JPH0583497B2 - - Google Patents
Info
- Publication number
- JPH0583497B2 JPH0583497B2 JP59208033A JP20803384A JPH0583497B2 JP H0583497 B2 JPH0583497 B2 JP H0583497B2 JP 59208033 A JP59208033 A JP 59208033A JP 20803384 A JP20803384 A JP 20803384A JP H0583497 B2 JPH0583497 B2 JP H0583497B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- glass
- cooling gas
- porous
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 24
- 239000013307 optical fiber Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 4
- 239000000567 combustion gas Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims 2
- 238000002156 mixing Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 claims 1
- 239000005373 porous glass Substances 0.000 description 20
- 239000000112 cooling gas Substances 0.000 description 19
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000001089 thermophoresis Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Melting And Manufacturing (AREA)
Description
〔産業上の利用分野〕
本発明は、VAD法(気相軸付法)により、光
フアイバ用プリフオームを製造する新規な方法に
関するものである。
〔従来の技術〕
VAD法は、第1図に示すように回転しながら
上方向に移動する棒状基材5の下端に煤状ガラス
微粒子3を付着堆積し、棒状基材5を引き上げな
がら、煤状ガラス微粒子3を軸方向に成長させて
棒状の多孔質ガラス母材6を形成した後、所定の
処理を施して光フアイバ用プリフオームを製造す
る方法である。そして、この光フアイバ用プリフ
オームを紡糸して光フアイバを製造している。上
記VAD法は量産性に優れた方法であると言われ
ている。なお第1図において1はガラス微粒子合
成バーナ、2は酸水素炎、4は火炎の中心に現れ
る原料の未反応点である。
〔発明が解決しようとする問題点〕
ところで、VAD法により、高い合成速度で、
多孔質ガラス母材を製造する場合、単位時間当り
の原料投入量を増加させる必要があるが、煤状ガ
ラス微粒子の多孔質ガラス母材上への付着効率低
下のため、原料投入量に比例して多孔質母材への
堆積速度を増加させることができないという困難
があつた。従来、上記付着効率低下を防ぐため、
バーナ形状、風防径、酸水素流量といつたパラメ
ータを適切に選ぶということに努力が払われてき
た。しかし、これらのパラメータを変化させると
火炎の形状および安定性、粒子の生成と成長も変
化し、堆積速度を大きく向上させることができな
かつた。
第2図に、堆積速度(g/分)とSiCl4投入量
(g/分)の関係を示す。
本発明は上記の現状に鑑み、煤状ガラス微粒子
の多孔質ガラス母材上への付着効率を向上する方
法を提供することを目的とする。
〔問題点を解決するための手段〕
煤状ガラス微粒子の付着効率向上に寄与する力
の1つとして、サーモフオレシス効果というもの
が知られており、VAD法の場合にも、上記サー
モフオレシス効果がガラス微粒子の多孔質ガラス
母材上への堆積に大きく効いていると考えられる
〔文献:J.Appl.Phys.535920−5925(1982)〕。上記
サーモフオレシス効果によつて、煤状ガラス微粒
子が多孔質ガラス母材表面の煤状ガラス微粒子堆
積面へ向かう速度成分を持ち、上記堆積面へ付着
するためには、堆積面周囲に、この堆積面へ向か
う負の温度勾配が存在する必要がある。従来、こ
の温度勾配は、酸水素炎と、多孔質ガラス母材に
よつて自然に形成されるにまかしていた。
本発明者等は上記温度勾配を増大させる方法を
種々検討した結果、多孔質ガラス母材上にガラス
微粒子合成バーナ以外から冷却ガスを吹き付ける
方法が、最も適当であるとの結論に達した。この
方法を用いれば、酸水素火炎および原料流の乱れ
を最少に抑えつつ堆積面周囲の温度勾配を増大さ
せることができ、それによつて、煤状ガラス微粒
子の多孔質ガラス母材上への付着効率を増加させ
ることができる。
すなわち本発明の方法はガラス用原料及び燃焼
ガスをバーナにより混合燃焼せしめて軸方向にガ
ラス微粒子を積層させ多孔質母材を作り、後にこ
れを焼結透明化し、光フアイバ用プリフオームを
製造する方法に於いて、上記多孔質母材を低温の
N2ガスまたはArガスを吹きつけることにより冷
却しながらガラス微粒子を積層させることを特徴
とする、光フアイバ用プリフオームの製造方法に
関する。
本発明の好ましい実施態様としては、上記のお
いて多孔質母材に低温のN2ガス又はArガスを吹
きつけて冷却する光フアイバ用プリフオームの製
造方法が挙げられる。
以下に本発明を詳細に説明する。
第3図は本発明の1実施態様を説明する図で、
図中31はガラス微粒子合成バーナ、32は酸水
素炎、33はガラス微粒子の流れ、34は多孔質
ガラス母材、35は出発基材36は冷却用ガス吹
出口、37は冷却用ガスの流れである。
冷却用ガス吹出口36はバーナ31より上部に
多孔質ガラス母材に近接して配置し、ガラス微粒
子堆積面に向ける。冷却用ガスとしては、たとえ
ば液体チツソより気化したN2、又はドライアイ
スより昇華したCO2を使用する。冷却用ガスの流
量は、冷却用ガスが火炎を両側に分離し、多孔質
ガラス母材に直接当たる範囲で最少量に調節す
る。このように、冷却用ガス吹き出し口、冷却用
ガスを調節することにより、火炎の形状および安
定性、粒子の生成と成長に与える影響を最少にし
つつ多孔質ガラス母材の冷却用ガスに当る面を冷
却することができる。多孔質ガラス母材の回転に
従つて、冷却された表面は、高温のガラス微粒子
流と直接接することになり、サモフオレシス効果
によつて多量のガラス微粒子が堆積するので、ガ
ラス微粒子の付着効率を向上させることができ
る。
〔実施例〕
以下本発明の一実施例を説明する。第3図に示
した配置において、ガラス微粒子合成バーナは外
径20mmの4重管を使用した。冷却用ガス吹出口は
直接20mmのものを使用し、多孔質ガラス母材との
距離を2mmに保つた。冷却用ガスの流量は1/
minとした。ガラス原料、可燃性ガス、助燃性ガ
スは表1に示す流量を流した。
