JPH0733467A - Production of porous glass preform for optical fiber - Google Patents

Production of porous glass preform for optical fiber

Info

Publication number
JPH0733467A
JPH0733467A JP18036793A JP18036793A JPH0733467A JP H0733467 A JPH0733467 A JP H0733467A JP 18036793 A JP18036793 A JP 18036793A JP 18036793 A JP18036793 A JP 18036793A JP H0733467 A JPH0733467 A JP H0733467A
Authority
JP
Japan
Prior art keywords
side core
burner
soot
combustible gas
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18036793A
Other languages
Japanese (ja)
Other versions
JP2965235B2 (en
Inventor
Hiroshi Oyamada
浩 小山田
Hiroyuki Koide
弘行 小出
Takeshi Ogino
剛 荻野
Hideo Hirasawa
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP18036793A priority Critical patent/JP2965235B2/en
Publication of JPH0733467A publication Critical patent/JPH0733467A/en
Application granted granted Critical
Publication of JP2965235B2 publication Critical patent/JP2965235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02276Dispersion shifted fibres, i.e. zero dispersion at 1550 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide a preform having a uniform refractive index distribution of a side core part and having good reproducibility of dispersion characteristics at the time of reproducing the porous glass preform for the double core type optical fiber by a VAD method and by controlling a burner for a side core in specific range. CONSTITUTION:A burner for a center core for forming a center core part and the burner 2 for a side core for forming a side core part are disposed and the numerical value of equation I consisting of a distance X(m) between a combustible gas blow-off port 3 of the burner 2 for the side core and the deposition surface of the side core part of a soot preform 1, the linear velocity of flow V(m/sec) of the combustible gas and the inside diameter D(m) of the combustible gas blow-off port 3 are so set as to attain the range of formula II. Gaseous raw materials and the combustible gas are passed to the burners for the center core and the side core and the combustible gas is ignited to form flames. The gaseous raw materials are then flame hydrolyzed in the flames to form start flow. The soot flow is thus deposited on the rotating soot preform 1 by integrating the center core part and the side core part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は光ファイバ用多孔質ガ
ラス母材の製造方法、特にはVAD法でセンターコア
部、サイドコア部およびクラッド部を有する二重コア型
分散シフトファイバ用スート母材上にスートを堆積させ
る光ファイバ用多孔質ガラス母材の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous glass preform for an optical fiber, and more particularly to a soot preform for a double core type dispersion shift fiber having a center core portion, a side core portion and a clad portion by the VAD method. The present invention relates to a method for producing a porous glass preform for optical fibers, in which soot is deposited on the substrate.

【0002】[0002]

【従来の技術】光ファイバ用多孔質ガラス母材の製造方
法については、四塩化けい素などの原料ガスを耐水素火
炎バーナーに送入し、この火炎中での火炎加水分解で発
生したシリカ微粒子(以下スートと略記する)の流れ
(以下スート流という)を直立し、回転している耐熱性
の担体(スート母材)上に堆積させ、このスート母材を
順次上方に引上げてここに多孔質ガラス母材を成長させ
る方法がVAD法として公知とされている。
2. Description of the Related Art A method for manufacturing a porous glass preform for optical fibers is as follows. A raw material gas such as silicon tetrachloride is fed into a hydrogen flame resistant burner, and silica fine particles generated by flame hydrolysis in the flame. A flow (hereinafter abbreviated as soot) (hereinafter referred to as soot flow) is erected upright and deposited on a rotating heat-resistant carrier (soot base material), and this soot base material is sequentially pulled upward and perforated there. A method for growing a high quality glass base material is known as a VAD method.

