JPS6243934B2 - - Google Patents

Info

Publication number
JPS6243934B2
JPS6243934B2 JP17069680A JP17069680A JPS6243934B2 JP S6243934 B2 JPS6243934 B2 JP S6243934B2 JP 17069680 A JP17069680 A JP 17069680A JP 17069680 A JP17069680 A JP 17069680A JP S6243934 B2 JPS6243934 B2 JP S6243934B2
Authority
JP
Japan
Prior art keywords
powder
rod
oxide powder
burner
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17069680A
Other languages
Japanese (ja)
Other versions
JPS5795838A (en
Inventor
Takao Edahiro
Kazuaki Yoshida
Kunio Ogura
Seiji Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP17069680A priority Critical patent/JPS5795838A/en
Publication of JPS5795838A publication Critical patent/JPS5795838A/en
Publication of JPS6243934B2 publication Critical patent/JPS6243934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/64Angle

Description

【発明の詳細な説明】 本発明はSI型(ステツプインデツクス型)光フ
アイバのコアとなる酸化物粉末棒をVAD法(気
相軸付法)により製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an oxide powder rod that serves as the core of an SI type (step index type) optical fiber by a VAD method (vapor deposition method).

光フアイバにはSI型とGI型(グレーテツドイ
ンデツクス型)とがあり、SI型では屈折率分布係
数αが∞(実際上は4≦αでよい)、GI型では同
係数αが≒2となつている。
There are SI type and GI type (graded index type) optical fibers.The SI type has a refractive index distribution coefficient α of ∞ (in practice, 4≦α), and the GI type has a refractive index distribution coefficient α of ≒≒ It has become 2.

上記におけるSI型光フアイバは、GI型に比べ
て光源からの光入射効率が優れているので、短距
離通信用として重要視されている。
The SI type optical fiber mentioned above has superior light incidence efficiency from a light source compared to the GI type, and is therefore considered important for short-distance communications.

従来、SI型光フアイバを製造する場合には、内
付けCVD法や外付けCVD法によりプリフオーム
ロツドをつくり製造する方法が採用されてきた。
しかし、これらの方法による場合、コアとクラツ
ドとに高屈折率差をもたせることが難しく、ま
た、量産性や低コスト化にも問題のあることはす
でに指摘されている。
Conventionally, when manufacturing SI type optical fibers, a method has been adopted in which a preform rod is created and manufactured using an internal CVD method or an external CVD method.
However, it has already been pointed out that with these methods, it is difficult to provide a high refractive index difference between the core and the cladding, and there are also problems with mass production and cost reduction.

一方、既知のVAD法では、多重管構造とした
粉末生成用バーナから、SiCl4、GeCl4、POCl3
どの気相原料と酸水素炎、それに原料および火炎
間の不活性ガスが噴射され、これらの火炎加水分
解反応により生じた酸化物粉末(煤化物)が粉末
堆積器へ棒状に堆積されて酸化物粉末棒がつくら
れる。
On the other hand, in the known VAD method, gas phase raw materials such as SiCl 4 , GeCl 4 , POCl 3 , oxyhydrogen flame, and inert gas between the raw materials and the flame are injected from a powder generating burner with a multi-tube structure. Oxide powder (soot) produced by these flame hydrolysis reactions is deposited in a rod shape in a powder depositor to produce an oxide powder rod.

こうして酸化物粉末棒をつくる方法にも2通り
あり、その1つは一基の粉末生成用バーナにより
単層(コア用となる層)の酸化物粉末棒をつくる
こと、他の1つは二基の粉末生成用バーナにより
二層(コア用層、クラツド用層)の酸化物粉末層
をつくることである。
In this way, there are two ways to make an oxide powder rod, one of which is to make a single layer (layer for the core) of an oxide powder rod using a single powder producing burner, and the other is to make a single layer (layer for the core) of an oxide powder rod using a single powder generating burner. The process involves creating two layers of oxide powder (a core layer and a cladding layer) using the primary powder-generating burner.

前者の場合では、酸化物粉末棒が透明ガラス化
によりコア用プリフオームロツドとなつた後、そ
の外周に石英系のクラツド用ガラス管が被せら
れ、これが加熱延伸により紡糸されて光フアイバ
となる。
In the former case, after the oxide powder rod is made into a preform rod for the core by transparent vitrification, a quartz-based glass tube for the cladding is placed on the outer periphery of the rod, and this is spun by heating and drawing to become an optical fiber. .

後者の場合では、コア用層、クラツド用層をも
つ酸化物粉末棒が透明ガラス化されて光フアイバ
用プリフオムロツドとなり、これが上記と同様に
紡糸されて光フアイバとなる。
In the latter case, an oxide powder rod having a core layer and a cladding layer is transparently vitrified to form an optical fiber preform rod, which is spun into an optical fiber in the same manner as described above.

しかし、VAD法を出発工程とする光フアイバ
の製造方法でも、SI型光フアイバをつくるのに問
題がある。
However, even with the optical fiber manufacturing method that uses the VAD method as a starting process, there are problems in manufacturing SI type optical fiber.

まず、一基の粉末生成用バーナにより単層の酸
化物粉末棒をつくる場合、該粉末棒成長端におけ
る温度分布が中心高温、外周低温の傾向となるこ
と、酸化物粉末棒の堆積状況も中心多量、外周少
量の傾向となること、などにより、所定屈折率分
布を形成するのに重要な組成(GeO2)の濃度が酸
化物粉末棒の中心部で高く、その外周部で低くな
るといつた問題点が生じ、特に酸化物粉末棒の外
周部では、SI型光フアイバに必要なα≧4がこれ
をかなり下回り、α=2〜3にとどまつてしま
う。
First, when producing a single-layer oxide powder rod using a single powder production burner, the temperature distribution at the growth end of the powder rod tends to be high at the center and low at the outer periphery, and the deposition condition of the oxide powder rod is also important. As a result, the concentration of the composition (GeO 2 ), which is important for forming a predetermined refractive index distribution, is high at the center of the oxide powder rod and low at the outer periphery. A problem arises, especially in the outer periphery of the oxide powder rod, where α≧4, which is required for SI type optical fibers, is considerably lower and α=2-3.

もちろんこのような場合では、透明ガラス化後
において酸化物粉末棒の外周を削りとるといつた
面倒が生じる。
Of course, in such a case, it would be troublesome to shave off the outer periphery of the oxide powder rod after it was made into transparent vitrification.

一方、二基の粉末生成用バーナにより二層の酸
化物粉末棒をつくる場合、コア用層とクラツド用
層との界面においてコア用組成、クラツド用組成
が混ざり合うことになるため、これらコア用層、
クラツド用層が正確に区分できなくなると共にそ
の界面でのαも4を下回る結果となり、また、こ
れを解消するために両バーナ間隔を充分大きく設
定したとしても、コア用のバーナに関しては、前
述した中心高温と外周低温、中心多量と外周少量
の問題が残されているので、根本的な解決策には
なり得ない。
On the other hand, when producing a two-layer oxide powder rod using two powder-forming burners, the core composition and the cladding composition will mix at the interface between the core layer and the cladding layer. layer,
As a result, the cladding layer cannot be accurately separated and α at the interface becomes less than 4.Also, even if the distance between both burners is set sufficiently large to solve this problem, the core burner cannot be separated as described above. Since the problems of high temperature at the center and low temperature at the outer periphery, and large amount at the center and small amount at the outer periphery remain, this cannot be a fundamental solution.

本発明は上記の問題点に対処すべく、二基のバ
ーナを用いたVAD法によりSI型光フアイバのコ
アとなる酸化物粉末棒を製造するようにしたもの
で、以下その具体的方法を図示と共に説明する。
In order to solve the above-mentioned problems, the present invention manufactures an oxide powder rod that becomes the core of an SI type optical fiber by a VAD method using two burners.The specific method is illustrated below. I will explain it together.

図において、1は下部排気系2と上部排気系3
とを具えた反応容器であり、通常、この反応容器
1内はAr、He、N2などの不活性ガスで置換され
ている。
In the figure, 1 indicates a lower exhaust system 2 and an upper exhaust system 3.
Usually, the interior of the reaction vessel 1 is purged with an inert gas such as Ar, He, or N2 .

4は上記反応容器1内へ回転自在かつ上下動自
在に内装された棒状の粉末堆積器である。
Reference numeral 4 denotes a rod-shaped powder depositing device which is rotatably and vertically movable inside the reaction vessel 1 .

5は軸方向堆積用の粉末生成用バーナ、6は周
方向堆積用の粉末生成用バーナであり、これら両
バーナ5,6の先端は、上記粉末堆積器4の先端
に対し、後述する対応をとりながら反応容器1内
へ内装されている。
5 is a powder generation burner for axial deposition, and 6 is a powder generation burner for circumferential deposition.The tips of both burners 5 and 6 correspond to the tip of the powder depositor 4, which will be described later. It is placed inside the reaction vessel 1 while taking it out.

この場合の両バーナ5,6は、何れも四重管、
五重管などとした多重管構造のものが用いられ、
四重管構造の場合では、その中心から外周に向
け、気相原料の噴射流路、不活性ガスの噴射流
路、水素の噴射流路、酸素の噴射流路が同心状に
設けられ、一方、五重管構造のものでは、ドープ
剤を含む気相原料の噴射流路が中心にあり、以下
その外周にはドープ剤を含まない気相原料の噴射
流路、水素の噴射流路、不活性ガスの噴射流路、
酸素の噴射流路が順次設けられている。
Both burners 5 and 6 in this case are quadruple tubes,
A multi-tube structure such as a quintuple tube is used.
In the case of a quadruple tube structure, a gas phase raw material injection channel, an inert gas injection channel, a hydrogen injection channel, and an oxygen injection channel are provided concentrically from the center to the outer periphery. In the case of the five-pipe structure, there is an injection channel for the gas-phase raw material containing the dopant at the center, and an injection channel for the gas-phase raw material not containing the dopant, an injection channel for the hydrogen, and an injection channel for the gas-phase raw material not containing the dopant are located at the outer periphery. active gas injection channel;
Oxygen injection channels are sequentially provided.

上記において、粉末堆積器4の軸心線をLと
し、粉末生成用バーナ5の中心線をO1、粉末生
成用バーナ6の中心線O2とした場合、LとO1
の交差角θは0゜≦θ<45゜のように設定さ
れ、LとO2との交差角θは45゜<θ<≦90
゜のように設定されている。
In the above, when the axis of the powder depositor 4 is L, the center line of the powder generating burner 5 is O 1 , and the center line of the powder generating burner 6 is O 2 , the intersection angle between L and O 1 is θ 1 is set as 0°≦ θ1 <45°, and the intersection angle θ2 between L and O2 is 45°< θ2 <≦90
It is set like ゜.

本発明では、反応容器1内において粉末堆積器
4を回転状態とした後、両バーナ5,6から所定
の原料ガス、燃焼ガス、不活性ガスを噴射すると
共に燃焼ガスによる火炎加水分解反応により酸化
物粉末を生成させて同粉末を粉末堆積器4の先端
へと堆積させ、かつ、該粉末の堆積速度(成長速
度)と対応させて粉末堆積器4をその軸心線L方
向へ上昇移動させることにより、所望長さの酸化
物粉末棒7をつくるのである。
In the present invention, after the powder depositor 4 is rotated in the reaction vessel 1, predetermined raw material gas, combustion gas, and inert gas are injected from both burners 5 and 6, and oxidation is caused by a flame hydrolysis reaction by the combustion gas. The powder is generated and deposited on the tip of the powder depositor 4, and the powder depositor 4 is moved upward in the direction of its axis L in accordance with the deposition rate (growth rate) of the powder. In this way, an oxide powder rod 7 of a desired length is produced.

この際、一方の粉末生成用バーナ5は酸化物粉
末棒7が軸方向に成長するのを特に促進させ、他
方の粉末生成用バーナ6は同棒7が周方向に成長
するのを促進させる。
At this time, one powder generating burner 5 particularly promotes the growth of the oxide powder rod 7 in the axial direction, and the other powder generating burner 6 promotes the growth of the same rod 7 in the circumferential direction.

こうして酸化物粉末棒7をつくる場合、一方の
粉末生成用バーナ5だけであると、中心多量、外
周少量となる粉末堆積傾向、中心高温、外周低温
となる温布分布傾向が生じ、酸化物粉末棒7の外
周におけるαが4を下回ることになるが、上記の
場合では、他方の粉末生成用バーナ6が外周少
量、外周低温の事態を解消するようになにり、酸
化物粉末棒7の総体的な粉末堆積状況、温度分布
状況を均一化する。
When producing the oxide powder rod 7 in this way, if only one of the powder generating burners 5 is used, there will be a tendency for the powder to accumulate with a large amount at the center and a small amount at the outer periphery, and a tendency for the hot cloth distribution to be high at the center and low at the outer periphery. α at the outer periphery of the rod 7 will be less than 4, but in the above case, the other powder generating burner 6 will eliminate the situation where the outer periphery is small and the outer periphery is low temperature. Uniform the overall powder deposition situation and temperature distribution situation.

したがつて本発明によるときは、SI型光フアイ
バを対象として、半径方向の屈折率分布が一様
な、しかもαが4以上のコア用酸化物粉末棒7が
得られることになる。
Therefore, according to the present invention, a core oxide powder rod 7 having a uniform refractive index distribution in the radial direction and α of 4 or more can be obtained for an SI type optical fiber.

また、両バーナ5,6の相対間隔などを調整す
ることにより、酸化物粉末棒7の成長端における
温度も適正に保持でき、例えば温度過剰によるド
ープ剤(GeO2など)の揮散、温度不足によるド
ープ剤の未反応なども阻止できるようになるか
ら、この点でも所定の屈折率分布が得られるよう
になる。
In addition, by adjusting the relative spacing between the burners 5 and 6, the temperature at the growth end of the oxide powder rod 7 can be maintained appropriately. Since it is also possible to prevent the dopant from reacting unreacted, a predetermined refractive index distribution can be obtained in this respect as well.

なお、本発明での気相原料としては、主成分と
してシリコン化合物、ドープ剤としてゲルマニウ
ム化合物が用いられるがドープ剤としては燐化合
物、その他も有効である。
In the present invention, as the gas phase raw material, a silicon compound is used as the main component and a germanium compound is used as the dopant, but phosphorus compounds and others are also effective as the dopant.

上記におけるシリコン化合物、ゲルマニウム化
合物、燐化合物としては、ハロゲン化物、水素化
物、オキシ塩化物などが挙げられ、具体的には
SiCl4、GeCl4、POCl3、SiHCl3、SiH4などが例示
できる。
Examples of the silicon compounds, germanium compounds, and phosphorus compounds mentioned above include halides, hydrides, and oxychlorides.
Examples include SiCl 4 , GeCl 4 , POCl 3 , SiHCl 3 and SiH 4 .

また、上記のようにしてコア用の酸化物粉末棒
7をつくる場合、軸方向堆積用とした粉末生成用
バーナ5からのドープ剤濃度は、周方向堆積用と
した粉末生成用バーナ6からのドープ剤濃度と同
じにするか、あるいはそれ以上とするのがよく、
こうした場合の方が所定屈折率分布が得やすい。
In addition, when producing the oxide powder rod 7 for the core as described above, the dopant concentration from the powder production burner 5 for axial deposition is the same as that from the powder production burner 6 for circumferential deposition. It is best to have the same or higher dopant concentration.
In such a case, it is easier to obtain a predetermined refractive index distribution.

さらに、上記両バーナ5,6の断面形状は円形
でも角形でもよく、これらから噴射する燃焼ガス
も、酸水素以外に天然ガス、都市ガス、プロパン
ガスなどであつてよい。
Furthermore, the cross-sectional shape of both burners 5 and 6 may be circular or square, and the combustion gas injected from them may also be natural gas, city gas, propane gas, etc. in addition to oxyhydrogen.

さらに、上記のようにしてつくられた酸化物粉
末棒7は、熱処理による透明ガラス化により、SI
型光フアイバのコア用プリフオームロツドとなる
が、こうしたプリフオームロツドの外周には石英
ガラス、バイコールガラス製などのクラツド用ガ
ラス管が被せられ、これら両者が加熱延伸により
紡糸されてSI型の光フアイバとなる。
Furthermore, the oxide powder rod 7 produced as described above is made transparent by heat treatment, resulting in SI
This is the preform rod for the core of the type optical fiber, and the outer periphery of this preform rod is covered with a glass tube for the cladding made of quartz glass, Vycor glass, etc., and both are heated and drawn and spun to form the SI type. optical fiber.

実施例 断面円形の四重管構造とした2つの粉末生成用
バーナ5,6を、図示のように反応容器1内へ配
置した後、各バーナ5,6からSiCl4=5.5m
mol/min、GeCl4=1.1mmol/min、POCl3
0.03mmol/min、H2=3.5/min、Ar=0.75
/min、O2=8.0/minを噴射すると共にこれ
らを火炎加水分解反応させ、その酸化物粉末を粉
末堆積器4へ棒状に堆積させた。
Example After two powder generating burners 5 and 6 having a quadruple pipe structure with a circular cross section are arranged in the reaction vessel 1 as shown in the figure, SiCl 4 =5.5 m is emitted from each burner 5 and 6.
mol/min, GeCl 4 = 1.1 mmol/min, POCl 3 =
0.03 mmol/min, H 2 = 3.5/min, Ar = 0.75
/min, and O 2 =8.0/min, these were subjected to a flame hydrolysis reaction, and the resulting oxide powder was deposited in the powder depositor 4 in the form of a rod.

こうして得られた酸化物粉末棒7を1500℃の
He雰囲気中で透明ガラス化し、コア用のプリフ
オームロツドとした。
The oxide powder rod 7 thus obtained was heated to 1500°C.
It was made into transparent glass in a He atmosphere and made into a preform rod for the core.

このプリフオームロツドを干渉顕微鏡で測定し
たところ、α=11であり、SI型光フアイバのコア
用ガラスとして有効であることが確認できた。
When this preform rod was measured using an interference microscope, it was found that α=11, confirming that it is effective as a glass for the core of SI type optical fiber.

なお、比屈折率差は2.1%とすることができ
た。
Note that the relative refractive index difference was able to be 2.1%.

比較のため、1つの粉末生成用バーナ5を用い
てコア用の酸化物粉末棒をつくり、また、2つの
粉末生成用バーナ5,6を用いてコア用層とクラ
ツド用層とをもつ酸化物粉末棒をつくり、これら
を透明ガラス化したところ、αは何れも≒3にと
どまり、SI型光フアイバとして不適格であつた。
For comparison, one powder producing burner 5 was used to produce an oxide powder bar for the core, and two powder producing burners 5 and 6 were used to produce an oxide powder bar having a core layer and a cladding layer. When powder rods were made and made into transparent glass, α remained at ≈3 in all cases, making them unsuitable for use as SI type optical fibers.