[Industrial Field of Application] The present invention relates to a novel method for manufacturing an optical fiber preform by the VAD method (vapor deposition method). [Prior Art] As shown in FIG. 1, in the VAD method, soot-like glass particles 3 are deposited on the lower end of a rod-shaped substrate 5 that moves upward while rotating, and while the rod-shaped substrate 5 is pulled up, soot is removed. In this method, a rod-shaped porous glass preform 6 is formed by growing microscopic glass particles 3 in the axial direction, and then a preform for an optical fiber is manufactured by performing a predetermined treatment. Then, this optical fiber preform is spun to produce an optical fiber. The above VAD method is said to be a method with excellent mass productivity. In FIG. 1, 1 is a glass particle synthesis burner, 2 is an oxyhydrogen flame, and 4 is an unreacted point of the raw material appearing at the center of the flame. [Problems to be solved by the invention] By the way, the VAD method can achieve high synthesis speed,
When manufacturing a porous glass base material, it is necessary to increase the amount of raw material input per unit time, but because the adhesion efficiency of sooty glass particles on the porous glass base material decreases, the rate increases in proportion to the amount of raw material input. The difficulty was that it was not possible to increase the deposition rate on the porous matrix. Conventionally, in order to prevent the above-mentioned decrease in adhesion efficiency,
Efforts have been made to appropriately select parameters such as burner shape, windshield diameter, and oxyhydrogen flow rate. However, changing these parameters also changes the shape and stability of the flame, and the generation and growth of particles, making it impossible to significantly improve the deposition rate. FIG. 2 shows the relationship between deposition rate (g/min) and SiCl 4 input amount (g/min). In view of the above-mentioned current situation, an object of the present invention is to provide a method for improving the adhesion efficiency of sooty glass particles onto a porous glass base material. [Means for solving the problem] The thermophoresis effect is known as one of the forces that contributes to improving the adhesion efficiency of sooty glass particles, and in the case of the VAD method, the thermophoresis effect is It is thought that this has a great effect on the deposition on the porous glass base material [Reference: J.Appl.Phys. 53 5920-5925 (1982)]. Due to the above-mentioned thermophoresis effect, the soot-like glass particles have a velocity component that moves toward the soot-like glass particle deposition surface on the surface of the porous glass base material, and in order to adhere to the deposition surface, there must be a There must be a negative temperature gradient towards . Conventionally, this temperature gradient was left to be naturally formed by the oxyhydrogen flame and the porous glass matrix. The inventors of the present invention have investigated various methods of increasing the temperature gradient, and have concluded that the most appropriate method is to spray cooling gas onto the porous glass base material from a source other than the glass particle synthesis burner. Using this method, it is possible to increase the temperature gradient around the deposition surface while minimizing turbulence in the oxyhydrogen flame and feedstock flow, thereby increasing the adhesion of sooty glass particles onto the porous glass matrix. Efficiency can be increased. That is, the method of the present invention is a method in which raw materials for glass and combustion gas are mixed and burned in a burner, fine glass particles are laminated in the axial direction to create a porous base material, and this is later sintered to make it transparent to produce a preform for optical fiber. In this process, the above porous base material is heated to low temperature.
The present invention relates to a method for manufacturing an optical fiber preform, which is characterized by stacking glass particles while cooling by blowing N 2 gas or Ar gas. A preferred embodiment of the present invention includes the method for manufacturing an optical fiber preform described above, in which the porous base material is cooled by blowing low-temperature N 2 gas or Ar gas. The present invention will be explained in detail below. FIG. 3 is a diagram illustrating one embodiment of the present invention,
In the figure, 31 is a glass particle synthesis burner, 32 is an oxyhydrogen flame, 33 is a flow of glass particles, 34 is a porous glass base material, 35 is a starting base material 36 is a cooling gas outlet, and 37 is a flow of cooling gas It is. The cooling gas outlet 36 is disposed above the burner 31 and close to the porous glass base material, and is directed toward the surface on which the glass particles are deposited. As the cooling gas, for example, N 2 vaporized from liquid nitrogen or CO 2 sublimated from dry ice is used. The flow rate of the cooling gas is adjusted to the minimum amount within the range where the cooling gas separates the flame into both sides and directly hits the porous glass base material. In this way, by adjusting the cooling gas outlet and the cooling gas, the surface of the porous glass base material that is in contact with the cooling gas can be adjusted while minimizing the influence on the shape and stability of the flame and the generation and growth of particles. can be cooled. As the porous glass base material rotates, the cooled surface comes into direct contact with the flow of high-temperature glass particles, and a large amount of glass particles are deposited due to the thermophoresis effect, improving the adhesion efficiency of glass particles. can be done. [Example] An example of the present invention will be described below. In the arrangement shown in FIG. 3, the glass particle synthesis burner used a quadruple tube with an outer diameter of 20 mm. A 20 mm direct cooling gas outlet was used, and the distance from the porous glass base material was maintained at 2 mm. The flow rate of cooling gas is 1/
It was set as min. The glass raw materials, combustible gas, and combustion assisting gas were flowed at the flow rates shown in Table 1.
【表】
上記の流量で冷却用ガスを流さぬ場合と流した
場合について多孔質ガラス母材を作成した。多孔
質ガラス母材堆積面の温度をスポツトセンサーを
用いて計ると、冷却用ガスを流さない場合で780
℃、流した場合で730℃であり、冷却用ガスによ
つて表面温度は50℃低下した。
また、ガラス微粒子の多孔質ガラス母材上への
付着率は、冷却用ガスを流さない場合で63%、流
した場合で77%であり、本発明による方法で付着
効率の改善効果がみとめられた。上記の条件で冷
却用ガスを流しながら作成した多孔質ガラス母材
を、透明ガラス化し、フアイバ化したところ、損
失0.6dB/Km(λ=1.3μ)、帯域690KHz(λ=
1.3μ)の光フアイバが得られた。このように冷却
用ガスを多孔質ガラス母材の堆積面に吹きつけて
冷却することにより付着効率を高めつつ、高品質
の光通信用ガラスフアイバを得ることができた。
〔発明の効果〕
以上説明したところおよび実施例のデータから
明らかなように、本発明の方法は、煤状ガラス微
粒子の多孔質母材上への付着効率を向上できるの
で、高品質の光フアイバ用プリフオームを効率よ
く製造できる。[Table] Porous glass base materials were prepared with and without flowing cooling gas at the above flow rates. When the temperature of the porous glass base material deposition surface is measured using a spot sensor, it is 780°C without flowing cooling gas.
℃, 730℃ when flowing, and the surface temperature was lowered by 50℃ due to the cooling gas. In addition, the adhesion rate of glass fine particles onto the porous glass base material was 63% without flowing cooling gas and 77% when cooling gas was flowing, indicating that the method of the present invention has an effect of improving adhesion efficiency. Ta. When the porous glass base material created under the above conditions while flowing cooling gas was made into transparent glass and fiber, the loss was 0.6 dB/Km (λ = 1.3 μ) and the band was 690 KHz (λ =
1.3μ) optical fiber was obtained. In this way, by blowing the cooling gas onto the deposited surface of the porous glass base material to cool it, it was possible to increase the adhesion efficiency and obtain a high-quality glass fiber for optical communication. [Effects of the Invention] As is clear from the above explanation and the data of the examples, the method of the present invention can improve the adhesion efficiency of sooty glass particles onto the porous base material, so it can produce high-quality optical fibers. preforms can be manufactured efficiently.