【0003】しかし、このVAD法についてもこの酸水
素火炎バーナーをセンターコア用バーナーとサイドコア
用バーナーおよび、クラッド用バーナーに分割し、セン
ターコア用バーナーからのスート流でセンターコア部を
形成し、サイドコア用バーナーからのスート流をこのセ
ンターコア部上に堆積してサイドコア部を形成したの
ち、クラッド用バーナーからのスート流をサイドコア部
上に堆積して光ファイバ用多孔質ガラス母材を作ること
も知られており、この場合にはセンターコア用バーナー
にはガラス原料ガス(SiCl4) と可燃性ガス(H2 )およ
び支燃性ガス(O2 )が供給されるが、サイドコア用バ
ーナーおよびクラッド用バーナーにはこのほかにドープ
原料ガス(CeCl4) が供給される。
However, also in this VAD method, the oxyhydrogen flame burner is divided into a center core burner, a side core burner, and a clad burner, and the soot flow from the center core burner forms the center core portion to form a side core. It is also possible to deposit the soot flow from the burner for use on the center core to form the side core, and then to deposit the soot flow from the burner for cladding on the side core to form the porous glass preform for optical fibers. It is known that, in this case, the center core burner is supplied with the glass raw material gas (SiCl 4 ) and the combustible gas (H 2 ) and the combustion supporting gas (O 2 ), but the side core burner and the cladding are The dope raw material gas (CeCl 4 ) is also supplied to the burner for use.

【0004】[0004]

【発明が解決しようとする課題】このようにして製造さ
れた二重コア型の分散シャフトスート母材のコア部の屈
折分布はサイドコア部、クラッド部がドーパントが含ま
れていることからセンターコアの屈折率をn1 、サイド
コアの屈折率をn2 、クラッド部の屈折率をn3とする
とn1 >n2 >n3 となり、これらは理想的には図3に
示したようなものとなるはずであるが、屈折率を調整す
るために添加されるドープ剤(Ge)の形態にはGeO2
粒子と Si-Ge-O固溶体の2種類があり、このうちのGeO2
微粒子は脱水工程で揮散するために屈折率調整には殆ど
寄与せず、実質的に屈折率調整に寄与するのは Si-Ge-O
固溶体となるのであるが、この Si-Ge-O固溶体は火炎の
高温領域でSiO2微粒子とGeO2微粒子とが溶け合って形成
されるものであるために、多重管バーナーから吹出され
る Si-Ge-O固溶体のバーナー半径方向の分布は図5
(b)の可燃性ガスの吹出口の内径に対応して図5
(a)のような分布となる。
The double core type dispersion shaft soot base material produced in this manner has a refractive index distribution in the core portion, because the side core portion and the cladding portion contain dopants. Let n 1 be the refractive index of the side core, n 2 be the refractive index of the clad, and n 3 be the refractive index of the clad, then n 1 > n 2 > n 3 , and ideally these are as shown in FIG. There are two types of dopant (Ge) added to adjust the refractive index, GeO 2 particles and Si-Ge-O solid solution. Of these, GeO 2
Since the fine particles volatilize in the dehydration process, they hardly contribute to the refractive index adjustment, and Si-Ge-O contributes substantially to the refractive index adjustment.
Although it becomes a solid solution, since this Si-Ge-O solid solution is formed by melting SiO 2 particles and GeO 2 particles in the high temperature region of the flame, the Si-Ge blown out from the multi-tube burner Figure 5 shows the distribution of -O solid solution in the radial direction of the burner.
Corresponding to the inner diameter of the combustible gas outlet of (b), FIG.
The distribution is as shown in (a).

【0005】したがって、この場合に得られるスート母
材の屈折率分布は図6(a)に示したようにサイドコア
部における屈折率分布が乱れたものとなり、このスート
母材を加熱透明化して得た光ファイバ用合成石英ガラス
母材を紡糸して得た光ファイバは分散特性を精度よく制
御することが非常に難しいものになるという不利があ
る。
Therefore, the refractive index distribution of the soot base material obtained in this case is such that the refractive index distribution in the side core portion is disturbed as shown in FIG. 6A, and this soot base material is obtained by heating and making it transparent. The optical fiber obtained by spinning the synthetic quartz glass base material for optical fiber has the disadvantage that it becomes very difficult to control the dispersion characteristics with high accuracy.

【0006】[0006]

【課題を解決するための手段】本発明はこのような不利
を解決した光ファイバ用多孔質ガラス母材の製造方法に
関するものであり、これはセンターコア部を形成するセ
ンターコア用バーナーとサイドコア部を形成するサイド
コア用バーナーを備え、これらのバーナーに原料ガスと
可燃性ガスを流し、この可燃性ガスに点火して火炎を形
成させて原料ガスの火炎中での火炎加水分解で形成した
スート流を、センターコア部とサイドコア部を一体化し
て回転している二重コア型光ファイバ用スート母材に堆
積させて多孔質ガラス母材を製造する方法において、こ
のサイドコア用バーナーの可燃性ガス吹出口とこのスー
ト母材のサイドコア部堆積面との距離X(m)、可燃性
ガスの線流速(V/秒)および可燃性ガス吹出口の内径
D(m)とからなる式D2/(X/V)の数値が 0.001<D2/(X/V)≦0.1 の範囲となるように設定することを特徴とするものであ
る。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a porous glass preform for an optical fiber, which solves the above disadvantages, which is a burner for a center core forming a center core portion and a side core portion. Equipped with a side core burner to form a soot stream formed by flame hydrolysis in the flame of the source gas by flowing the source gas and a flammable gas into these burners and igniting the flammable gas to form a flame. In the method for producing a porous glass preform by depositing the center core part and the side core part on the rotating double core type optical fiber soot preform, the flammable gas blowing of the side core burner is performed. It consists of the distance X (m) between the outlet and the deposition surface of the side core of the soot base material, the linear velocity of the combustible gas (V / sec), and the inner diameter D (m) of the combustible gas outlet. In which numerical equation D 2 / (X / V), characterized in that the set to be in the range of 0.001 <D 2 /(X/V)≦0.1.

【0007】すなわち、本発明者らはサイドコア部の屈
折率分布が均一で分散特性の再現性、制御性のすぐれた
光ファイバ用母材を製造するための多孔質ガラス母材の
製造方法を開発すべく種々検討した結果、サイドコア用
バーナーの可燃性ガス吹出口とスート母材のサイドコア
部堆積面との距離X(m)と、可燃性ガスの線流速V
(m/秒)との比X/Vがバーナー中で生成した Si-Ge
-O固溶体がサイドコア部に堆積するまでの時間を代表す
る値となるし、この可燃性ガス吹出口の内径D(mm)が
バーナー近傍における Si-Ge-O固溶体の半径方向分布位
置を代表するものになる点に注目し、これらの値からこ
のD2/(X/V)の値を一定の範囲とすれば得られる多
孔質ガラス母材のサイドコア部の屈折率分布を均一なも
のとすることができることを見出し、これについてはこ
のD2/(X/V)の値を 0.001<D2/(X/V)≦0.1
の範囲とすればよいということを確認して本願発明を完
成させた。以下にこれをさらに詳述する。
That is, the present inventors have developed a method for producing a porous glass preform for producing an optical fiber preform having a uniform refractive index distribution in the side core portion and excellent reproducibility and controllability of dispersion characteristics. As a result of various studies to make it possible, the distance X (m) between the flammable gas outlet of the side core burner and the side core deposition surface of the soot base metal, and the linear flow velocity V of the flammable gas
(M / sec) ratio X / V generated Si-Ge in the burner
-O solid solution is a value representative of the time until it deposits on the side core part, and the inner diameter D (mm) of this combustible gas outlet represents the radial distribution position of the Si-Ge-O solid solution near the burner. Paying attention to the fact that the value becomes D 2 / (X / V) within a certain range from these values, the refractive index distribution of the side core part of the porous glass base material obtained becomes uniform. It was found that the value of D 2 / (X / V) was 0.001 <D 2 /(X/V)≦0.1.
The present invention was completed after confirming that the above range was satisfied. This will be described in more detail below.