なお、この比較例における前者(バーナ5の
み)ではSiCl4=5.5mmol/min、GeCl4=1.1m
mol/min、POCl3=0.03mmol/min、H2=3.5
/min、Ar=0.75/min、O2=8.0/minを
噴射し、後者(バーナ5,6)では、一方のバー
ナ5から上記と同じ条件で気相原料、不活性ガ
ス、水素、酸素を噴射し、他方のバーナ6からは
SiCl4=5.5mmol/min、H2=3.5/min、Ar=
0.75/min、O2=8.0/minを噴射した。
In addition, in the former (burner 5 only) in this comparative example, SiCl 4 = 5.5 mmol/min, GeCl 4 = 1.1 m
mol/min, POCl 3 = 0.03 mmol/min, H 2 = 3.5
/min, Ar = 0.75/min, O 2 = 8.0/min, and in the latter (burners 5 and 6), gas phase raw materials, inert gas, hydrogen, and oxygen are injected from one burner 5 under the same conditions as above. from the other burner 6.
SiCl 4 = 5.5 mmol/min, H 2 = 3.5/min, Ar =
0.75/min, O 2 =8.0/min was injected.

以上説明した通り、本発明はSI型光フアイバの
コアとなる酸化物粉末棒を気相軸付法により製造
する方法において、軸方向堆積用とした粉末生成
用バーナと周方向堆積用とした粉末生成用バーナ
とを用意し、軸方向堆積用とした粉末生成用バー
ナは、粉末堆積器の軸心線に対する交差角θ
0゜≦θ<45゜となるように配置し、周方向堆
積用とした粉末生成用バーナは、上記軸心線に対
する交差角θが45゜<θ≦90゜となるように
配置し、これら両粉末生成用バーナにガラスの気
相原料、ドープ剤を供給して生成した酸化物粉末
を、粉末堆積器へ棒状に堆積かつ成長させること
を特徴とする。
As explained above, the present invention relates to a method for manufacturing an oxide powder rod, which is the core of an SI type optical fiber, by a vapor phase axial method. The powder generation burner for axial deposition is arranged so that the intersection angle θ 1 with respect to the axis of the powder depositor satisfies 0°≦θ 1 <45°, and The powder generating burners used for deposition are arranged so that the intersection angle θ 2 with respect to the above-mentioned axis is 45° < θ 2 ≦90°. The method is characterized in that the oxide powder produced by supplying is deposited and grown in a rod shape in a powder depositor.

かかる本発明では、上記の条件で配置された両
粉末生成用バーナを介してコア用の酸化物粉末棒
をつくるから、一つの粉末生成用バーナのみを使
用する際にみられた中心多量、外周少量となる粉
末堆積傾向、および中心高温、外周低温となる温
度分布傾向において、外周少量、外周低温などの
悪影響が解消されることとなり、その結果、SI型
光フアイバのコア用として望ましい酸化物粉末
棒、すなわち屈折率分布係数αが4≦αとなる酸
化物粉末棒が得られる。
In the present invention, since the oxide powder rod for the core is produced through both powder producing burners arranged under the above conditions, a large amount of powder at the center and a large amount at the outer periphery which are observed when only one powder producing burner is used are produced. The negative effects of a small amount of powder accumulation and a temperature distribution tendency of high temperature at the center and low temperature at the outer periphery are eliminated, and as a result, the oxide powder is desirable for the core of SI type optical fiber. A rod, that is, an oxide powder rod with a refractive index distribution coefficient α of 4≦α is obtained.

しかも本発明では、上記両粉末生成用バーナに
よりそれれぞれ酸化物粉末を生成して所定の酸化
物粉末棒をつくるから、大型の酸化物粉末棒をつ
くるときでも、その製造速度が高速化され、した
がつて、高品質の酸化物粉末棒を能率よく製造す
ることができる。
Moreover, in the present invention, since the oxide powder is produced by each of the above-mentioned powder producing burners to produce a predetermined oxide powder bar, the manufacturing speed can be increased even when producing a large oxide powder bar. Therefore, high quality oxide powder rods can be efficiently produced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の1実施例を示した略示断面
図である。 4……粉末堆積器、5,6……粉末生成用バー
ナ、7……酸化物粉末棒、θ,θ……交差
角。
The drawing is a schematic cross-sectional view showing one embodiment of the method of the present invention. 4... Powder depositor, 5, 6... Burner for powder generation, 7... Oxide powder rod, θ 1 , θ 2 …… Intersection angle.

