JPS62167238A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS62167238A
JPS62167238A JP811086A JP811086A JPS62167238A JP S62167238 A JPS62167238 A JP S62167238A JP 811086 A JP811086 A JP 811086A JP 811086 A JP811086 A JP 811086A JP S62167238 A JPS62167238 A JP S62167238A
Authority
JP
Japan
Prior art keywords
base material
refractive index
optical fiber
distribution
index distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP811086A
Other languages
Japanese (ja)
Other versions
JPH0662312B2 (en
Inventor
Shigeki Endo
茂樹 遠藤
Toru Kuwabara
透 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP811086A priority Critical patent/JPH0662312B2/en
Publication of JPS62167238A publication Critical patent/JPS62167238A/en
Publication of JPH0662312B2 publication Critical patent/JPH0662312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To precisely regulate the refractive index distribution with an inexpensive device by controlling the rotational frequency of a starting material to regulate the refractive index distribution when an optical fiber base material is produced by the VAD method. CONSTITUTION:A gaseous glass material, a combustion gas, a combustion improving gas, a carrier gas, etc., are sent from a burner 2, the glass material is flame-hydrolyzed in an oxyhydrogen flame 3, the formed fine glass particles are deposited on the rotating starting material 6, and a porous glass body 1 is produced. In this case, the distribution of the surface temps. of the porous base material 1 and the gas passage are controlled by changing the rotational speed of the starting material 6, the concn. of an additive for regulating the refractive index such as P, F, and Ge to be added to the porous base material 1 is controlled, and hence the shape of the refractive index distribution in the optical fiber core is controlled. When the rotational speed of the starting material 6 is increased, the distribution index of the refractive indexes of the base material 1 is proportionally increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMAD法により、光フアイバ用母材を製造する
場合の屈折率分布制御方法に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling refractive index distribution when manufacturing an optical fiber base material by the MAD method.

〔従来の技術〕[Conventional technology]

光フアイバ用ガラス母材の製造方法の一つに、気相軸付
法(VAD法: vapnr Phase Axial
Deposition法)があり、これは高品質のガラ
ス母材を効率良く生産できる方法として優れた方法でち
る。
One of the manufacturing methods for glass base materials for optical fibers is the vapor phase axial method (VAD method).
There is a deposition method (deposition method), which is an excellent method for efficiently producing a high-quality glass base material.

この方法は、第1図に示すように、バーナー2からガラ
ス原料ガス、燃焼ガス、助燃ガス、キャリヤガス等を流
し、酸水素火炎5中にてガラス原料4を火炎加水分解し
て生成したガラス微粒子を、その中心軸を回転軸6とす
る支持体上に堆積させてガラス微粒子堆積体(多孔質母
材)1を得る方法である。
In this method, as shown in FIG. 1, frit gas, combustion gas, auxiliary combustion gas, carrier gas, etc. are flowed from a burner 2, and frit 4 is flame-hydrolyzed in an oxyhydrogen flame 5 to produce glass. In this method, a glass fine particle deposit (porous base material) 1 is obtained by depositing fine particles on a support whose central axis is a rotating shaft 6.

光フアイバ用母材を製造する場合、特に1グレーデツド
・インデックス・ファイバ(Glファイバ)用母材を製
造する場合、その屈折率分布を任意に制御することは、
必要不可欠な技術である。GI型ファイバの屈折率分布
については、例えば下記(1)式が成立し、 ここで命i  : riにおける屈折率差向■ :最大
屈折率差 a  :コア半径 αを屈折率分布指数という。
When manufacturing a base material for optical fiber, especially when manufacturing a base material for 1 grade index fiber (Gl fiber), it is possible to arbitrarily control the refractive index distribution.
This is an essential technology. Regarding the refractive index distribution of a GI type fiber, for example, the following equation (1) holds true, where the index i: the refractive index difference at ri; the maximum refractive index difference a: the core radius α is called the refractive index distribution index.

これは第2図のようにあられされ、第2図において実線
イのαがよシ小さくなると鎖線口のごとくなり、またα
がより大きくなると鎖線ノ・のどとくになる。
This occurs as shown in Figure 2. In Figure 2, when α on the solid line A gets smaller, it becomes like the dashed line, and α
When becomes larger, it becomes a chain line.

C)I型ファイバにおいては、使用する光の波長により
最適なα値が存在し、実際のファイバのα値が最適値に
近ければ近い程、該ファイバの帯域中が広くなるので、
α値の制御は重大な問題である。
C) For type I fibers, there is an optimal α value depending on the wavelength of the light used, and the closer the α value of the actual fiber is to the optimal value, the wider the band of the fiber will be.
Controlling the α value is a critical issue.

従来、VAD法では、この屈折率分布を制御する方法と
して、 ■ バーナーより吹き出す5ick等の原料流量を制御
する。
Conventionally, in the VAD method, as a method for controlling this refractive index distribution, (1) the flow rate of raw material such as 5ick blown out from a burner is controlled.