【0008】[0008]

【作用】本発明は光ファイバ用多孔質ガラス母材の製造
方法に関するものであり、これは前記したようにセンタ
ーコア用バーナーとサイドコア用バーナーを用いて原料
ガスを火炎加水分解して発生させたシリカ微粒子からな
るスート流を回転している二重コア型光ファイバ用スー
ト母材に堆積させて光ファイバ用多孔質ガラス母材を製
造する方法において、サイドコア用バーナーの可燃性ガ
ス吹出口とスート母材のサイドコア部スート堆積面との
距離X、可燃性ガスの線流速V、および可燃性ガス吹出
口の内径Dとからなる式D2/(X/V)の数値を 0.001
<D2/(X/V)≦0.1 の範囲とすることを特徴とする
ものであるが、このようにすれば目的とする多孔質ガラ
ス母材のサイドコア部の屈折率分布を均一なものとする
ことができるという有利性が与えられる。
The present invention relates to a method for producing a porous glass preform for optical fibers, which is produced by flame hydrolysis of a raw material gas using a center core burner and a side core burner as described above. In a method for producing a porous glass preform for optical fibers by depositing a soot flow composed of silica fine particles on a rotating soot preform for double-core optical fiber, a combustible gas outlet and a soot of a side core burner are used. The numerical value of the formula D 2 / (X / V) consisting of the distance X from the soot deposition surface of the side core of the base metal, the linear velocity V of the combustible gas, and the inner diameter D of the combustible gas outlet is 0.001.
The feature is that <D 2 /(X/V)≦0.1 is satisfied, which makes the target refractive index distribution of the side core portion of the porous glass preform uniform. The advantage is that it can be done.

【0009】すなわち、従来法では図4に示したように
反応装置11に設置してあるスート母材12にセンターコア
用バーナー13、サイドコア用バーナー14からのスート流
を堆積させ、ついでクラッド用バーナー15からのスート
流を堆積させてここにクラッド層を形成させて多孔質ガ
ラス母材を製造しているのであるが、このサイドコア用
バーナーの可燃性ガス吹出口16が図5(b)に示したよ
うにされていることから、このバーナー内で生成した S
i-Ge-O固溶体のバーナー半径方向の分布が図5(a)の
ようになり、したがってここに得られる多孔質ガラス母
材には図6(a)に示したようにこのサイドコア部17の
屈折率分布が乱れたものとなり、この多孔質ガラス母材
を加熱透明化して得た光ファイバ用合成石英ガラス母材
を紡糸して得た光ファイバは分散特性を精度よく制御す
ることができないものになるという欠点がある。
That is, in the conventional method, as shown in FIG. 4, soot streams from the center core burner 13 and the side core burners 14 are deposited on the soot base material 12 installed in the reactor 11, and then the clad burner is deposited. The soot flow from 15 is deposited and the clad layer is formed there to manufacture the porous glass preform. The combustible gas outlet 16 of this side core burner is shown in Fig. 5 (b). The S generated in this burner is
The distribution of the i-Ge-O solid solution in the burner radial direction is as shown in FIG. 5 (a). Therefore, as shown in FIG. 6 (a), the porous glass base material obtained here has the side core portion 17 The refractive index distribution becomes disordered, and the optical fiber obtained by spinning the synthetic quartz glass preform for optical fiber obtained by heating and transparentizing this porous glass preform cannot accurately control the dispersion characteristics. There is a drawback that

【0010】しかし、この場合本願発明にしたがって図
1に示したようにスート母材1に対するサイドコア用バ
ーナー2の可燃性ガス吹出口3とこのスート母材1のサ
イドコア部に対するスート堆積面4との距離をX(m)
とし、この可燃性ガスの線流速V(m/秒)とこの可燃
性ガス吹出口の内径D(m)を特定し、このD2/(X/
V)を 0.001≦D2/(X/V)≦0.1 の範囲になるよう
にすると、サイドコア用バーナー内で発生した Si-Ge-O
固溶体がサイドコア部堆積面に堆積するまでに十分な時
間がかけられるのでこれをサイドコア用バーナーの半径
方向に均一に拡散して堆積することができ、したがって
このようにして作られたセンターコア部5、サイドコア
部6、クラッド部7からなる多孔質ガラス母材の屈折率
分布をサイドコア部の屈折率分布が略々均一である図2
(a)に示したものにすることができるという有利性が
与えられる。
However, in this case, according to the present invention, as shown in FIG. 1, the combustible gas outlet 3 of the side core burner 2 for the soot base material 1 and the soot deposition surface 4 for the side core portion of the soot base material 1 are formed. Distance is X (m)
And the linear velocity V (m / sec) of this flammable gas and the inner diameter D (m) of this flammable gas outlet are specified, and this D 2 / (X /
V) within the range of 0.001 ≦ D 2 /(X/V)≦0.1 Si-Ge-O generated in the side core burner
Since it takes a sufficient time for the solid solution to be deposited on the side core portion deposition surface, the solid solution can be uniformly diffused and deposited in the radial direction of the side core burner, and thus the center core portion 5 thus produced. The refractive index distribution of the porous glass base material including the side core portion 6 and the clad portion 7 is substantially uniform.
The advantage is given that it can be as shown in (a).

【0011】なお、この場合におけるD2/(X/V)の
値はこれが 0.001(m2/秒)未満ではスート堆積面近傍
の火炎温度が低下してスート母材のかさ密度が低下し、
スート母材の作製中にこれに割れや変形が生じてしまう
し、これを 0.1より大きいものとするとこのサイドコア
部の屈折率分布が図6(a)に示したように乱れたもの
となるので、これは 0.001≦D2/(X/V)≦0.1 の範
囲とすることが必要とされる。
In this case, if the value of D 2 / (X / V) is less than 0.001 (m 2 / sec), the flame temperature near the soot deposition surface decreases and the bulk density of the soot base material decreases,
During manufacture of the soot base material, cracks and deformations occur, and if it is larger than 0.1, the refractive index distribution of this side core part becomes disordered as shown in Fig. 6 (a). , Which is required to be in the range of 0.001 ≦ D 2 /(X/V)≦0.1.

【0012】[0012]

【実施例】つぎに本発明の実施例をあげる。 実施例 図4に示した装置を使用したが、この場合、図1に示し
たようにサイドコア用バーナーの可燃性ガス吹出口とス
ート母材のサイドコア部へのスート堆積面との距離X
(m)をX=2×10-2m、この可燃性ガスの線流速Vを
V=4m/秒とし、さらにこの可燃性ガス吹出口の内径
DをD= 1.5×10-2mとし、D2/(X/V)= 7.5×10
-3としてスート母材を形成させた。
EXAMPLES Next, examples of the present invention will be given. Example The apparatus shown in FIG. 4 was used, but in this case, as shown in FIG. 1, the distance X between the flammable gas outlet of the side core burner and the soot deposition surface on the side core portion of the soot base material was measured.
(M) is X = 2 × 10 −2 m, the linear velocity V of this flammable gas is V = 4 m / sec, and the inner diameter D of this flammable gas outlet is D = 1.5 × 10 −2 m. D 2 /(X/V)=7.5×10
The soot base material was formed as -3 .

【0013】ついで、この直径 100mm、長さ 1,000mmの
スート母材(多孔質ガラス母材)を1,500℃に加熱し透
明ガラス化して光ファイバ用合成石英ガラス母材を作
り、このものの屈折率分布を測定したところ、サイドコ
ア部の屈折率分布が略々均一である図2(a)に示した
ような結果が得られ、この母材を線引き紡糸して得た光
ファイバについてその長手方向の分散特性を測定したと
ころ、図2(b)に示したとおりの結果が得られ、この
ものはゼロ分散波長のバラ付きも少なく、長手方向にも
安定した特性をもつものであった。
Then, the soot base material (porous glass base material) having a diameter of 100 mm and a length of 1,000 mm is heated to 1,500 ° C. to be transparent vitrified to prepare a synthetic quartz glass base material for an optical fiber, and its refractive index distribution As a result, the refractive index distribution of the side core portion was almost uniform, and the result as shown in FIG. 2A was obtained. The optical fiber obtained by drawing and spinning the base material was dispersed in the longitudinal direction. When the characteristics were measured, the results as shown in FIG. 2 (b) were obtained, which showed little variation in the zero dispersion wavelength and had stable characteristics in the longitudinal direction.

【0014】比較例1 図1に示した装置において、X、V、DをX=2×10-2
m、V=4m/秒、D=3×10-2mとしD2/(X/V)
=0.18ということで直径 100mm、長さ 1,000mmのスート
母材を作り、これを透明ガラス化したのち、このものの
屈折率分布を測定したところ、これは図6(a)に示し
たようにサイドコア部の屈折率分布に乱れのあるもので
あったし、このものを紡糸して得た光ファイバについて
の分散特性を測定したところ、これは図6(b)に示し
たとおりの結果を示し、このゼロ分散波長も長手方向で
大きくバラ付いた不安定な特性をもつものであった。
COMPARATIVE EXAMPLE 1 In the apparatus shown in FIG. 1, X, V and D are X = 2 × 10 -2.
m, V = 4 m / sec, D = 3 × 10 −2 m, D 2 / (X / V)
= 0.18, a soot base material with a diameter of 100 mm and a length of 1,000 mm was made, and after vitrifying it, the refractive index distribution of this material was measured. As shown in Fig. 6 (a), this was the side core. The refractive index distribution of the part was disturbed, and the dispersion characteristic of the optical fiber obtained by spinning this was measured, and it showed the result as shown in FIG. 6 (b). This zero-dispersion wavelength also had unstable characteristics with large variations in the longitudinal direction.

【0015】比較例2 図1に示した装置において、X、V、DをX=15×10-2
m、V=1m/秒、D=1×10-2mとしてスート母材を
作ったところ、この場合にはD2/(X/V)が6.7×10
-4となったことから、このスート母材は 200mm程成長し
たときにスート母材が変形し、割れてしまった。
COMPARATIVE EXAMPLE 2 In the apparatus shown in FIG. 1, X, V and D are X = 15 × 10 -2.
When the soot base material was made with m, V = 1 m / sec and D = 1 × 10 −2 m, in this case, D 2 / (X / V) was 6.7 × 10
Since it became -4 , when this soot base material grew about 200 mm, the soot base material deformed and cracked.

【0016】[0016]

【発明の効果】本発明は光ファイバ用多孔質ガラス母材
の製造方法に関するものであり、これは前記したように
センターコア部を形成するセンターコア用バーナーとサ
イドコア部を形成するサイドコア用バーナーとを備え、
これらのバーナーに原料ガスと可燃性ガスを流し、この
可燃性ガスに点火して火炎を形成させて原料ガスの火炎
での火炎加水分解で形成させたスート流を、センターコ
ア部とサイドコア部を一体化して回転している二重コア
型光ファイバ用スート母材に堆積させて多孔質ガラス母
材を製造する方法において、このサイドコア用バーナー
の可燃性ガス吹出口とこのスート母材のサイドコア部堆
積面との距離X(m)、可燃性ガスの線流速V(m/
秒)および可燃化ガス吹出口の内径D(m)とからなる
式D2/(X/V)の数値が 0.001≦D2/(X/V)≦0.
1 (m2/秒)の範囲になるように設定することを特徴と
するものであるが、これによればこの多孔質ガラス母材
から作られる光ファイバをサイドコア部の屈折率分布が
均一で、分散特性の再現性、制御性のすぐれたものとす
ることができるという有利性が与えられる。
The present invention relates to a method for manufacturing a porous glass preform for optical fibers, which comprises a center core burner forming a center core portion and a side core burner forming a side core portion as described above. Equipped with
A source gas and a flammable gas are caused to flow through these burners, and the soot stream formed by flame hydrolysis of the flame of the source gas is formed by igniting the flammable gas and the center core portion and the side core portions. In a method for producing a porous glass preform by depositing on a soot preform for a dual core type optical fiber that rotates integrally, a flammable gas outlet of the side core burner and a side core part of the soot preform Distance X (m) from the deposition surface, linear velocity V (m /
Second) and the inner diameter D (m) of the combustible gas outlet, the numerical value of the equation D 2 / (X / V) is 0.001 ≦ D 2 / (X / V) ≦ 0.
It is characterized in that it is set within the range of 1 (m 2 / sec). According to this, an optical fiber made from this porous glass preform has a uniform refractive index distribution in the side core part. The advantage is that reproducibility of dispersion characteristics and controllability can be excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による多孔質ガラス母材製造装置の縦断
面図を示したものである。
FIG. 1 is a vertical sectional view of a porous glass preform manufacturing apparatus according to the present invention.