Claims (1)

【特許請求の範囲】[Claims] 1 SI型光フアイバのコアとなる酸化物粉末棒を
気相軸付法により製造する方法において、軸方向
堆積用とした粉末生成用バーナと周方向堆積用と
した粉末生成用バーナとを用意し、軸方向堆積用
とした粉末生成用バーナは、粉末堆積器の軸心線
に対する交差角θが0゜≦θ<45゜となるよ
うに配置し、周方向堆積用とした粉末生成用バー
ナは、上記軸心線に対する交差角θが45゜<θ
≦90゜となるように配置し、これら両粉末生成
用バーナにガラスの気相原料、ドープ剤を供給し
て生成した酸化物粉末を、粉末堆積器へ棒状に堆
積かつ成長させることを特徴とする光フアイバ酸
化物粉末棒の製造方法。
1 In a method for manufacturing an oxide powder rod, which is the core of an SI type optical fiber, by a vapor phase axial method, a powder generation burner for axial deposition and a powder generation burner for circumferential deposition are prepared. The powder generation burner for axial deposition is arranged so that the intersection angle θ 1 with respect to the axis of the powder depositor is 0°≦θ 1 <45°. The burner has an intersection angle θ2 of 45°<θ with respect to the above-mentioned axis.
2 ≦90°, and the oxide powder produced by supplying a glass vapor phase raw material and a dopant to both powder generation burners is deposited and grown in a rod shape in a powder depositor. A method for producing an optical fiber oxide powder rod.
JP17069680A 1980-12-03 1980-12-03 Manufacture of oxide powder rod for optical fiber Granted JPS5795838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17069680A JPS5795838A (en) 1980-12-03 1980-12-03 Manufacture of oxide powder rod for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17069680A JPS5795838A (en) 1980-12-03 1980-12-03 Manufacture of oxide powder rod for optical fiber

Publications (2)

Publication Number Publication Date
JPS5795838A JPS5795838A (en) 1982-06-14
JPS6243934B2 true JPS6243934B2 (en) 1987-09-17

Family

ID=15909696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17069680A Granted JPS5795838A (en) 1980-12-03 1980-12-03 Manufacture of oxide powder rod for optical fiber

Country Status (1)

Country Link
JP (1) JPS5795838A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712951B2 (en) * 1982-01-20 1995-02-15 日本電信電話株式会社 Method for manufacturing base material for optical fiber
JPS6046939A (en) * 1983-08-22 1985-03-14 Fujikura Ltd Manufacture of glass preform for optical fiber
JPS61186240A (en) * 1985-02-15 1986-08-19 Sumitomo Electric Ind Ltd Production of piled material of glass fine particles

Also Published As

Publication number Publication date
JPS5795838A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US4367085A (en) Method of fabricating multi-mode optical fiber preforms
GB2128982A (en) Fabrication method of optical fiber preforms
JPH0196039A (en) Production of optical fiber preform
WO2019142878A1 (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber
JPH0761831A (en) Production of porous glass preform for optical fiber
JPS6243934B2 (en)
JPH038737A (en) Production of preform for optical fiber
JPH0525818B2 (en)
JPH04231336A (en) Production of optical fiber preform
JPH0460930B2 (en)
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
EP0135126A1 (en) Preparation of glass for optical fibers
JP2000169175A (en) Production of glass preform
JPH10330129A (en) Production of porous glass body for optical fiber
JPH06321553A (en) Production of fluorine-doped quartz glass
JPH0331657B2 (en)
JP3569910B2 (en) Optical fiber manufacturing method
JPS591222B2 (en) Optical fiber manufacturing method
JP3953855B2 (en) Method for producing porous base material
JPS61158836A (en) Production of parent material for optical glass
JPH0733467A (en) Production of porous glass preform for optical fiber
JPH0436101B2 (en)
JPS6360123A (en) Production for porous base material for single mode type optical fiber
JP3798190B2 (en) Method for manufacturing glass preform for dual-core dispersion-shifted optical fiber
JPS6060939A (en) Method for depositing fine glass particles for optical fiber