噴出し始めてから、多
孔質ガラス母材が定常に成長し始めるまでの初期段階に
おいて、多孔質ガラス母材を製造する容器からの排気量
を定常時の所定量よりも高く設定した状態でガラス原料
の噴出を開始し、次いで該排気量を徐々に所定量まで減
量させることを特徴とする光フアイバ用母材の製造方法
[Claims] A gaseous glass raw material is ejected from a combustion burner and subjected to flame hydrolysis, and the resulting granular glass is deposited around a rotating starting material or mandrel and grown in the direction of the rotation axis. In the method for producing a porous glass base material, in the initial stage from when the glass raw material starts to be ejected from the combustion burner until the porous glass base material starts to grow steadily, from the container for producing the porous glass base material. 1. A method for producing an optical fiber base material, which comprises starting ejection of glass raw material with the exhaust amount set higher than a predetermined amount during steady state, and then gradually reducing the evacuation amount to a predetermined amount.
JP329587A 1987-01-12 1987-01-12 Method for manufacturing base material for optical fiber Expired - Fee Related JPH0742129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP329587A JPH0742129B2 (en) 1987-01-12 1987-01-12 Method for manufacturing base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP329587A JPH0742129B2 (en) 1987-01-12 1987-01-12 Method for manufacturing base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS63176326A true JPS63176326A (en) 1988-07-20
JPH0742129B2 JPH0742129B2 (en) 1995-05-10

Family

ID=11553387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP329587A Expired - Fee Related JPH0742129B2 (en) 1987-01-12 1987-01-12 Method for manufacturing base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH0742129B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172838A (en) * 1988-12-23 1990-07-04 Shin Etsu Chem Co Ltd Production of optical fiber preform
EP0610930A3 (en) * 1993-02-10 1995-03-15 Sumitomo Electric Industries Process for production of glass preform for optical fiber and apparatus for the same.
KR20030012749A (en) * 2001-08-04 2003-02-12 화이콤(주) The manufacturing system & method for optical fiber soot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172838A (en) * 1988-12-23 1990-07-04 Shin Etsu Chem Co Ltd Production of optical fiber preform
EP0610930A3 (en) * 1993-02-10 1995-03-15 Sumitomo Electric Industries Process for production of glass preform for optical fiber and apparatus for the same.
US5639290A (en) * 1993-02-10 1997-06-17 Sumitomo Electric Industries, Ltd. Process for producing a glass preform for an optical fiber and apparatus for the same
KR20030012749A (en) * 2001-08-04 2003-02-12 화이콤(주) The manufacturing system & method for optical fiber soot

Also Published As

Publication number Publication date
JPH0742129B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JP6505188B1 (en) Method and apparatus for manufacturing porous glass base material for optical fiber
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
JPH01148782A (en) Quartz crucible for pulling up single crystal
JPS63176326A (en) Production of preform for optical fiber
JP4423068B2 (en) Method for producing porous preform for optical fiber and glass preform
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
JPH11240732A (en) Production of porous matrix for optical fiber
JP5012042B2 (en) Manufacturing method of glass base material
JP3816268B2 (en) Method for producing porous glass base material
JPH05319849A (en) Production of silica porous preform
JP2018177611A (en) Method for manufacturing optical fiber porous preform, optical fiber porous preform and method for manufacturing optical fiber
JP3221059B2 (en) Method for producing glass particle deposit
JPS62182132A (en) Production of piled material of glass fine particle
JP2003267744A (en) Method for producing optical fiber glass preform
JPH09263419A (en) Production of glass preform for optical fiber and apparatus for production
JPS62265141A (en) Production of base material for optical fiber
JPS63282137A (en) Production of porous base material for quartz glass
JP3381309B2 (en) Method for producing glass particle deposit
JPS62162646A (en) Production of glass fine particle deposit
JPH01108132A (en) Production of porous material for optical fiber and device therefor
JPS63182234A (en) Production of optical fiber parent material
JPH09118539A (en) Production of optical fiber preform
JP2005008499A (en) Method for manufacturing porous glass preform
JPH05116977A (en) Production of optical fiber base material
JPH02153835A (en) Production of preform for optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees