JPS62182132A - Production of piled material of glass fine particle - Google Patents

Production of piled material of glass fine particle

Info

Publication number
JPS62182132A
JPS62182132A JP2023586A JP2023586A JPS62182132A JP S62182132 A JPS62182132 A JP S62182132A JP 2023586 A JP2023586 A JP 2023586A JP 2023586 A JP2023586 A JP 2023586A JP S62182132 A JPS62182132 A JP S62182132A
Authority
JP
Japan
Prior art keywords
glass
flow rate
steady
raw material
piling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023586A
Other languages
Japanese (ja)
Other versions
JPH0617238B2 (en
Inventor
Toshio Danzuka
彈塚 俊雄
Hiroshi Yokota
弘 横田
Minoru Watanabe
稔 渡辺
Masumi Ito
真澄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2023586A priority Critical patent/JPH0617238B2/en
Publication of JPS62182132A publication Critical patent/JPS62182132A/en
Publication of JPH0617238B2 publication Critical patent/JPH0617238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve glass raw material yield at an initial stage and to produce the titled piled material efficiently, by setting a flow rate of glass raw material at an initial stage of piling of glass fine particles at a specific low flow rate and increasing the flow rate of fuel to a steady flow rate before a piling state becomes steady. CONSTITUTION:A glass raw material is fed to flame 3 formed through a burner 2 for synthesizing fine particles in the vicinity of one side of an outer periphery part of a columnar or cylindrical starting material which is turning on its axis as a revolving shaft 1 and fine glass particles formed in the flame starts piling. In a period until a piled material 41 of glass fine particles at an initial stage of piling becomes a steady piled material, a flow rate of glass raw material is set lower than a steady flow rate and piling is started. Then the amount of the glass raw material is gradually increased before a piling state becomes steady and the piling state becomes a steady state. The glass fine particles 13 are piled in the steady state while relatively moving a burner 12 in parallel to the axis of a starting material 11 to obtain the titled piled material 42.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス微粒子の集合体(堆積体)を円柱状も
しくは円筒状出発材の外周部に形成する方法に関し、特
に高純度が要求される光フアイバ用母材製造の際の中間
製品に好適に用いられる、出発材外周部に堆積せしめら
れたガラス微粒子集合体の形成方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for forming an aggregate (deposit) of glass fine particles on the outer periphery of a cylindrical or cylindrical starting material. The present invention relates to a method for forming a glass particle aggregate deposited on the outer periphery of a starting material, which is suitably used as an intermediate product in the production of an optical fiber base material.

〔従来の技術〕[Conventional technology]

従来、石英系ガラス管もしくは光フアイバ用母材の製造
方法として、特開昭a 8−75522号公報に示され
たようないわゆる“外付法”がある。この方法は、回転
するカーボン、石英系ガラス又はアルミナなどの耐火性
出発材の外周部に、ガラス原料の加水分解反応により生
成せしめたS10.などの微粒子状ガラスを堆積させて
いき、所定量堆積させた後、堆積をやめ、出発材を引き
抜き、パイプ状ガラス集合体を形成し、このパイプ状ガ
ラス集合体を高温電気炉中で焼結透明ガラス化しパイプ
状ガラスを得ている。
Conventionally, as a method for manufacturing a base material for a quartz-based glass tube or an optical fiber, there is a so-called "external attachment method" as disclosed in Japanese Patent Application Laid-Open No. 8-75522. In this method, S10. After depositing a predetermined amount of fine glass particles such as It is made into transparent glass to obtain pipe-shaped glass.

