JPS6186440A - Manufacture of preform for optical fiber - Google Patents
Manufacture of preform for optical fiberInfo
- Publication number
- JPS6186440A JPS6186440A JP20803384A JP20803384A JPS6186440A JP S6186440 A JPS6186440 A JP S6186440A JP 20803384 A JP20803384 A JP 20803384A JP 20803384 A JP20803384 A JP 20803384A JP S6186440 A JPS6186440 A JP S6186440A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- glass
- porous
- optical fiber
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、VAD法(気相軸付法)にょシ、光フアイバ
用プリフォームを製造する新規な方法に;)1するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a new method for manufacturing optical fiber preforms using the VAD method (vapor deposition method).
VAD法は、第1図に示すように自転しながら上方向に
移動する棒状基材5の乍端に煤状ガラス微粒子3t−付
滑堆積し、棒状基材5を引き上げながら、煤状ガラス微
粒子3t−軸方向に成長させて棒状の多孔質ガラス母材
65r、形成した後、所定の処理を施して光フアイバ用
プリフォームを製造する方法である。そして、この光フ
アイバ用プリフォームを紡糸して光ファイバを製造して
いる。上記VAD法は量産性に優れた方法であると言わ
れている。なお第1図において1はガラス微粒子合成バ
ーナ、2は酸水素炎、4は火炎の中心に現れる原料の未
反応点である。In the VAD method, as shown in FIG. 1, soot-like glass particles 3T are deposited on the end of a rod-shaped substrate 5 that rotates and moves upward, and as the rod-shaped substrate 5 is pulled up, the soot-like glass particles are deposited. In this method, a rod-shaped porous glass preform 65r is grown in the 3t-axis direction, and then subjected to a predetermined treatment to produce an optical fiber preform. Then, this optical fiber preform is spun to produce an optical fiber. The above-mentioned VAD method is said to be a method with excellent mass productivity. In FIG. 1, 1 is a glass particle synthesis burner, 2 is an oxyhydrogen flame, and 4 is an unreacted point of the raw material appearing at the center of the flame.
〔発明が解決しようとする問題点] ところで、VAD法により、高い合成速度で。[Problem that the invention attempts to solve] By the way, the VAD method has a high synthesis rate.
多孔質ガラス母材を製造する場合、単位時間当シの原料
投入量を増加させる必要があるが、煤状ガラス微粒子の
多孔質ガラス母材上への付着効率低下のため、原料投入
量に比例して多孔質母材への堆積速度を増加させること
ができないという困帷があった。従来、上記付着効率低
下を防ぐため、バーナ形状、風防径、酸水素流量といっ
たパラメータを適切に選ぶということに努力が払われて
き友。しかし、これらのパラメータを変化させると火炎
の形状および安定性、粒子の生成と成長も変化し、堆積
速度を大きく向上させることができなかった。When manufacturing a porous glass base material, it is necessary to increase the amount of raw material input per unit time, but because the adhesion efficiency of sooty glass particles on the porous glass base material decreases, the amount of raw material input is proportional to the amount of raw material input. The problem was that it was not possible to increase the deposition rate on the porous matrix. In the past, efforts have been made to appropriately select parameters such as burner shape, windshield diameter, and oxyhydrogen flow rate in order to prevent the above-mentioned drop in adhesion efficiency. However, changing these parameters also changes the flame shape and stability, as well as particle generation and growth, making it impossible to significantly improve the deposition rate.
第2図に、堆積速度Cf1分)と81014投入量C1
7分)の関係を示す。Figure 2 shows the deposition rate Cf1 min) and the 81014 input amount C1.
7 minutes).
本発明は上記の現状に鑑み、煤状ガラス微粒子の多孔質
ガラス母材上への付着効率を向上する方法を提供するこ
とを目的とする。In view of the above-mentioned current situation, an object of the present invention is to provide a method for improving the adhesion efficiency of sooty glass particles onto a porous glass base material.
煤状ガラス微粒子の付着効率向上に寄与する力の1つと
して、サーモ7オレタス効果というものが知られておシ
、VAD法の場合にも、上記サーモ7オレタス効果がガ
ラス微粒子の多孔質ガラス母材上への堆積に大きく効い
ていると考えらnる〔文献:J、ムpp1.Fhyg、
535920−5925(1982)]。上記サー
モフォ・レシス効果によって、煤状ガラス微粒子が多孔
質ガラス母材表面の煤状ガラス微粒子堆積面へ向かう速
度成分を持ち、上記堆積面へ付着する念めには、堆積面
周囲に、この堆積面へ向かう負の温度勾配が存在する必
要がある。従来、この温度勾配は。The Thermo-7 Oretus effect is known as one of the forces that contributes to improving the adhesion efficiency of sooty glass particles.In the case of the VAD method, the Thermo-7 Oretus effect is also used to improve the adhesion efficiency of sooty glass particles. It is thought that this has a great effect on the deposition on the wood [Reference: J, pp1. Fhyg,
535920-5925 (1982)]. Due to the above-mentioned thermophoresis effect, the soot-like glass particles have a velocity component that moves toward the sooty-like glass particle deposition surface on the surface of the porous glass base material, and in order to adhere to the deposition surface, it is necessary to There must be a negative temperature gradient towards the surface. Traditionally, this temperature gradient is.
酸水素炎と、多孔質ガラス母材によって自然に形成され
るにまかしていた。They were left to form naturally due to the oxyhydrogen flame and porous glass matrix.
本発明者等は上記温度勾配を増大させる方法を種々検討
した結果、多孔質ガラス母材上にガラス微粒子合成バー
ナ以外から冷却ガスを吹き付ける方法が、最も適当であ
るとの結論に達しえ。この方法を用いれば、f!!水素
火炎および原料流の乱れを最少に抑えつつ堆積面周囲の
温度勾配を増大させることができ、それによりて、煤状
ガラス微粒子の多孔質ガラス母材上への付着効率を増加
させることができる。The present inventors investigated various methods of increasing the temperature gradient and came to the conclusion that the most appropriate method was to spray cooling gas onto the porous glass base material from a source other than the glass particle synthesis burner. Using this method, f! ! The temperature gradient around the deposition surface can be increased while minimizing hydrogen flame and feedstock flow turbulence, thereby increasing the deposition efficiency of sooty glass particles onto the porous glass matrix. .
すなわち本発明の方法はガラス用原料及び燃焼ガスをバ
ーナにより混合燃焼せしめて軸方向にガラス微粒子を積
層させ多孔質母材を作り、後にこれを焼結透明化し、光
フアイバ用プリフォームを製造する方法に於いて、上記
多孔質母材を冷却(、なからガラス微粒子を積層させる
ことを特徴とする、光フアイバ用プリフォームの製造方
法に関する。That is, in the method of the present invention, raw materials for glass and combustion gas are mixed and burned in a burner, fine glass particles are laminated in the axial direction to create a porous base material, and this is later sintered to make it transparent to produce an optical fiber preform. The present invention relates to a method for producing an optical fiber preform, the method comprising cooling the porous base material (and then layering fine glass particles thereon).
本発明の好ましい実施態様としては、上記において多孔
質母材に低温のN、ガス又はArガスを吹きつけて冷却
する光フアイバ用プリフォームの製造方法が挙げられる
。A preferred embodiment of the present invention includes the method for manufacturing an optical fiber preform described above, in which the porous base material is cooled by blowing low-temperature N, gas, or Ar gas.
以下に本発明の詳細な説明する。The present invention will be explained in detail below.
第3図は本発明の1実施態様を説明する図で、図中31
はガラス微粒子合成バーナ、32は酸水素炎、33にガ
ラス微粒子の流れ、34は多孔質ガラス母材、35は出
発基材36は冷却用ガス吹出口、37は冷却用ガスの流
れである。FIG. 3 is a diagram explaining one embodiment of the present invention, and in the figure 31
32 is a glass particle synthesis burner, 32 is an oxyhydrogen flame, 33 is a flow of glass particles, 34 is a porous glass base material, 35 is a starting base material 36 is a cooling gas outlet, and 37 is a flow of cooling gas.
冷却用ガス吹出口36はバーナ31よ)上部に多孔質ガ
ラス母材に近接して配置し、ガラス微粒子堆積面に向け
る。冷却用ガスとしては、たとえば液体チッソよシ気化
したN冨、又はドライアイスよシ昇華した00tkW用
する。冷却用ガスの流量は、冷却用ガスが火炎を両側に
分離し、多孔質ガラス母材に直接当たる範囲で最少量に
調節する。このように、冷却用ガス吹き出し口、冷却用
ガスを調節することにより、火炎の形状および安定性、
粒子の生成と成長に与える影響を最少にしつつ多孔質ガ
ラス母材の冷却用ガスに当る面を冷却することができる
。多孔質ガラス母材の回転に従って、冷却された表面は
、高温のガラス微粒子流と直接後することになシ、サー
モ7オレタス効果によって多量のガラス微粒子が堆積す
るので、ガラス微粒子の付着効率を向上させることがで
きる。The cooling gas outlet 36 is disposed above the burner 31, close to the porous glass base material, and is directed toward the surface on which the glass fine particles are deposited. As the cooling gas, for example, 00 tkW of liquid nitrogen, vaporized nitrogen, or sublimated dry ice is used. The flow rate of the cooling gas is adjusted to the minimum amount within the range where the cooling gas separates the flame into both sides and directly hits the porous glass base material. In this way, by adjusting the cooling gas outlet and the cooling gas, the shape and stability of the flame can be improved.
The surface of the porous glass base material that is exposed to the cooling gas can be cooled while minimizing the influence on the generation and growth of particles. As the porous glass base material rotates, the cooled surface is directly exposed to the flow of high-temperature glass particles, and a large amount of glass particles are deposited due to the Thermo7 Oretus effect, improving the adhesion efficiency of glass particles. can be done.
以下本発明の一実施例を説明する。@3図に示した配置
において、ガラス微粒子合成バーナは外径20mの4重
管を使用した。冷却用ガス吹出口は直径20−のものを
使用し、多孔質ガラス母材との距離を2−に保った。冷
却用ガスの流量は1t / minとした。ガラス原料
、可燃性ガス、助燃性ガスは表1に示す流量に流した。An embodiment of the present invention will be described below. In the arrangement shown in Figure @3, a quadruple tube with an outer diameter of 20 m was used as the glass particle synthesis burner. A cooling gas outlet with a diameter of 20 mm was used, and the distance from the porous glass base material was maintained at 2 mm. The flow rate of the cooling gas was 1 t/min. The glass raw materials, combustible gas, and combustion assisting gas were flowed at the flow rates shown in Table 1.
表 1
上記の流量で冷却用ガスを流さぬ場合と流した場合につ
いて多孔質ガラス母材を作成した。Table 1 Porous glass base materials were prepared for cases in which cooling gas was not flowed at the above flow rates and cases in which it was flowed.
多孔質ガラス母材堆積面の温度をスポットセンサーを用
いて計ると、冷却用ガスを流さない場合で780℃、流
した場合で730℃であり、冷却用ガスによって天面温
度は50℃低下し穴。When the temperature of the porous glass base material deposition surface was measured using a spot sensor, it was 780°C without flowing cooling gas and 730°C with flowing cooling gas, and the temperature of the top surface was lowered by 50°C due to cooling gas. hole.
また、ガラス微粒子の多孔質ガラス母材上への付着率は
、冷却用ガスを流さない場合で63係、流した場合で7
7%であり、本発明による方法で付着効率の改善効果が
みとめられ喪。上記の条件で冷却用ガスを流しながら作
成した多孔質ガラス母材を、透明ガラス化し、ファイバ
化したところ、損失(L 6 dB/km (λ=1.
3μ)。In addition, the adhesion rate of glass particles onto the porous glass base material was 63% when no cooling gas was flowing, and 7% when it was flowing.
7%, and the method according to the present invention was found to be effective in improving adhesion efficiency. When the porous glass base material created under the above conditions while flowing a cooling gas was made into transparent glass and made into a fiber, the loss (L 6 dB/km (λ=1.
3μ).
帯域690 KHg (λ=t3μ)の光フアイバが得
られた。このように冷却用ガスを多孔質ガラス母材の堆
積面に吹きつけて冷却することにより付着効率を高めつ
つ、高品質の光通信用ガラスファイバを得ることができ
た。An optical fiber with a bandwidth of 690 KHg (λ=t3μ) was obtained. In this way, by blowing the cooling gas onto the deposition surface of the porous glass base material to cool it, it was possible to increase the adhesion efficiency and obtain a high-quality glass fiber for optical communication.
以上説明したところおよび実施例のデータから明らかな
ように、本発明の方法は、煤状ガラス微粒子の多孔質母
材上への付着効率を向上できるので、高品質の光フアイ
バ用プリフォームを効率よく製造できる。As is clear from the above explanation and the data of the examples, the method of the present invention can improve the adhesion efficiency of sooty glass particles onto the porous base material, so it can efficiently produce high-quality optical fiber preforms. Can be manufactured well.
第1図は従来のWAD法の概略説明図、第2図は従来法
による場合の8 i Ct4投入量と堆積速度の関係を
示すグラフ、第3図は本発明の方法の1実施態様例を概
略説明する図である。
S;(’/d丈入量(9/か)Fig. 1 is a schematic explanatory diagram of the conventional WAD method, Fig. 2 is a graph showing the relationship between 8 i Ct4 input amount and deposition rate in the case of the conventional method, and Fig. 3 is an example of an embodiment of the method of the present invention. FIG. 2 is a schematic diagram. S; ('/d Length quantity (9/?)
Claims (2)
焼せしめて軸方向にガラス微粒子を積層させ多孔質母材
を作り、後にこれを焼結透明化し、光フアイバ用プリフ
オームを製造する方法に於いて、上記多孔質母材を冷却
しながらガラス微粒子を積層させることを特徴とする、
光フアイバ用プリフオームの製造方法。(1) A method for producing a preform for optical fiber by mixing raw materials for glass and combustion gas in a burner, stacking glass particles in the axial direction to create a porous base material, and later sintering this to make it transparent. , characterized in that glass fine particles are laminated while cooling the porous base material,
A method for manufacturing an optical fiber preform.
Arガスを吹きつけて行う特許請求の範囲第(1)項記
載の光フアイバ用プリフオームの製造方法。(2) The method for manufacturing an optical fiber preform according to claim (1), wherein the porous base material is cooled by blowing low-temperature N_2 gas or Ar gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20803384A JPS6186440A (en) | 1984-10-05 | 1984-10-05 | Manufacture of preform for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20803384A JPS6186440A (en) | 1984-10-05 | 1984-10-05 | Manufacture of preform for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6186440A true JPS6186440A (en) | 1986-05-01 |
JPH0583497B2 JPH0583497B2 (en) | 1993-11-26 |
Family
ID=16549552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20803384A Granted JPS6186440A (en) | 1984-10-05 | 1984-10-05 | Manufacture of preform for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6186440A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62108747A (en) * | 1985-11-06 | 1987-05-20 | Furukawa Electric Co Ltd:The | Preparation of porous glass base material |
JPH0527026U (en) * | 1991-09-18 | 1993-04-06 | 古河電気工業株式会社 | Optical fiber synthesizer |
US8297079B2 (en) | 2004-01-07 | 2012-10-30 | Shin-Etsu Chemical Co., Ltd. | Method of manufacturing porous glass base material used for optical fibers, and glass base material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727934A (en) * | 1980-07-25 | 1982-02-15 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS5864234A (en) * | 1981-10-15 | 1983-04-16 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
-
1984
- 1984-10-05 JP JP20803384A patent/JPS6186440A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727934A (en) * | 1980-07-25 | 1982-02-15 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS5864234A (en) * | 1981-10-15 | 1983-04-16 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62108747A (en) * | 1985-11-06 | 1987-05-20 | Furukawa Electric Co Ltd:The | Preparation of porous glass base material |
JPH0527026U (en) * | 1991-09-18 | 1993-04-06 | 古河電気工業株式会社 | Optical fiber synthesizer |
US8297079B2 (en) | 2004-01-07 | 2012-10-30 | Shin-Etsu Chemical Co., Ltd. | Method of manufacturing porous glass base material used for optical fibers, and glass base material |
Also Published As
Publication number | Publication date |
---|---|
JPH0583497B2 (en) | 1993-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6177631A (en) | Manufacture of optical fiber preform | |
US6145344A (en) | Method for the preparation of a porous silica glass preform for optical fibers | |
JPS6186440A (en) | Manufacture of preform for optical fiber | |
JPS6048456B2 (en) | Method for manufacturing base material for optical fiber | |
JP3133392B2 (en) | Manufacturing method of soot base material for optical fiber | |
JPS59174538A (en) | Manufacture of base material for optical fiber | |
JPS6259063B2 (en) | ||
CN1015333B (en) | Method for producing highly pure glass preform for optical fiber | |
JPH0240003B2 (en) | TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO | |
US20070163300A1 (en) | Method of manufacturing porous glass base material used for optical fibers, and glass base material | |
JPS6128612B2 (en) | ||
JPS62167238A (en) | Production of base material for optical fiber | |
JPH0818843B2 (en) | Method for manufacturing preform for optical fiber | |
JPS6054936A (en) | Manufacture of preform rod | |
JPS604978Y2 (en) | Glass particle synthesis torch | |
JP3706499B2 (en) | Production equipment for porous glass preform for optical fiber | |
JPS6144822B2 (en) | ||
JPS5925739B2 (en) | Method of manufacturing optical transmission glass | |
JPS62854B2 (en) | ||
JPS63156032A (en) | Formation of suit for preform | |
JPS6210936B2 (en) | ||
KR830002374B1 (en) | Manufacturing Method of Glass Products | |
JPS6353138B2 (en) | ||
JPH0712951B2 (en) | Method for manufacturing base material for optical fiber | |
JPS6230144B2 (en) |