JPH0761877B2 - Method for manufacturing glass particulate deposit - Google Patents

Method for manufacturing glass particulate deposit

Info

Publication number
JPH0761877B2
JPH0761877B2 JP5677787A JP5677787A JPH0761877B2 JP H0761877 B2 JPH0761877 B2 JP H0761877B2 JP 5677787 A JP5677787 A JP 5677787A JP 5677787 A JP5677787 A JP 5677787A JP H0761877 B2 JPH0761877 B2 JP H0761877B2
Authority
JP
Japan
Prior art keywords
glass
raw material
flow rate
glass raw
innermost layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5677787A
Other languages
Japanese (ja)
Other versions
JPS63225540A (en
Inventor
政▲浩▼ 高城
弘 横田
俊雄 彈塚
真澄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5677787A priority Critical patent/JPH0761877B2/en
Publication of JPS63225540A publication Critical patent/JPS63225540A/en
Publication of JPH0761877B2 publication Critical patent/JPH0761877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • C03B2207/38Fuel combinations or non-standard fuels, e.g. H2+CH4, ethane
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度なガラス微粒子堆積体の製造方法に関す
るものであり、本発明によるガラス微粒子堆積体は高純
度ガラスの原材料とできるので、本発明は光フアイバの
製造その他高純度なガラスを要する分野において有利に
用いられる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a high-purity glass particle deposit, and the glass particle deposit according to the present invention can be used as a raw material for high-purity glass. INDUSTRIAL APPLICABILITY The present invention is advantageously used in the production of optical fibers and other fields requiring high-purity glass.

〔従来の技術〕[Conventional technology]

高純度ガラスの製造方法として、従来VAD法(Vapour Ph
ase Axial Deposition気相軸付法)又はOVD法(Outside
Vapour Phase Oxidation Deposition外付法)等により
ガラス微粒子堆積体を形成した後、これを焼結・透明化
してガラスを得る方法が知られている。この種の方法に
おいては、ガラス微粒子合成用バーナーに燃焼ガス,ガ
ラス原料ガス等を供給して、該バーナーに形成される火
炎中で、上記ガラス原料を酸化反応又は加水分解反応さ
せることによつてガラス微粒子を生成させて、該ガラス
微粒子を自ら回転する実質的に円柱又は円筒状の出発材
の回転軸方向に付着・堆積させることにより、ガラス微
粒子堆積体を形成する。
As a method for producing high-purity glass, the conventional VAD method (Vapour Ph
ase Axial Deposition vapor phase method) or OVD method (Outside
Vapor Phase Oxidation Deposition (external attachment method) and the like are used to form a glass particle deposit, which is then sintered and made transparent to obtain glass. In this type of method, a combustion gas, a glass raw material gas, etc. are supplied to a burner for synthesizing glass particles, and the glass raw material is subjected to an oxidation reaction or a hydrolysis reaction in a flame formed in the burner. A fine glass particle deposit is formed by producing fine glass particles and adhering and depositing the fine glass particles in the direction of the rotation axis of a substantially cylindrical or cylindrical starting material that rotates itself.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところでこの種の方法において、ガラス微粒子堆積体形
成の初期段階においては、該ガラス微粒子堆積体の外径
は、定常状態のそれに比べてはるかに小さく、ガラス微
粒子体の堆積効率〔堆積体として捕集されたガラス微粒
子量(重量)/ガラス原料投入総量(酸化物換算重量)
×100(%)〕が非常に低いという問題があつた。
By the way, in this kind of method, in the initial stage of the formation of the glass particulate deposits, the outer diameter of the glass particulate deposits is much smaller than that in the steady state, and the deposition efficiency of the glass particulate deposits (collected as deposits Amount of fine glass particles (weight) / total amount of glass raw material input (weight in terms of oxide)
X100 (%)] was very low.

なお本明細書において「ガラス微粒子堆積体形成の初期
段階」とは、この種の方法では堆積開始後ある程度成長
した後に、堆積体の回転軸方向に合成用バーナーを相対
的に一定速度で移動させることにより該堆積体を一定の
径で成長させるのであるが、このときの「ガラス原料投
入開始より一定の径まで成長する期間」をいう。また、
本明細書において「定常状態とは、「堆積体から一定の
径を保ちつつ成長している状態」をいう。
In the present specification, "the initial stage of formation of a glass particle deposit" means that the synthesis burner is moved at a relatively constant speed in the rotational axis direction of the deposit after a certain amount of growth after the start of deposition in this type of method. By doing so, the deposit is grown to have a constant diameter, which means the "period during which the glass raw material is started to grow to a constant diameter". Also,
In the present specification, the "steady state" means "a state in which the deposit grows while maintaining a constant diameter".

従来、この種の製法のガラス微粒子合成用バーナーとし
ては一般に多重管バーナーが用いられており、この際に
はガラス原料は該バーナーの最内層のみに投入するか、
又は最内層を含む複数層から同時に投入されていた。ガ
ラス原料流の拡散を防ぎ堆積効率を向上するという観点
に立てば、ガラス原料流速は大である方が好ましいが、
一方流速が大きすぎると火炎中でのガラス原料の反応時
間が短かくなり、ガラス微粒子の生成が不若分となつて
堆積効率は低下してしまう。
Conventionally, a multi-tube burner is generally used as a burner for synthesizing glass particles of this type of manufacturing method, and at this time, the glass raw material is charged only in the innermost layer of the burner,
Alternatively, they were simultaneously charged from a plurality of layers including the innermost layer. From the viewpoint of preventing the diffusion of the glass raw material flow and improving the deposition efficiency, it is preferable that the glass raw material flow velocity is high,
On the other hand, if the flow rate is too high, the reaction time of the glass raw material in the flame becomes short, and the generation of glass fine particles becomes an indefinite amount, which lowers the deposition efficiency.

そこで、ガラス原料流速については、定常状態での原料
流量において最も堆積効率が高くなるように設定するの
が通常であつて、このために定常状態に到るまでの堆積
体形成の初期段階においては、ガラス原料流の収束性も
悪く、非常に堆積効率が低下するものと考えられてい
る。
Therefore, the glass raw material flow rate is usually set so that the deposition efficiency becomes highest at the raw material flow rate in the steady state, and for this reason, in the initial stage of deposit formation until the steady state is reached, However, the convergence of the glass raw material flow is also poor, and it is considered that the deposition efficiency is significantly reduced.

またガラス堆積体形成の初期段階においてはガラス微粒
子堆積体の外径が小さく、補集効率が悪いので、ガラス
原料投入量を少しずつ増量して初期段階での収率向上を
計る方法がとられている。第3図に従来法のガラス原料
投入量の経時変化を示す。第3図の上部の縦軸はガラス
原料流量(任意単位)であり、同図下部の縦軸はバーナ
ー最内層の原料流量Vinに対するそれ以外の部分の原料
流量Voutの比Rであつて、横軸は時間を示す。第3図に
おいて実線1″はガラス原料投入総量であり、最内層に
投入するガラス原料流量(一点鎖線2″)及び最内層以
外の部分に投入するガラス原料流量(二点鎖線3″)の
和である。このとき1′は時間0からtまで徐々に増
量しているが、このような増量は多重管バーナーの最内
層や最内層を含む複数層において、各層に流す原料を同
時に増量する方法によつていた。すなわち最内層に投入
する原料流量(2″)に対するそれ以外の部分に投入す
るガラス原料流量(3″)の比R=Vout/Vinは、図中下
部に実線4″にて示されるように一定値として行つてい
た。しかしながらこのような方法によつても問題点は充
分には解決されていなかつた。
Also, in the initial stage of glass deposit formation, the outer diameter of the glass particulate deposit is small and the collection efficiency is poor.Therefore, a method of gradually increasing the glass raw material input amount to improve the yield in the initial stage is adopted. ing. FIG. 3 shows the change over time in the amount of glass raw material charged in the conventional method. The vertical axis in the upper part of FIG. 3 is the glass raw material flow rate (arbitrary unit), and the vertical axis in the lower part of the figure is the ratio R of the raw material flow rate Vout of the other parts to the raw material flow rate Vin of the innermost layer of the burner. The axis shows time. In FIG. 3, the solid line 1 ″ is the total amount of glass raw material input, and is the sum of the glass raw material flow rate (one-dot chain line 2 ″) and the glass raw material flow rate (two-dot chain line 3 ″) that is input to parts other than the innermost layer. At this time, 1'is gradually increased from time 0 to t 0, but such an increase increases the amount of the raw material flowing in each layer at the same time in the innermost layer of the multi-tube burner or a plurality of layers including the innermost layer. That is, the ratio R = Vout / Vin of the glass material flow rate (3 ″) charged to the other part to the material flow rate (2 ″) charged to the innermost layer is shown by the solid line 4 ″ in the lower part of the figure. As shown in, the value was kept constant. However, even with such a method, the problem has not been solved sufficiently.

さらに、この初期段階ではガラス微粒子の加熱効率が悪
いため、ガラス微粒子の付着状態は柔かく、このために
この段階で割れが発生したりして、安定した高品質のガ
ラス微粒子堆積体を得るのが困難であるという問題もあ
つた。
Furthermore, since the heating efficiency of the glass fine particles is low in this initial stage, the adhered state of the glass fine particles is soft, and therefore cracks may occur at this stage, so that it is possible to obtain a stable high-quality glass fine particle deposit. There was also the problem of difficulty.

本発明はこの種の多重管バーナーを用いた製法におけ
る、上記のような問題点を解決して、ガラス微粒子堆積
体の形成の初期段階においても堆積効率の低下や割れの
発生等のなく安定して高品質のガラス微粒子堆積体を製
造できる方法を提供することを目的とするものである。
The present invention solves the above-mentioned problems in the manufacturing method using this type of multi-tube burner and stabilizes the deposition of the glass fine particle deposits without lowering the deposition efficiency or the occurrence of cracks even in the initial stage. It is an object of the present invention to provide a method capable of producing a high-quality glass particulate deposit.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はガラス微粒子合成用多重管バーナーの火炎中に
ガラス原料を供給することにより合成したガラス微粒子
を、回転する出発材に付着堆積させながら該出発材の回
転軸方向に成長させてガラス微粒子堆積体を製造する方
法において、ガラス原料を上記バーナーの複数層に供給
し、該複数層の最内層以外の部分に流すガラス原料流量
OUTと、最内層に流すガラス原料流量VINとの比R=
OUT/VINを、ガラス微粒子堆積体の外径が一定になる
までのガラス微粒子堆積体形成の初期段階において、定
常時の値まで徐々に増大させる過程が含まれることを特
徴とするガラス微粒子堆積体の製造方法である。
According to the present invention, glass fine particles are synthesized by adhering and depositing glass fine particles synthesized by supplying a glass raw material into the flame of a multi-tube burner for synthesizing glass fine particles while adhering and depositing them on a rotating starting material, and depositing glass fine particles. a method for producing a body, a glass raw material was supplied to the plurality of layers of the burner, the ratio R of the glass raw material flow rate V OUT to flow to portions other than the innermost layer of the plurality several layers, the glass raw material flow rate V iN to be supplied to the innermost layer =
Glass fine particles characterized by including a process of gradually increasing V OUT / V IN to a steady-state value in the initial stage of forming glass fine particle deposits until the outer diameter of the glass fine particle deposits becomes constant. It is a method of manufacturing a deposit.