或いは、同様の方法で出発材として中実の光フアイバ用
ガラス微粒子堆積体の複合体を形成したのち、出発材を
引き抜かず該複合体を高温炉中で加熱処理しガラス微粒
子堆積体の部分を焼結することにより、出発材である光
フアイバ用ガラス母材の外周部にさらに透明ガラス層を
形成するという方法も考えられる。
Alternatively, after forming a composite of a solid glass particle deposit for an optical fiber as a starting material in a similar manner, the composite is heat-treated in a high-temperature furnace without drawing out the starting material to remove the glass particle deposit. Another possible method is to further form a transparent glass layer on the outer periphery of the starting glass base material for optical fiber by sintering.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記方法においては、ガラス微粒子を回転する出発材外
周に堆積させ始め、ガラス微粒子堆積体を形成し、該ガ
ラス微粒子堆積体が定常な成長すなわちガラス微粒子の
堆積面への付着状態が定常になった成長状態全いうが、
具体的にはガラス微粒子堆積体の外径がはソ一定になっ
た以後の成長と考えてよい、を始めるまでの間において
、ガラス原料の収率が著しく低いことが問題となってい
る。ここでいうガラス原料の収率ηは、バーナーに投入
されるガラス原料のガラス微粒子換算量W。(ガラス原
料が810/4の場合には、5102換算したときの重
量)と、このとき出発材に堆積したガラス微粒子重量W
とにより次式(1)で表わされる。
In the above method, glass particles are started to be deposited on the outer periphery of the rotating starting material to form a glass particle deposit, and the glass particle deposit continues to grow steadily, that is, the state of adhesion of the glass particles to the deposition surface becomes steady. Although the growth state is perfect,
Specifically, the problem is that the yield of glass raw materials is extremely low until the growth starts after the outer diameter of the glass particle deposit becomes constant. The yield η of the glass raw material referred to here is the amount W of the glass raw material input into the burner in terms of glass fine particles. (If the glass raw material is 810/4, the weight when converted to 5102) and the weight W of the glass fine particles deposited on the starting material at this time
It is expressed by the following equation (1).

η=−・・・・・・・・・・(1) W。η=−・・・・・・・・・・・・(1) W.

第5図(al〜(clはガラス微粒子の堆積状態を説明
する図であって、1は出発材、2はガラス微粒子合成用
バーナー、3は火炎流を意味し、第5図(alは堆積開
始時の状態、同(t)lは初期のガラス微粒子堆積体4
1の状態、同(C1は定常成長時のガラス微粒子堆積体
42の状態を示す。
Figure 5 (al~(cl) is a diagram explaining the deposition state of glass particles, 1 is a starting material, 2 is a burner for glass particle synthesis, 3 is a flame flow, The starting state (t)l is the initial glass particle deposit 4
1, and C1 indicates the state of the glass fine particle deposit 42 during steady growth.

ガラス微粒子の出発材外周への初期堆積においては、第
3図[a) 、 (t)lに示す如く、ガラス微粒子の
定常堆積時第5図(C)の場合と比べて、著しくガラス
微粒子の堆積面が小さくなっている。
During the initial deposition of glass fine particles on the outer periphery of the starting material, as shown in Figure 3 [a) and (t)l, compared to the case of steady deposition of glass fine particles as shown in Figure 5 (C), the glass fine particles are significantly reduced. The deposition surface is smaller.

このため、ガラス微粒子合成用バーナにより合成された
ガラス微粒子が、上記堆積面に付着する機会は非常に小
さく、ガラス原料堆積効率は堆積開始初期の期間は定常
時に比べて、小さくなってしまう。
Therefore, the glass particles synthesized by the glass particle synthesis burner have a very small chance of adhering to the deposition surface, and the glass raw material deposition efficiency becomes smaller during the initial period of the start of deposition compared to the steady state.

一方、ガラス微粒子堆積体を合成し始め、定常な成長を
始めるまでの時間はガラス微粒子合成用バーナのガス流
量条件、または出発材との相対的な位置によって異なる
ものの数10分から大径のガラス微粒子堆積体を製造す
る場合は1〜2時間要するものがある。したがって、こ
の初期期間の間通常時のガラス原料流量をその1まガラ
ス微粒子合成用バーナに投入した場合、低い収率のため
に、出発材に付着せずに廃棄される量は多量となり、ガ
ラス原料の有効利用ができない。さらに多量に廃棄され
る上記ガラス微粒子を捕集するだめの廃ガス処理設備は
、ガラス原料収率が0に近い低収率の場合に合わせて設
計されねばならず、廃ガス処理設備は必要以上の大型化
をしいられることになる。
On the other hand, the time it takes to start synthesizing a glass particle deposit and to start steady growth of large-diameter glass particles varies from several tens of minutes depending on the gas flow conditions of the burner for glass particle synthesis or the relative position with respect to the starting material. In some cases, it takes 1 to 2 hours to produce a deposited body. Therefore, if the normal glass raw material flow rate is input into the burner for glass particle synthesis during this initial period, a large amount will be discarded without adhering to the starting material due to the low yield, and a large amount will be discarded without adhering to the starting material. Raw materials cannot be used effectively. Furthermore, the waste gas treatment equipment used to collect the glass fine particles that are discarded in large quantities must be designed for cases where the glass raw material yield is low, close to 0, and the waste gas treatment equipment is more than necessary. This will force the company to increase its size.