第1図は従来のVAD法の概略説明図、第2図
は従来法による場合のSiCl4投入量と堆積速度の
関係を示すグラフ、第3図は本発明の方法の1実
施態様例を概略説明する図である。
Fig. 1 is a schematic explanatory diagram of the conventional VAD method, Fig. 2 is a graph showing the relationship between SiCl 4 input amount and deposition rate in the case of the conventional method, and Fig. 3 is a schematic diagram of one embodiment of the method of the present invention. FIG.
Claims (1)
合燃焼せしめて軸方向にガラス微粒子を積層させ
多孔質母材を作り、後にこれを焼結透明化し、光
フアイバ用プリフオームを製造する方法に於い
て、上記多孔質母材を低温のN2ガスまたはArガ
スを吹きつけることにより冷却しながらガラス微
粒子を積層させることを特徴とする、光フアイバ
用プリフオームの製造方法。1. In the method of manufacturing a preform for optical fiber by mixing and burning raw materials for glass and combustion gas in a burner, laminating glass particles in the axial direction to create a porous base material, and later sintering this to make it transparent, the above-mentioned method is performed. A method for manufacturing an optical fiber preform, which comprises laminating glass particles while cooling a porous base material by blowing low-temperature N 2 gas or Ar gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20803384A JPS6186440A (en) | 1984-10-05 | 1984-10-05 | Manufacture of preform for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20803384A JPS6186440A (en) | 1984-10-05 | 1984-10-05 | Manufacture of preform for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6186440A JPS6186440A (en) | 1986-05-01 |
JPH0583497B2 true JPH0583497B2 (en) | 1993-11-26 |
Family
ID=16549552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20803384A Granted JPS6186440A (en) | 1984-10-05 | 1984-10-05 | Manufacture of preform for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6186440A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62108747A (en) * | 1985-11-06 | 1987-05-20 | Furukawa Electric Co Ltd:The | Preparation of porous glass base material |
JPH0527026U (en) * | 1991-09-18 | 1993-04-06 | 古河電気工業株式会社 | Optical fiber synthesizer |
JP2005194135A (en) | 2004-01-07 | 2005-07-21 | Shin Etsu Chem Co Ltd | Method for manufacturing porous preform for optical fiber and glass preform |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727934A (en) * | 1980-07-25 | 1982-02-15 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS5864234A (en) * | 1981-10-15 | 1983-04-16 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
-
1984
- 1984-10-05 JP JP20803384A patent/JPS6186440A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727934A (en) * | 1980-07-25 | 1982-02-15 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS5864234A (en) * | 1981-10-15 | 1983-04-16 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JPS6186440A (en) | 1986-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4627867A (en) | Method for producing highly pure glass preform for optical fiber | |
JP3521681B2 (en) | Manufacturing method of optical fiber preform | |
JP4043768B2 (en) | Manufacturing method of optical fiber preform | |
JPS6177631A (en) | Manufacture of optical fiber preform | |
JPH0583497B2 (en) | ||
JPH07138028A (en) | Production of synthetic quartz glass member and burner for producing synthetic quartz glass | |
JPS59174538A (en) | Manufacture of base material for optical fiber | |
CN1015333B (en) | Method for producing highly pure glass preform for optical fiber | |
US8297079B2 (en) | Method of manufacturing porous glass base material used for optical fibers, and glass base material | |
JP3212331B2 (en) | Manufacturing method of preform preform for optical fiber | |
JPS6259063B2 (en) | ||
JPS62167238A (en) | Production of base material for optical fiber | |
JPS604978Y2 (en) | Glass particle synthesis torch | |
JPH04295018A (en) | Production of synthetic quartz glass | |
JPS5925739B2 (en) | Method of manufacturing optical transmission glass | |
JPH0383829A (en) | Preparation of base material for optical fiber | |
JPH0784331B2 (en) | Method for manufacturing glass base material for optical fiber | |
JPS63107825A (en) | Production of synthetic quartz tube | |
JPS6054936A (en) | Manufacture of preform rod | |
JPS6230144B2 (en) | ||
JPS6210936B2 (en) | ||
JP3998228B2 (en) | Optical fiber porous base material, optical fiber glass base material, and manufacturing methods thereof | |
JPH0397632A (en) | Production of porous glass preform for optical fiber | |
JPS62182131A (en) | Production of piled material of glass fine particle | |
JPS61106433A (en) | Production of optical fiber base material |