■ バーナーよシ吹き出すO,、H,量を制御する。■ Control the amount of O, H, blown out from the burner.

■ バーナー位置を制御する。■ Control the burner position.

等の手段が知られている。Such methods are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記■〜■の手段で屈折率分布を微量に調
整するには、高精度の流量1制御装置あるいは高精度の
微動台が必要になシ、どうしても製造設備が高価になシ
、当然製造コストが高くつくという欠点があった。
However, in order to minutely adjust the refractive index distribution using the methods described in (1) to (3) above, a high-precision flow rate control device or a high-precision fine adjustment table is required, which inevitably leads to expensive manufacturing equipment and, of course, manufacturing costs. The drawback was that it was expensive.

本発明は、 VAD法における光フアイバ用母材の製造
において、安価でしかも有効な屈折率分布制御方法を提
供するものである。
The present invention provides an inexpensive and effective method for controlling refractive index distribution in the production of optical fiber preforms using the VAD method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はガラ゛ス原料ガスを火炎中に導入し、火炎加水
分解することにより生成したガラス微粒子を回転する出
発材に堆積して多孔質ガラス体を得る光フアイバ用母材
の製造方法において、上記出発材の回転数を制御して屈
折率分布を調整することを特徴とする光フアイバ用母材
の製造方法である。
The present invention provides a method for producing an optical fiber base material in which a porous glass body is obtained by introducing glass raw material gas into a flame and depositing glass particles generated by flame hydrolysis on a rotating starting material. A method for manufacturing an optical fiber base material, characterized in that the refractive index distribution is adjusted by controlling the rotation speed of the starting material.

VAD法における光フアイバ用母材の製造においてGe
、 P、 F 等の屈折率調整用添加剤をS10!から
なる多孔質母材に添加する機構は充分解明されてい表い
が、第1図の原料流4の濃度分布、および多孔質母材5
の表面温度分布が大きな影響を与えていると考えられて
いる。
Ge is used in the production of optical fiber base materials in the VAD method.
, P, F and other refractive index adjusting additives in S10! Although the mechanism of addition to the porous base material consisting of
It is thought that the surface temperature distribution of the surface has a major influence.

本発明は回転を続ける多孔質母材の回転数を変化させる
ことにより、多孔質母材の表面温度分布およびガス流路
を制御することにより、多孔質母材に添加されるGe、
P、F等の濃度を制御し、ひいては光ファイバ・コア内
の屈折率分布形状を制御するものである。
The present invention controls the surface temperature distribution and gas flow path of the porous base material by changing the rotation speed of the porous base material that continues to rotate.
It controls the concentration of P, F, etc., and in turn controls the refractive index distribution shape within the optical fiber core.

〔実施例〕〔Example〕

実施例1 原料ガス: 5iC24240中倍、 GeC4150
(Xy”h。
Example 1 Raw material gas: 5iC24240 medium, GeC4150
(Xy”h.

pocts 2鴎尋 その他ガス: H,t8t/分、O,&Ot/分、Ar
1.4t/分He470CC/分 回転数: 30 rpm の条件にて、VAD法により長さ301の多孔質母材を
作製し、脱水、焼結を施して得られた透明母材の屈折率
分布を測定した。その結果、本母材の屈折率指数は1.
95であった。
pocts 2 Other gases: H, t8t/min, O, &Ot/min, Ar
Refractive index distribution of transparent base material obtained by producing a porous base material with a length of 301 by VAD method under the conditions of 1.4 t/min He470 CC/min rotation speed: 30 rpm, dehydrating and sintering was measured. As a result, the refractive index index of this base material was 1.
It was 95.

実施例2 実施例1と同一条件でかつ回転数を50 rpMに変更
し、実施例1と同一方法にて透明化し、屈折率分布を測
定したところ、屈折率分布指数αは2−02となった。
Example 2 The refractive index distribution was measured under the same conditions as in Example 1, with the rotational speed changed to 50 rpm, and the same method as in Example 1, and the refractive index distribution index α was 2-02. Ta.

実施例3 実施例2と同様に回転数を70 rpMに変更した屈折
率分布指数αは2.10となった。
Example 3 Similar to Example 2, the rotation speed was changed to 70 rpm, and the refractive index distribution index α was 2.10.

以上、横軸に多孔質母材の回転数、縦軸に屈折率分布指
数αをとった図3に以上の実施例1〜3の結果をまとめ
る。第3図から明らかなように、多孔質、母材の回転数
を制御することにより、多孔質母材の屈折率分布言いか
えれば、Ge I P gF等の濃度分布を制御するこ
とが可能である。
The results of Examples 1 to 3 are summarized in FIG. 3, in which the horizontal axis represents the rotational speed of the porous base material and the vertical axis represents the refractive index distribution index α. As is clear from Figure 3, by controlling the rotation speed of the porous base material, it is possible to control the refractive index distribution of the porous base material, or in other words, the concentration distribution of Ge I P gF, etc. be.

又、本発明は屈折率分布を表わす代用特性である多孔質
母材形状、温度等からのフィード・バック制御が可能で
あることはもちろんである。
Furthermore, it goes without saying that the present invention allows feedback control from the porous base material shape, temperature, etc., which are substitute characteristics representing the refractive index distribution.

〔発明の効果〕〔Effect of the invention〕

本発明はVAD法において精度良く屈折率分布を制御で
きるので、最適α値のすなわち帯域の広い光ファイバを
製造することができ、また具体的手段としては回転数を
制御するので設備費用がかからず、ファイバ製造コスト
を低減できるという、品質上、経済上優れた有利な方法
である。
Since the refractive index distribution of the present invention can be precisely controlled using the VAD method, it is possible to manufacture an optical fiber with an optimal α value, that is, a wide band.As a specific means, the rotation speed is controlled, which reduces equipment costs. First, it is an advantageous method that is superior in terms of quality and economy, as it can reduce fiber manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はVAD法による多孔質母材製造の概略説明図で
ある。 第2図は屈折率分布指数αの説明図である。 第3図は多孔質母材の回転数と屈折率分布指数αとの関
係の説明図である。
FIG. 1 is a schematic explanatory diagram of manufacturing a porous base material by the VAD method. FIG. 2 is an explanatory diagram of the refractive index distribution index α. FIG. 3 is an explanatory diagram of the relationship between the rotation speed of the porous base material and the refractive index distribution index α.

Claims (1)

【特許請求の範囲】[Claims] ガラス原料ガスを火炎中に導入し、火炎加水分解するこ
とにより生成したガラス微粒子を回転する出発材に堆積
して多孔質ガラス体を得る光フアイバ用母材の製造方法
において、上記出発材の回転数を制御して屈折率分布を
調整することを特徴とする光フアイバ用母材の製造方法
In a method for producing an optical fiber base material in which a porous glass body is obtained by depositing glass fine particles generated by introducing frit gas into a flame and flame hydrolyzing it on a rotating starting material, the starting material is rotated. 1. A method for producing a base material for optical fiber, characterized by adjusting the refractive index distribution by controlling the number of fibers.
JP811086A 1986-01-20 1986-01-20 Method for manufacturing base material for optical fiber Expired - Lifetime JPH0662312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP811086A JPH0662312B2 (en) 1986-01-20 1986-01-20 Method for manufacturing base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP811086A JPH0662312B2 (en) 1986-01-20 1986-01-20 Method for manufacturing base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS62167238A true JPS62167238A (en) 1987-07-23
JPH0662312B2 JPH0662312B2 (en) 1994-08-17

Family

ID=11684153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP811086A Expired - Lifetime JPH0662312B2 (en) 1986-01-20 1986-01-20 Method for manufacturing base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH0662312B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083982A (en) * 2011-10-05 2013-05-09 Sumitomo Electric Ind Ltd Multimode optical fiber
JP2013109350A (en) * 2011-11-23 2013-06-06 Sumitomo Electric Ind Ltd Multimode optical fiber
WO2024024729A1 (en) * 2022-07-26 2024-02-01 株式会社フジクラ Preform for optical fibers, method for measuring refractive index profile of preform for optical fibers, and method for producing preform for optical fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083982A (en) * 2011-10-05 2013-05-09 Sumitomo Electric Ind Ltd Multimode optical fiber
JP2013109350A (en) * 2011-11-23 2013-06-06 Sumitomo Electric Ind Ltd Multimode optical fiber
WO2024024729A1 (en) * 2022-07-26 2024-02-01 株式会社フジクラ Preform for optical fibers, method for measuring refractive index profile of preform for optical fibers, and method for producing preform for optical fibers

Also Published As

Publication number Publication date
JPH0662312B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
JPH0761831A (en) Production of porous glass preform for optical fiber
JPS62167238A (en) Production of base material for optical fiber
US20040093905A1 (en) Method for producing optical fiber base material
JPH1053429A (en) Base material for optical fiber and its production
JPH0583500B2 (en)
JPS6044258B2 (en) synthesis torch
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPH01239033A (en) Production of optical fiber preform
JPH09221335A (en) Production of precursor of optical fiber glass preform
JPH0583497B2 (en)
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
JPH0525817B2 (en)
JPS6374932A (en) Production of preform for optical fiber
JP2523154B2 (en) Method for manufacturing glass particulate deposit
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JP3675581B2 (en) Method for synthesizing optical fiber base material and method for adjusting synthesis condition
JP4398114B2 (en) Manufacturing method of glass base material for optical fiber with less unevenness
JP3741832B2 (en) Dispersion shifted fiber glass preform manufacturing method
JP2960059B1 (en) Method and apparatus for manufacturing porous glass preform, and concentric multi-tube burner used therein
JPS59121128A (en) Preparation of parent material for optical fiber
JPH0733467A (en) Production of porous glass preform for optical fiber
JPS63107825A (en) Production of synthetic quartz tube
JPH0597452A (en) Production of synthetic silica glass member
JPS60264336A (en) Manufacture of optical glass preform
JPH01160839A (en) Production of preform for optical fiber