さらに、出発材に堆積しなかったガラス微粒子が製造用
容器内壁に多量に付着し、これが対流し、堆積面に付着
した場合にはガラス体中に気泡を発生させる原因となる
ことが多く好ましくない。
Furthermore, if a large amount of glass fine particles that are not deposited on the starting material adhere to the inner wall of the manufacturing container, and this convection occurs and adheres to the deposition surface, this is undesirable as it often causes bubbles to form in the glass body. .

本発明は、こうしたガラス微粒子堆積体製造初期に発生
する問題点を解決する目的で行なわれたものである。
The present invention has been made with the aim of solving these problems that occur in the early stages of manufacturing a glass particle deposit body.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記問題点を解決するだめの本発明は自らの軸を回転軸
として、回転している実質的に円柱状、あるいは円筒状
の出発材の片端近傍から該出発材外周部上にガラス微粒
子合成用バーナの火炎内にガラス原料を供給することに
より発生させたガラス微粒子を堆積させ始め、該バーナ
を出発材の軸と平行に相対的に移動させていくことによ
り、ガラス微粒子の堆積体を出発材の外周部に軸方向に
形成していく方法に於いて、ガラス微粒子を堆積させ始
める初期の段階において、上記ガラス原料の流量を定常
時流量よりも少ない流量に設定し、ガラス微粒子を堆積
させ始め、ガラス微粒子の堆積状態が定常になるまでの
間に上記ガラス原料流量を定常時Kikまで増量するこ
とを特徴とするガラス微粒子堆積体の製造方法に関する
ものである。
In order to solve the above-mentioned problems, the present invention aims at synthesizing glass particles from near one end of a substantially cylindrical or cylindrical starting material, which is rotating with its own axis as the rotation axis, onto the outer periphery of the starting material. Glass particles generated by supplying glass raw materials into the flame of the burner begin to be deposited, and by moving the burner relatively parallel to the axis of the starting material, the deposited body of glass particles is transferred to the starting material. In the method of forming glass particles in the axial direction on the outer periphery, at the initial stage when glass particles start to be deposited, the flow rate of the glass raw material is set to a lower flow rate than the steady flow rate, and the glass particles are started to be deposited. , relates to a method for manufacturing a glass fine particle deposit, characterized in that the flow rate of the glass raw material is increased to Kik at a steady state until the deposition state of glass fine particles becomes steady.

以下、実施例に基すいて本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained based on Examples.

第1図に示す構成によりガラス微粒子堆積体の合成を行
った。ガラス微粒子合成用バーナ2に燃料として水素、
助燃ガスとして酸素を供給し、火炎ジを形成する。この
火炎3中にガラス原料として、5xct’、を投入し、
火炎加水分解によりガラス微粒子5in2を生成し、こ
れを回転する出発材1の外周部に堆積させる。このとき
回転する出発材1をガラス微粒子の堆積に合わせて引き
上げることにより、ガラス微粒子堆積体4の製造を行な
う。
A glass fine particle deposit was synthesized using the configuration shown in FIG. Hydrogen as fuel for glass particle synthesis burner 2,
Oxygen is supplied as a combustion supporting gas to form a flame jet. 5xct' was put into this flame 3 as a glass raw material,
Glass fine particles 5 in 2 are produced by flame hydrolysis and deposited on the outer periphery of the rotating starting material 1. At this time, the rotating starting material 1 is pulled up as the glass particles are deposited, thereby manufacturing the glass particle deposit body 4.

上記方法において、ガラス微粒子堆積体の製造を行なう
工程において、その初期の定常な堆積面が形成されるま
での期間に、ガラス原料である已Or、の流量を第2図
1alに示す如く、へからQまで連続的に変化させた。
In the above method, in the step of manufacturing the glass fine particle deposit, the flow rate of the glass raw material Or, during the period until the initial steady deposition surface is formed, as shown in FIG. It was changed continuously from to Q.

第2図1alおよびTo)において横軸は時間を、縦軸
はガラス原料流量を示し、Qは定常ガラス微粒子堆積時
の流量、喝は初期の流量設定値を示す。定常流量に設定
児了する時間t、は堆積面が定常になるまでの時間Tよ
りも短かい時間に設定した(実質的に短かくなる。)。
In FIG. 2 (1al and To), the horizontal axis shows time, the vertical axis shows the glass raw material flow rate, Q shows the flow rate during steady glass particle deposition, and Q shows the initial flow rate setting value. The time t required to reach a steady flow rate was set to be shorter (substantially shorter) than the time T required for the deposition surface to reach a steady state.

論は堆積開始時である。The problem is at the beginning of deposition.

以上の操作により、ガラス微粒子堆積体製造初期におけ
るガラス原料の収率を犬きく劣化させることなく、ガラ
ス微粒子堆積体の製造を行なうことができる。′:$、
構成では、ガラス原料流量を直線的に連続に変化させた
が、設定は連続的である必要はなく不連続な設定変更で
あってもかまわない。′また@線的に変化させるのでは
なく、第2図印)に示すように曲線的に変化させても同
様の効果が期待される。
By the above operations, it is possible to manufacture a glass fine particle deposit without significantly deteriorating the yield of glass raw materials in the initial stage of manufacturing the glass fine particle deposit. ′:$、
In the configuration, the frit flow rate is linearly and continuously changed, but the setting need not be continuous and may be changed discontinuously. 'Furthermore, the same effect can be expected even if the temperature is changed not in a linear manner but in a curved manner as shown in Fig. 2 (marked in Fig. 2).

燃料として水素の例を述べたが、燃料は水素に限定せず
OH,、c、山、co等の場合でも同様である。
Although the example of hydrogen as the fuel has been described, the fuel is not limited to hydrogen, and the same applies to OH, c, yama, co, etc.

一方、ガラス微粒子堆積の初期の段階においては、出発
材が過熱され、出発材回転軸と出発材の中心軸がずれる
変形、いわゆる1ふれま゛わり が生ずる場合があり、
この対策として燃料流量を最初は定常時よりも少ない流
量に設定して堆積を開始し、その後定常値まで燃料流量
を増量させて上記の過熱を防止しふれまわシを抑えるこ
とができる。この方法と本発明の原料流量の調整法とを
組み合せることによシ、前記した本発明の効果に加え、
さらにふれまわりの防止という効果をも期待することが
できる。
On the other hand, in the early stages of glass particle deposition, the starting material may be overheated, causing deformation in which the starting material rotation axis and the starting material center axis are misaligned, a so-called one-touch shift.
As a countermeasure against this, the fuel flow rate can be initially set to a lower flow rate than in a steady state to start deposition, and then the fuel flow rate can be increased to a steady value to prevent the above-mentioned overheating and suppress the fluctuation. By combining this method and the method of adjusting the raw material flow rate of the present invention, in addition to the effects of the present invention described above,
Furthermore, it can also be expected to have the effect of preventing wandering.

〔実施例〕〔Example〕

第1図と同様の構成でガラス微粒子堆積体の製造を行っ
た。出発材としては、外径18m1長さ500.の石英
製ロッドを用い、バーナとしては同心円状多重管バーナ
を使用した。バーナには燃料として水素35 //mi
n 、助燃ガスとして酸素ガス54//minを用いこ
の他シールガスとして、アルゴンを12 //min流
した。ガラス原料はS i Cl、を用い、アルゴンを
キャリアガスとしたバブリング方式にて、供給を行った
A glass particle deposit was manufactured using a configuration similar to that shown in FIG. The starting material was 18 m in outer diameter and 500 m in length. A concentric multi-tube burner was used as the burner. The burner uses hydrogen 35 //mi as fuel.
Oxygen gas was used as a combustion auxiliary gas at a flow rate of 54 // min, and argon was flowed at a flow rate of 12 // min as a sealing gas. S i Cl was used as the glass raw material, and it was supplied by a bubbling method using argon as a carrier gas.

キャリアガス、アルゴンの流′Jiを1000CC/m
inとしてS i (! /4をI A OOcc7m
in供給した。
Carrier gas, argon flow 'Ji, 1000CC/m
S i (! /4 as in I A OOcc7m
In supplied.

この条件で最初から一定流量でスス付けを行つたところ
、スス付は開始から終了までの全ガラス原料収率は51
%と低いものとなった。スス付は開始初期には、ガラス
微粒子合成用バーナから噴出されるガラス微粒子は、は
とんど出発材に堆積せず、合成を行った容器の内部は堆
積しなかったガラス微粒子で充満した。この結果上記容
器内壁にはスス付は終了時、大量のガラス微粒子の付着
が見られた(比較例)。
When sooting was carried out at a constant flow rate from the beginning under these conditions, the total glass raw material yield from the start to the end was 51.
% was low. In the early stages of sooting, the glass particles ejected from the glass particle synthesis burner were hardly deposited on the starting material, and the inside of the container in which the synthesis was performed was filled with the undeposited glass particles. As a result, a large amount of glass fine particles were found to be attached to the inner wall of the container at the end of the sooting process (comparative example).

一方、本発明の構成により最初のガラス原料のキャリア
ガス流量を50007m1nに設定し、ガラス原料投入
開始から40分間で定常流量値1000νminに連続
的に変更した。S i C/、実流量としては420 
qminから1400ぐminまで変化させたことにな
る。この結果、スス付は開始から終了までの全ガラス原
料収率は、60%まで改善された。また、スス付は開始
時の容器内は適度に排気され、ガラス微粒子で充満する
ことはなかった。スス付は終了時の容器内壁のガラス微
粒子の付着量も減少していた(実施例)。
On the other hand, according to the configuration of the present invention, the initial flow rate of the carrier gas for the glass raw material was set at 50007 m1n, and was continuously changed to a steady flow rate value of 1000 ν min for 40 minutes from the start of charging the glass raw material. S i C/, actual flow rate is 420
This means that it has changed from qmin to 1400 gmin. As a result, the total glass raw material yield from the start to the end of sooting was improved to 60%. Furthermore, the inside of the container at the start of sooting was adequately evacuated and was not filled with glass particles. The amount of glass particles adhering to the inner wall of the container at the end of the soot application was also reduced (Example).

〔発明の効果〕〔Effect of the invention〕

本発明によりガラス微粒子堆積体製造初期におけるガラ
ス原料の低収率を改善し、効率のよいガラス微粒子堆積
体の製造を行なうことができる。
According to the present invention, it is possible to improve the low yield of glass raw materials at the initial stage of manufacturing a glass fine particle deposit, and to efficiently manufacture a glass fine particle deposit.

4、発明の詳細な説明 第1図は本発明の実施態様を概略説明する模式図、 第2図(alおよび(t)lは本発明の方法における、
ガラス原料流量の経時変化を示すグラフ、第3図(al
 tl)lおよび+c+は、それぞれガラス微粒子堆積
体を製造開始時、堆積初期段階、定常的堆積段階を説明
する模式図である。
4. Detailed description of the invention FIG. 1 is a schematic diagram schematically explaining the embodiment of the present invention, FIG. 2 (al and (t)l) shows the method of the present invention
Graph showing changes in glass raw material flow rate over time, Figure 3 (al
tl)l and +c+ are schematic diagrams illustrating the start of production, the initial stage of deposition, and the steady stage of deposition, respectively, of a glass particle deposit body.

Claims (1)

【特許請求の範囲】[Claims] (1)自らの軸を回転軸として回転している実質的に円
柱状もしくは円筒状の出発材の片端近傍から、該出発材
の外周部上にガラス微粒子合成用バーナの火炎内にガラ
ス原料を供給することにより生成させたガラス微粒子を
堆積させ始め、該バーナを出発材の軸と平行に相対的に
移動させていくことにより、ガラス微粒子の堆積体を出
発材の外周部に軸方向に形成していく方法に於いて、ガ
ラス微粒子を堆積させ始める初期の段階において、上記
ガラス原料の流量をガラス微粒子堆積状態が定常の際の
流量よりも少ない流量に設定してガラス微粒子を堆積さ
せ始め、ガラス微粒子の堆積状態が定常になるまでの間
に、上記ガラス原料流量を上記定常時流量まで増量する
、ことを特徴とするガラス微粒子堆積体の製造方法。
(1) From near one end of a substantially cylindrical or cylindrical starting material that is rotating about its own axis, a glass raw material is introduced into the flame of a burner for synthesizing glass fine particles onto the outer periphery of the starting material. By starting to deposit the glass fine particles generated by supplying the material and moving the burner relatively parallel to the axis of the starting material, a deposited body of glass fine particles is formed on the outer periphery of the starting material in the axial direction. In this method, in the initial stage of starting to deposit glass particles, the flow rate of the glass raw material is set to a flow rate lower than the flow rate when the glass particle deposition state is steady, and the glass particles are started to be deposited. A method for manufacturing a glass fine particle deposit, comprising increasing the glass raw material flow rate to the steady flow rate until the deposition state of the glass fine particles becomes steady.
JP2023586A 1986-02-03 1986-02-03 Method for manufacturing glass particulate deposit Expired - Lifetime JPH0617238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023586A JPH0617238B2 (en) 1986-02-03 1986-02-03 Method for manufacturing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023586A JPH0617238B2 (en) 1986-02-03 1986-02-03 Method for manufacturing glass particulate deposit

Publications (2)

Publication Number Publication Date
JPS62182132A true JPS62182132A (en) 1987-08-10
JPH0617238B2 JPH0617238B2 (en) 1994-03-09

Family

ID=12021525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023586A Expired - Lifetime JPH0617238B2 (en) 1986-02-03 1986-02-03 Method for manufacturing glass particulate deposit

Country Status (1)

Country Link
JP (1) JPH0617238B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079341A1 (en) * 2016-10-25 2018-05-03 株式会社フジクラ Production method for optical fiber preform

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6441152B2 (en) 2015-04-06 2018-12-19 信越化学工業株式会社 Method for producing porous glass base material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079341A1 (en) * 2016-10-25 2018-05-03 株式会社フジクラ Production method for optical fiber preform
JP2018070388A (en) * 2016-10-25 2018-05-10 株式会社フジクラ Method of manufacturing optical fiber preform
CN109843815A (en) * 2016-10-25 2019-06-04 株式会社藤仓 The manufacturing method of optical fiber base material
US20190248695A1 (en) * 2016-10-25 2019-08-15 Fujikura Ltd. Manufacturing method of optical fiber preform
US10995030B2 (en) 2016-10-25 2021-05-04 Fujikura Ltd. Manufacturing method of optical fiber preform
CN109843815B (en) * 2016-10-25 2022-03-01 株式会社藤仓 Method for manufacturing optical fiber preform

Also Published As

Publication number Publication date
JPH0617238B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JPS60191028A (en) Manufacture of high-purity glass body
HU204235B (en) Process for producing self-carrying ceramic products consisting of zones of different character
JPS62182132A (en) Production of piled material of glass fine particle
JP4423068B2 (en) Method for producing porous preform for optical fiber and glass preform
JPH02102146A (en) Production of glass fine particle deposit
JP3221059B2 (en) Method for producing glass particle deposit
WO2019044807A1 (en) Method for producing glass fine particle deposit, method for producing glass base material, and glass fine particle deposit
JPS62182131A (en) Production of piled material of glass fine particle
JPH0776108B2 (en) Method for manufacturing base material for optical fiber
JP3290559B2 (en) Method for producing porous glass preform for optical fiber
JPS63176326A (en) Production of preform for optical fiber
JPS627641A (en) Production of deposited body of fine glass particle
EP0616972A1 (en) Process for the preparation of nitride and/or carbide ceramic powder of metals on metalloids by flash-pyrolysis and the powder obtained by this process
JPS62162646A (en) Production of glass fine particle deposit
JP3381309B2 (en) Method for producing glass particle deposit
JPH0761877B2 (en) Method for manufacturing glass particulate deposit
JPH02133331A (en) Production of fine glass particle-deposited body
JP2000351634A (en) Production of porous glass preform
JPH02153835A (en) Production of preform for optical fiber
JP2004182596A (en) Method for manufacturing optical fiber
JPS63123831A (en) Production of preform for optical fiber
JPH04219339A (en) Production of preform for optical fiber
JPH05147965A (en) Production of glass base material
JPS63182234A (en) Production of optical fiber parent material
JPH0563417B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term