本発明においては、前記した従来法のように堆積初期段
階での各層に流す原料流量を同時に増量する方法にかえ
て、各層に流す原料比率を経時的に変化させて、最終的
には安定状態での流量になるようにする。
In the present invention, instead of the method of simultaneously increasing the flow rate of the raw material flowing in each layer in the initial stage of deposition as in the conventional method described above, the ratio of the raw material flowing in each layer is changed over time to finally achieve a stable state. The flow rate at.

ここで多重管バーナーの最内層(中心ポート)に流すガ
ラス原料の流量をVinとし、その他の層(ポート)に流
すガラス原料の総流量をVoutとするとき、両者の比R=
Vout/Vinで定義されるが、本発明においてはガラス微粒
子体堆体の形成初期段階、すなわち堆積体が一定の径を
保ちつつ成長する定常状態にいたるまでの段階におい
て、時間の経過と共にRが増大するように、ガラス原料
の投入量を変化させることが特に好ましい。
When the flow rate of the glass raw material flowing in the innermost layer (center port) of the multi-tube burner is Vin and the total flow rate of the glass raw material flowing in the other layers (ports) is Vout, the ratio of the two is R =
It is defined as Vout / Vin, but in the present invention, in the initial stage of formation of the glass particulate body deposit body, that is, until the steady state in which the deposit grows while maintaining a constant diameter, R It is particularly preferable to change the input amount of the glass raw material so as to increase.

第1図及び第2図は本発明の方法における原料流量の経
時変化の例を説明するグラフであつて、各図における縦
軸及び横軸のとり方は第3図と同じである。1及び1′
の実線はガラス原料投入総量であり、最内層に投入する
ガラス原料流量(一点鎖線2及び2′)と最内層以外の
部分に投入するガラス原料流量(二点鎖線3及び3′)
との和を示す。このときのVout/Vin=Rは二点鎖線及び
4′にて示されるが、時間0からtまでの間に、第1
図では0から一定値にまで、また第2図では開始時の値
から一定値にまで、それぞれ増大している。
FIGS. 1 and 2 are graphs for explaining an example of changes over time in the flow rate of the raw material in the method of the present invention. The vertical axis and the horizontal axis in each figure are the same as those in FIG. 1 and 1 '
The solid line indicates the total amount of glass raw material input, and the glass raw material flow rate (one-dot chain line 2 and 2 ') and the glass raw material flow rate (two-dot chain line 3 and 3') other than the innermost layer.
And sum. Vout / Vin = R at this time is shown by the chain double-dashed line and 4 ', but it is the first value between time 0 and t 0 .
In the figure, it increases from 0 to a constant value, and in FIG. 2, it increases from the value at the start to a constant value.

このように、堆積開始のときには最内層部分に流す原料
流量の投入量総量に対する割合を大きくしておくことに
よつて、中心部分での十分な原料流量及び原料流の収束
性を確保し、ガラス微粒子堆積体の成長につれて外層部
分での流量の割合を増加することにより、原料流速の変
化量が小さくなり、形成初期段階における堆積効率を向
上させることができるので、ガラス微粒子堆積体の製造
歩留りを向上できる。
Thus, by increasing the ratio of the raw material flow rate to be flown to the innermost layer portion to the total input amount at the start of deposition, a sufficient raw material flow rate in the central portion and convergence of the raw material flow can be ensured, By increasing the ratio of the flow rate in the outer layer portion as the fine particle deposit grows, the amount of change in the raw material flow rate can be reduced and the deposition efficiency in the initial stage of formation can be improved. Therefore, the manufacturing yield of the glass fine particle deposit can be improved. Can be improved.

さらに、最内層から流されるガラス原料の加熱効率は、
火炎中心部であるためにその周囲より流される粒子につ
いてより高く、このためガラス微粒子の温度は高くなり
やすい。これによつて、母材製造初期段階であつても、
ガラス微粒子の付着は硬くなるので、母材の割れを防止
できる。
Furthermore, the heating efficiency of the glass raw material flown from the innermost layer is
Since it is the center of the flame, it is higher for particles flowing from its surroundings, and therefore the temperature of the glass particles tends to be higher. As a result, even in the initial stage of base material manufacturing,
Since the adhesion of the glass particles becomes hard, it is possible to prevent the base material from cracking.

なお本発明におけるガラス原料としてはこの種の方法で
用いられる一般的な原料例えばSiCl,SiHCl,SiHCl
等が用いられ、また添加剤例えばGeCl,BCl,PCl
等を添加しておくことは勿論差し支えない。
As the glass raw material in the present invention, general raw materials used in this type of method, for example, SiCl 4 , SiHCl 3 , SiH 2 Cl
2 etc. are used, and additives such as GeCl 4 , BCl 3 , PCl 5 are used.
Of course, it does not matter to add such as.

また燃焼ガスとしては例えばHやCH,C,C
等の炭化水素等が、助燃ガスとしては例えばO,CO
等が用いられる。
As the combustion gas, for example, H 2 , CH 4 , C 2 H 6 , C 3 H
For example, hydrocarbons such as 8 are, for example, O 2 and CO as the supporting gas.
Etc. are used.

本発明においてはバーナー各層への原料投入量を上述の
ように行なうが、燃焼ガス及び助燃ガスについては特に
その流し方を限定するものではなく、原料流量に対し増
加、減少、或は変化させない等、種々に調整して行つて
よい点を付言しておく。
In the present invention, the amount of raw material input to each layer of the burner is performed as described above, but the way of flowing the combustion gas and the auxiliary combustion gas is not particularly limited, and does not increase, decrease, or change with respect to the raw material flow rate. Note that various adjustments may be made.

〔実施例〕〔Example〕

実施例1. ガラス微粒子合成用バーナーとして8重管バーナーを用
いて、本発明の方法によりガラス微粒子堆積体を作製し
た。ガラス原料としては四塩化ケイ素を用い、堆積開始
時は最内層の流量600cc/分、その他の層からの原料流量
を、0cc/分とし、さらに水素40/分、酸素40/分、
アルゴン15/分を流した。最内層の原料流量は定常時
にいたるまで、及び定常状態においても常に600cc/分と
一定に保つた。一方、その他の部分からの原料流量は開
始時の0から40分間で400cc/分にまで増量し、以後400c
c/分を保持した。このときのRは0から0.66まで増加し
た(第1図参照)。スス付け初期段階の堆積効率は約70
%と高く、また割れは全く生じなかつた。
Example 1. A glass fine particle deposit was produced by the method of the present invention using an octagonal tube burner as a burner for synthesizing glass fine particles. Silicon tetrachloride is used as the glass raw material, the flow rate of the innermost layer is 600cc / min at the start of deposition, the raw material flow rate from the other layers is 0cc / min, hydrogen 40 / min, oxygen 40 / min,
Flushed with argon 15 / min. The flow rate of the raw material in the innermost layer was kept constant at 600 cc / min until and during the steady state. On the other hand, the raw material flow rate from the other parts increased from 0 at the beginning to 400 cc / min in 40 minutes and then 400 c / min.
Holds c / min. At this time, R increased from 0 to 0.66 (see Fig. 1). The deposition efficiency in the initial stage of sooting is about 70
%, And no cracks occurred at all.