【図2】(a)は実施例で得られた光ファイバ用合成石
英ガラス母材の屈折率分布を示したものであり、(b)
はこれから作られた光ファイバの長手方向のゼロ分散波
長の値のグラフを示したのもである。
FIG. 2 (a) shows a refractive index distribution of a synthetic quartz glass base material for an optical fiber obtained in an example, (b).
Shows a graph of the value of the zero dispersion wavelength in the longitudinal direction of the optical fiber made from this.

【図3】本発明により得られた多孔質ガラス母材の理想
的な屈折率分布を示したものである。
FIG. 3 shows an ideal refractive index distribution of a porous glass preform obtained according to the present invention.

【図4】従来法による多孔質ガラス母材製造装置の縦断
面図を示したものである。
FIG. 4 is a vertical sectional view of a porous glass preform manufacturing apparatus according to a conventional method.

【図5】(a)は従来法により得られた多孔質ガラス母
材の Si-Ge-O固溶体のバーナー半径方向の分布図を示し
たものであり、(b)はこの可燃性ガス吹出口の斜視図
を示したものである。
FIG. 5 (a) is a distribution diagram of a Si—Ge—O solid solution of a porous glass base material obtained by a conventional method in a burner radial direction, and FIG. 5 (b) shows the combustible gas outlet. 3 is a perspective view of FIG.

【図6】(a)は従来法により得られた多孔質ガラス母
材の屈折率分布を示したものであり、(b)はこれから
作られた光ファイバの長手方向のゼロ分散波長の値のグ
ラフを示したものである。
FIG. 6 (a) shows a refractive index distribution of a porous glass preform obtained by a conventional method, and FIG. 6 (b) shows a zero-dispersion wavelength value in the longitudinal direction of an optical fiber made from this. This is a graph.

【符号の説明】[Explanation of symbols]

1,12…スート母材、 2,14…サイドコア用バーナー、 3,16…サイドコアバーナー用可燃性ガス吹出口、 4…サイドコア部のスート堆積面、 5…センターコア部、 6,17…サイドコア部、 7…クラッド部、 11…反応容器、 13…センターコア用バーナー、 15…クラッド用バーナー、 1, 12 ... soot base material, 2, 14 ... side core burner, 3, 16 ... flammable gas outlet for side core burner, 4 ... soot accumulation surface of side core part, 5 ... center core part, 6, 17 ... side core Part, 7 ... Clad part, 11 ... Reaction vessel, 13 ... Center core burner, 15 ... Clad burner,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平沢 秀夫 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Hirasawa 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】センターコア部を形成するセンターコア用
バーナーとサイドコア部を形成するサイドコア用バーナ
ーを備え、これらのバーナーに原料ガスと可燃性ガスを
流し、この可燃性ガスに点火して火炎を形成させて原料
ガスの火炎中での火炎加水分解で形成させたスート流
を、センターコア部とサイドコア部を一体化して回転し
ている二重コア型光ファイバ用スート母材に堆積させて
多孔質ガラス母材を製造する方法において、このサイド
コア用バーナーの可燃性ガス吹出口とこのスート母材の
サイドコア部堆積面との距離X(m)、可燃性ガスの線
流速V(m/秒)および可燃性ガス吹出口の内径D
(m)とからなる式D2/(X/V)の数値が 0.001<D2/(X/V)≦0.1 (m2/秒) の範囲となるように設定することを特徴とする光ファイ
バ用多孔質ガラス母材の製造方法。
1. A center core burner forming a center core portion and a side core burner forming a side core portion are provided, and a raw material gas and a combustible gas are caused to flow through these burners, and the combustible gas is ignited to generate a flame. The soot flow formed by flame hydrolysis in the flame of the raw material gas is deposited on the rotating soot base material for the double core type optical fiber by integrating the center core part and the side core parts, and is then porous. In the method for producing a high quality glass base material, the distance X (m) between the flammable gas outlet of the side core burner and the side core portion deposition surface of the soot base material, and the linear flow velocity V (m / sec) of the combustible gas. And inner diameter D of flammable gas outlet
(M) and the value of the formula D 2 / (X / V) which is set to be in the range of 0.001 <D 2 /(X/V)≦0.1 (m 2 / sec) A method for manufacturing a porous glass preform for fibers.
JP18036793A 1993-07-21 1993-07-21 Method for producing porous glass preform for optical fiber Expired - Fee Related JP2965235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18036793A JP2965235B2 (en) 1993-07-21 1993-07-21 Method for producing porous glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18036793A JP2965235B2 (en) 1993-07-21 1993-07-21 Method for producing porous glass preform for optical fiber

Publications (2)

Publication Number Publication Date
JPH0733467A true JPH0733467A (en) 1995-02-03
JP2965235B2 JP2965235B2 (en) 1999-10-18

Family

ID=16082009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18036793A Expired - Fee Related JP2965235B2 (en) 1993-07-21 1993-07-21 Method for producing porous glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JP2965235B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155234A (en) * 2006-12-22 2008-07-10 Obara Corp Driving unit of welding equipment
JP2009190939A (en) * 2008-02-14 2009-08-27 Nikon Corp Manufacturing method of quartz glass
CN113703158A (en) * 2021-09-07 2021-11-26 北京交通大学 Rapid design method of few-mode optical fiber gain profile for intermode gain equalization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155234A (en) * 2006-12-22 2008-07-10 Obara Corp Driving unit of welding equipment
JP2009190939A (en) * 2008-02-14 2009-08-27 Nikon Corp Manufacturing method of quartz glass
CN113703158A (en) * 2021-09-07 2021-11-26 北京交通大学 Rapid design method of few-mode optical fiber gain profile for intermode gain equalization
CN113703158B (en) * 2021-09-07 2022-05-13 北京交通大学 Rapid design method of few-mode optical fiber gain profile for intermode gain equalization

Also Published As

Publication number Publication date
JP2965235B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
US4224046A (en) Method for manufacturing an optical fiber preform
US4217027A (en) Optical fiber fabrication and resulting product
US4406684A (en) Core torch for fabricating single-mode optical fiber preforms
US4909816A (en) Optical fiber fabrication and resulting product
US4334903A (en) Optical fiber fabrication
GB2128982A (en) Fabrication method of optical fiber preforms
JP3053320B2 (en) Method for producing porous glass preform for optical fiber
US4765815A (en) Method for producing glass preform for optical fiber
US4932990A (en) Methods of making optical fiber and products produced thereby
JP2965235B2 (en) Method for producing porous glass preform for optical fiber
JPH07138028A (en) Production of synthetic quartz glass member and burner for producing synthetic quartz glass
EP0156370B1 (en) Method for producing glass preform for optical fiber
JP2612871B2 (en) Method of manufacturing graded-in-desk type optical fiber preform
JPH038737A (en) Production of preform for optical fiber
US4504299A (en) Optical fiber fabrication method
JPH09221335A (en) Production of precursor of optical fiber glass preform
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
JPH0331657B2 (en)
Schultz Vapor phase materials and processes for glass optical waveguides
JPS6259063B2 (en)
JPS6168330A (en) Formation of fine particle of optical glass
JP2000063148A (en) Optical fiber core member, optical fiber preform and their production
JP3071235B2 (en) Method of manufacturing preform for single mode optical fiber
JPH08225338A (en) Production of optical fiber preformed material
JPS6243934B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees