JPH0435429B2 - - Google Patents

Info

Publication number
JPH0435429B2
JPH0435429B2 JP249388A JP249388A JPH0435429B2 JP H0435429 B2 JPH0435429 B2 JP H0435429B2 JP 249388 A JP249388 A JP 249388A JP 249388 A JP249388 A JP 249388A JP H0435429 B2 JPH0435429 B2 JP H0435429B2
Authority
JP
Japan
Prior art keywords
raw material
glass
burner
base material
deposition rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP249388A
Other languages
Japanese (ja)
Other versions
JPH01179737A (en
Inventor
Masumi Ito
Toshio Danzuka
Hiroshi Yokota
Masahiro Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP249388A priority Critical patent/JPH01179737A/en
Publication of JPH01179737A publication Critical patent/JPH01179737A/en
Publication of JPH0435429B2 publication Critical patent/JPH0435429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバ用母材の製造方法に関し、
詳しくは多重管バーナを用いてガラス微粒子を合
成し堆積する方法の改善に係わるものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a base material for optical fiber,
Specifically, the present invention relates to an improvement in the method of synthesizing and depositing glass particles using a multi-tube burner.

〔従来の技術〕[Conventional technology]

光フアイバ用母材を製造する従来技術のなかで
も、ガラス原料をバーナの火炎中で加水分解反応
又は酸化反応させることによりガラス微粒子を合
成して、これを堆積するいわゆるスート法により
光フアイバ用多孔質母材を製造し、次に加熱によ
り脱水・透明化して透明ガラス母材を得る方法が
広く行われている。このようなスート法は高純度
の多孔質母材を生産性良く得られる優れた方法で
ある。
Among the conventional techniques for manufacturing optical fiber base materials, porous optical fibers are manufactured using the so-called soot method, in which fine glass particles are synthesized by subjecting glass raw materials to a hydrolysis reaction or oxidation reaction in the flame of a burner, and then deposited. A widely used method is to produce a glass base material and then dehydrate and make it transparent by heating to obtain a transparent glass base material. Such a soot method is an excellent method for obtaining a highly purified porous base material with good productivity.

このスート法の一法として、第5図に示すよう
に、多重管バーナ1を用いて該バーナ1の中心部
分の原料吹出口からガラス原料ガスを吹出し、該
バーナ1により形成される火炎2内で生成したガ
ラス微粒子を回転する出発材3に堆積させて、堆
積体4を回転方向に生長させる方法がある。な
お、5は反応容器、6は排気管である。この方法
の利点は回転方向に連続的に製造することが可能
であり、均質な光フアイバ用母材を再現性良く得
られることである。
As one method of this soot method, as shown in FIG. There is a method of depositing the glass fine particles produced in the above on a rotating starting material 3 and growing the deposited body 4 in the direction of rotation. Note that 5 is a reaction vessel and 6 is an exhaust pipe. The advantage of this method is that it can be manufactured continuously in the rotational direction and that a homogeneous optical fiber base material can be obtained with good reproducibility.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記した第5図のような方法で
は、ガラス原料を増量してゆくと收率(堆積速
度/原料投入量)が劣下して堆積速度が上らない
という問題があつた。
However, the method shown in FIG. 5 described above has a problem in that as the amount of glass raw material is increased, the yield (deposition rate/amount of raw material input) deteriorates and the deposition rate cannot be increased.

近年光フアイバ母材製造分野においても、生産
効率の向上、コスト低減その他の目的から太径の
母材を製造する必要が生じており、上記の問題の
早急な解決が望まれている。
In recent years, in the field of manufacturing optical fiber preforms, there has been a need to manufacture preforms with large diameters for the purpose of improving production efficiency, reducing costs, and other purposes, and an immediate solution to the above problems is desired.

本発明はこのような現状に鑑みてなされたもの
であつて、多重管バーナを用いてスート付けをす
るにあたり、收率高くしかも安定性良くガラス微
粒子を堆積できる光フアイバ用母材の製造方法を
目的とするものである。
The present invention has been made in view of the current situation, and provides a method for manufacturing an optical fiber base material that can deposit glass fine particles with high yield and stability when sooting using a multi-tube burner. This is the purpose.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記問題点を解決すべく種々検
討、研究の結果、多重管バーナの原料吹出口のサ
イズと火炎のサイズの間に最も堆積効率が高くな
るような関係のあることに気づき、本発明に到達
した。
As a result of various studies and studies to solve the above-mentioned problems, the present inventors realized that there is a relationship between the size of the raw material outlet of a multi-tube burner and the size of the flame that maximizes the deposition efficiency. , arrived at the present invention.

すなわち本発明は多重管バーナの中心部分から
ガラス原料を供給して、該バーナが形成する火炎
中でガラス原料を反応させることにより生成させ
たガラス微粒子を堆積させて多孔質ガラス母材を
製造する方法において、該多重管バーナの最外周
ポート内径をガラス原料を流す最外ポートの内径
の5〜20倍の範囲内として堆積することを特徴と
する光フアイバ用母材の製造方法である。
That is, in the present invention, a porous glass base material is produced by supplying glass raw materials from the center of a multi-tube burner and depositing glass fine particles generated by reacting the glass raw materials in a flame formed by the burner. A method for producing an optical fiber preform, wherein the preform is deposited so that the inner diameter of the outermost port of the multi-tube burner is within a range of 5 to 20 times the inner diameter of the outermost port through which the glass raw material flows.

以下、図面を参照して本発明を具体的に説明す
る。本発明は例えば第5図に示すような構成で、
多重管バーナ1にガラス原料ガス、燃焼ガス、助
燃ガス、不活性ガス等を導入し、火炎2中での火
炎加水分解によりガラス微粒子を生成させてこれ
を回転する出発材3に堆積させることにより多孔
質母材4を形成する点は従来と同じであるが、第
1図に示すように多重管バーナ1において原料を
流すポートのうちの最外周ポート11の内径をd
(原料吹出口直径)、多重管バーナ1の最外周ポー
ト12の内径をD(火炎の直径)とすると、D/
d=5〜20の範囲内として多孔質母材を形成する
のである。
Hereinafter, the present invention will be specifically explained with reference to the drawings. The present invention has a configuration as shown in FIG. 5, for example,
By introducing frit gas, combustion gas, auxiliary combustion gas, inert gas, etc. into the multi-tube burner 1, and generating glass particles through flame hydrolysis in the flame 2, the particles are deposited on the rotating starting material 3. The point of forming the porous base material 4 is the same as that of the conventional method, but as shown in FIG.
(raw material outlet diameter), and the inner diameter of the outermost port 12 of the multi-tube burner 1 is D (flame diameter), then D/
A porous base material is formed with d=5 to 20.

〔作用〕[Effect]

従来のバーナでは一般にD/d=3程度であつ
て、この従来バーナを用いた時の原料()SiO2
換算)投入量(g/分)と堆積速度(g/分)の
関係を第4図のグラフに示すが、原料投入量が15
g/分を越えると堆積速度は7g/分で飽和して
しまい、これ以上原料投入量を増やしても堆積効
率は47%以上には向上しなかつた。
In conventional burners, D/d is generally about 3, and when using this conventional burner, the raw material ()SiO 2
The relationship between the input amount (converted) (g/min) and the deposition rate (g/min) is shown in the graph in Figure 4.
When the rate exceeded 7 g/min, the deposition rate was saturated at 7 g/min, and even if the raw material input amount was further increased, the deposition efficiency could not be improved to 47% or more.

そこで原料(SiO2換算)投入量を10g/分に
固定し、D/dの値が3〜30の間で異なる種々の
多重管バーナを用いてスート付けし、この時の堆
積速度(g/分)を調べた。第2図のグラフにこ
の結果を示すが、本発明範囲のD/dが5〜20に
おいて、收率60%以上の高率で安定に母材を製造
し得ることが明らかである。
Therefore, the raw material (SiO 2 equivalent) input amount was fixed at 10 g/min, soot was applied using various multi-tube burners with D/d values between 3 and 30, and the deposition rate (g/min) was minutes). The results are shown in the graph of FIG. 2, and it is clear that when D/d is within the range of the present invention from 5 to 20, the base material can be stably produced at a high yield of 60% or more.

〔実施例〕〔Example〕

実施例 1 火炎外径が50、原料吹出口直径が5でD/d=
10の多重管バーナを用いてガラス微粒子体の堆積
を行なつた。このとき原料吹出口からの原料とし
てはSiCl4を、燃焼ガスとしてはH280/分、助
燃ガスとしてはO2を70/分、さらに不活性ガ
スArを20/分流した。原料(SiO2換算)投入
量(g/分)を種々に変化させたときの堆積速度
(g/分)の変化を第3図に示す。この結果、
D/d=10の場合には堆積速度13g/分までは安
定に製造できることが判つた。これは従来法の
D/d=3程度のバーナを用いる場合の原料投入
量15g/分で堆積速度7g/分までという値に比
して、はるかに高い値であり、本発明の効果が明
らかに理解できる。
Example 1 The flame outer diameter is 50, the raw material outlet diameter is 5, and D/d=
Glass particles were deposited using 10 multi-tube burners. At this time, SiCl 4 was flowed as the raw material from the raw material outlet, H 2 was flowed at 80/min as the combustion gas, O 2 was flowed at 70/min as the auxiliary combustion gas, and inert gas Ar was flowed at 20/min. FIG. 3 shows the changes in the deposition rate (g/min) when the raw material (SiO 2 equivalent) input amount (g/min) was varied. As a result,
It was found that when D/d=10, stable production could be achieved at a deposition rate of up to 13 g/min. This is a much higher value than the conventional method using a burner with D/d = 3, in which the material input rate is 15 g/min and the deposition rate is up to 7 g/min, and the effect of the present invention is clearly demonstrated. can be understood.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明は多重管バーナの火炎外
径を該バーナの原料吹出口直径の5〜20倍の範囲
内という、従来法よりも大きな倍率にしてガラス
微粒子の堆積を行なうことにより、堆積速度、收
率を共に向上して光フアイバ用多孔質母材を製造
できるという、経済性の高い実用的な製法であ
る。
As described above, the present invention deposits glass particles by setting the outer diameter of the flame of the multi-tube burner within a range of 5 to 20 times the diameter of the raw material outlet of the burner, which is larger than the conventional method. This is a highly economical and practical manufacturing method that can improve both deposition rate and yield to produce a porous base material for optical fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多重管バーナーにおける最外周ポート
の内径(火炎外径)Dとガラス原料を流す最外ポ
ートの内径(原料吹出口直径)dの説明図、第2
図はD/dを3〜30の間で変化させたときのD/
dと堆積速度(g/分)の関係を示すグラフ図、
第3図は本発明の実施例におけるD/d=10のと
きの原料(SiO2換算)投入量(g/分)と堆積
速度(g/分)の関係を示すグラフ図、第4図は
従来法のD/d=3のときの原料(SiO2換算)
投入量(g/分)と堆積速度(g/分)の関係を
示すグラフ図である。第5図は多重管バーナを用
いてガラス微粒子堆積体を形成する一般的な方法
の説明図である。
Figure 1 is an explanatory diagram of the inner diameter (flame outer diameter) D of the outermost port in a multi-tube burner and the inner diameter (raw material outlet diameter) d of the outermost port through which frit flows.
The figure shows D/d when D/d is varied between 3 and 30.
A graph diagram showing the relationship between d and deposition rate (g/min),
FIG. 3 is a graph showing the relationship between raw material (SiO 2 equivalent) input amount (g/min) and deposition rate (g/min) when D/d=10 in an example of the present invention, and FIG. Raw material when D/d=3 in conventional method (SiO 2 equivalent)
It is a graph diagram showing the relationship between input amount (g/min) and deposition rate (g/min). FIG. 5 is an explanatory diagram of a general method for forming a glass particle deposit using a multi-tube burner.

Claims (1)

【特許請求の範囲】[Claims] 1 多重管バーナの中心部分からガラス原料を供
給して、該バーナが形成する火炎中でガラス原料
を反応させることにより生成させたガラス微粒子
を堆積させて多孔質ガラス母材を製造する方法に
おいて、該多重管バーナの最外周ポート内径をガ
ラス原料を流す最外ポートの内径の5〜20倍の範
囲内として堆積することを特徴とする光フアイバ
用母材の製造方法。
1. A method for producing a porous glass base material by supplying glass raw material from the central part of a multi-tube burner and depositing glass fine particles generated by reacting the glass raw material in a flame formed by the burner, A method for producing an optical fiber preform, characterized in that the inner diameter of the outermost port of the multi-tube burner is within a range of 5 to 20 times the inner diameter of the outermost port through which the glass raw material is passed.
JP249388A 1988-01-11 1988-01-11 Production of preform for optical fiber Granted JPH01179737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP249388A JPH01179737A (en) 1988-01-11 1988-01-11 Production of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP249388A JPH01179737A (en) 1988-01-11 1988-01-11 Production of preform for optical fiber

Publications (2)

Publication Number Publication Date
JPH01179737A JPH01179737A (en) 1989-07-17
JPH0435429B2 true JPH0435429B2 (en) 1992-06-11

Family

ID=11530887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP249388A Granted JPH01179737A (en) 1988-01-11 1988-01-11 Production of preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH01179737A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10258785B2 (en) 2013-11-29 2019-04-16 Conceptomed As Disconnecting mechanisms

Also Published As

Publication number Publication date
JPH01179737A (en) 1989-07-17

Similar Documents

Publication Publication Date Title
US4765815A (en) Method for producing glass preform for optical fiber
JPH0435429B2 (en)
JP2612941B2 (en) Method for producing porous optical fiber preform
KR101157674B1 (en) Fabrication Method of Porous Glass Preform for Optical Fiber, and Glass Preform Fabricated Thereby
JPS60264338A (en) Manufacture of optical fiber preform
JPH02164733A (en) Production of glass fine particle deposited body
KR20020067992A (en) Method of forming soot preform
JPS63225540A (en) Production of deposit of fine glass particles
JPS60260433A (en) Manufacture of base material for optical fiber
JPH04219339A (en) Production of preform for optical fiber
JPS6126527A (en) Production of porous quartz glass base material
JP3176949B2 (en) Method for producing porous silica preform
JP3118723B2 (en) Method for producing porous glass preform for optical fiber
JPH04240125A (en) Manufacture of optical fiber preform
JPS58167442A (en) Production of optical fiber parent material
JPH04228440A (en) Production of glass article
JP2751176B2 (en) Manufacturing method of base material for optical fiber
JPH05147965A (en) Production of glass base material
JPH0583497B2 (en)
JPH02133331A (en) Production of fine glass particle-deposited body
JPH02120250A (en) Production of deposited glass soot material
JPS62182131A (en) Production of piled material of glass fine particle
JPS63123828A (en) Production of porous preform for optical fiber
JPH0712953B2 (en) Method for manufacturing base material for optical fiber
JPH01145345A (en) Production of chlorine-free glass for optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 16