実施例2. 実施例1において、ガラス原料(四塩化ケイ素)流量の
みを、堆積開始時の最内層500cc/分、その他の層100cc/
分として、40分間で最内層600cc/分、その他の層400cc/
分となるように増量して行ない、その他の条件は実施例
1と同じとして、ガラス微粒子堆積体を作製した。この
ときRは0.2から0.66まで増加した(第2図参照)。こ
の条件によるスス付け初期段階における堆積効率は約65
%であり、またこの条件にて合計10本のガラス微粒子堆
積体を製造したところ、全く割れは生じなかつた。
Example 2. In Example 1, only the glass raw material (silicon tetrachloride) flow rate was set to 500 cc / min for the innermost layer at the start of deposition and 100 cc / min for the other layers.
The innermost layer is 600cc / min in 40 minutes, and the other layers are 400cc / min.
The glass particulate deposit was produced under the same conditions as in Example 1 except that the amount was increased so as to correspond to the above. At this time, R increased from 0.2 to 0.66 (see Fig. 2). Under these conditions, the deposition efficiency at the initial stage of sooting is about 65.
%, And when a total of 10 glass fine particle deposits were produced under these conditions, no cracks occurred.

比較例1 実施例1において、ガラス原料流量のみを、堆積開始時
は最内層360cc/分、その他の層に240cc/分とし、40分間
でそれぞれ600cc/分、400cc/分となるように増量して行
つた以外は同条件にてガラス微粒子堆積体を作製した。
このときRは堆積初期から0.66のまま一定であつた(第
3図参照)。この条件によると、原料収率は約62%と実
施例1よりも低く、またスス付け初期での割れが、堆積
体10本作製のうち3本に発生した。
Comparative Example 1 In Example 1, only the glass raw material flow rate was set to 360 cc / min for the innermost layer at the start of deposition and 240 cc / min for the other layers, and increased to 600 cc / min and 400 cc / min for 40 minutes, respectively. A glass particle deposit was prepared under the same conditions except that the above procedure was performed.
At this time, R was constant at 0.66 from the initial stage of deposition (see FIG. 3). Under these conditions, the raw material yield was about 62%, which was lower than that in Example 1, and cracking at the initial stage of sooting occurred in 3 out of 10 deposits produced.

以上の実施例、比較例の結果から本発明方法が堆積効率
の点でも、割れ発生防止の点でも従来法より優れること
が明らかである。
From the results of the above Examples and Comparative Examples, it is clear that the method of the present invention is superior to the conventional method in terms of deposition efficiency and prevention of cracking.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明は多重管バーナーを用いて
ガラス微粒子堆積体を製造するにおいて、堆積効率を向
上できるに加え、製造の初期段階における割れ問題も解
消できるので、高純度ガラスの母材作成に用いて、その
製造コスト低減と共に高品質のものを安定に得られると
いう、経済的効果、品質向上効果のいずれも大きい優れ
た方法である。
As described in detail above, the present invention can improve the deposition efficiency in the production of glass particle deposits by using a multi-tube burner, and can solve the cracking problem in the initial stage of production. This is an excellent method that has a large economic effect and a high quality improving effect that it can be used for preparing a material and that a high quality product can be stably obtained while reducing the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は上部に本発明における多重管バーナ
ーへのガラス原料の流し方を、下部にそのときのバーナ
ー最内層のガラス原料投入量Vinに対する最内層以外の
層へのガラス原料投入量Voutの比R=Vout/Vinを、それ
ぞれ経過時間に対するグラフとして表した図である。 第3図は従来法でのガラス原料の流し方とRを第1図,
第2図と同様のグラフにした図である。
In FIGS. 1 and 2, the upper part shows the flow of the glass raw material into the multi-tube burner according to the present invention, and the lower part shows the glass raw material input to the layers other than the innermost layer with respect to the glass raw material input amount Vin of the burner inner layer at that time. It is the figure which represented ratio R = Vout / Vin of quantity Vout as a graph with respect to each elapsed time. Fig. 3 shows the flow of glass raw material and R in the conventional method in Fig. 1,
It is the figure made into the graph similar to FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガラス微粒子合成用多重管バーナーの火炎
中にガラス原料を供給することにより合成したガラス微
粒子を、回転する出発材に付着堆積させながら該出発材
の回転軸方向に成長させてガラス微粒子堆積体を製造す
る方法において、ガラス原料を上記バーナーの複数層に
供給し、該複数層の最内層以外の部分に流すガラス原料
流量VOUTと、最内層に流すガラス原料流量VINとの比
R=VOUT/VINを、ガラス微粒子堆積体の外径が一定に
なるまでのガラス微粒子堆積体形成の初期段階におい
て、定常時の値まで徐々に増大させる過程が含まれるこ
とを特徴とするガラス微粒子堆積体の製造方法。
1. A glass material produced by supplying a glass raw material into the flame of a multi-tube burner for synthesizing glass particles, and adhering and depositing the glass particles on a rotating starting material while allowing the glass material to grow in the rotation axis direction of the starting material. In the method for producing a fine particle deposit, a glass raw material is supplied to a plurality of layers of the burner, and a glass raw material flow rate V OUT flowing to a portion other than the innermost layer of the plurality of layers and a glass raw material flow rate V IN flowing to the innermost layer. In the initial stage of forming glass particulate deposits until the outer diameter of the glass particulate deposits becomes constant, the ratio R = V OUT / V IN is gradually increased to a steady-state value. A method for manufacturing a glass particle deposit body.
JP5677787A 1987-03-13 1987-03-13 Method for manufacturing glass particulate deposit Expired - Fee Related JPH0761877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5677787A JPH0761877B2 (en) 1987-03-13 1987-03-13 Method for manufacturing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5677787A JPH0761877B2 (en) 1987-03-13 1987-03-13 Method for manufacturing glass particulate deposit

Publications (2)

Publication Number Publication Date
JPS63225540A JPS63225540A (en) 1988-09-20
JPH0761877B2 true JPH0761877B2 (en) 1995-07-05

Family

ID=13036873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5677787A Expired - Fee Related JPH0761877B2 (en) 1987-03-13 1987-03-13 Method for manufacturing glass particulate deposit

Country Status (1)

Country Link
JP (1) JPH0761877B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353191C (en) * 2004-01-14 2007-12-05 株式会社藤仓 Apparatus for manufacturing porous glass preform for optical fiber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832573B2 (en) * 1988-12-19 1996-03-29 信越化学工業株式会社 Method for manufacturing optical fiber preform
JP6006186B2 (en) * 2012-09-28 2016-10-12 信越化学工業株式会社 Method for producing porous glass deposit for optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353191C (en) * 2004-01-14 2007-12-05 株式会社藤仓 Apparatus for manufacturing porous glass preform for optical fiber

Also Published As

Publication number Publication date
JPS63225540A (en) 1988-09-20

Similar Documents

Publication Publication Date Title
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
JPS6126532A (en) Production of base material for optical fiber
JPH0761877B2 (en) Method for manufacturing glass particulate deposit
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
AU646490B2 (en) Method for producing glass article
JP3221059B2 (en) Method for producing glass particle deposit
JP4089019B2 (en) Multi-tube burner for synthesis of porous quartz glass base material
JP2002249326A (en) Method for producing accumulated body of fine glass particle
JP3381309B2 (en) Method for producing glass particle deposit
JP2004035282A (en) Process for manufacturing porous preform for optical fiber
JP3785120B2 (en) Method for producing silica porous matrix
JPS60260433A (en) Manufacture of base material for optical fiber
JPH0617238B2 (en) Method for manufacturing glass particulate deposit
JPS6055450B2 (en) Manufacturing method of optical fiber base material
JPH0435428B2 (en)
JPH0624987B2 (en) Burner for synthesizing porous quartz glass base material
JPH02133331A (en) Production of fine glass particle-deposited body
JPH05147965A (en) Production of glass base material
JPH0742129B2 (en) Method for manufacturing base material for optical fiber
JPH0435429B2 (en)
JPH04240125A (en) Manufacture of optical fiber preform
JP4053305B2 (en) Method for producing porous preform for optical fiber
JPH09301719A (en) Focusing multiple burner for synthesis of glass fine particle
JPH0733469A (en) Production of preform for optical fiber
JPH05330844A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees