JPS62854B2 - - Google Patents

Info

Publication number
JPS62854B2
JPS62854B2 JP54130790A JP13079079A JPS62854B2 JP S62854 B2 JPS62854 B2 JP S62854B2 JP 54130790 A JP54130790 A JP 54130790A JP 13079079 A JP13079079 A JP 13079079A JP S62854 B2 JPS62854 B2 JP S62854B2
Authority
JP
Japan
Prior art keywords
tube
gas
optical fiber
burner
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54130790A
Other languages
Japanese (ja)
Other versions
JPS5654243A (en
Inventor
Katsuyuki Imoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP13079079A priority Critical patent/JPS5654243A/en
Publication of JPS5654243A publication Critical patent/JPS5654243A/en
Publication of JPS62854B2 publication Critical patent/JPS62854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/40Mechanical flame shields

Description

【発明の詳細な説明】 光フアイバ母材を連続的に製造する方法の一つ
に第1図に示すような方法がある。これは火炎加
水分解バーナ1によりガラス微粒子を合成し、こ
のガラス微粒子をターゲツト上に堆積させて軸方
向に多孔質母材2を成長させ、ついでこの母材を
加熱炉3によつてゾーンメルトさせることにより
脱泡、透明化し光フアイバ母材4とする方法であ
る。この方法は母材を高速度で量産することが可
能である。この方法について種々の実験を行なつ
た結果、次のような問題点が生じた。一つは多孔
質母材を堆積中、バーナの火炎付近の反応容器6
の内周部6′にガラス微粒子が付着し、時間と共
に内周部6′は白だくして不透明になり、堆積過
程中の状態の検知およびその状態の制御ができな
くなつてしまうという問題である。これは反応容
器6内を排気速度調節装置13を通して矢印14
方向へ排気しているが、反応容器6内のガス流が
矢印11,12から送り込むガス流の変動、バー
ナに送り込むガス流のゆらぎ、排気速度の変動な
どにより、矢印5′で示したように対流あるいは
乱流を起こして反応容器の6′部にガラス微粒子
を付着させたことによるものであつた。もう一つ
の問題点はこの方法で作成した集束型光フアイバ
のベースバンド周波数帯域は200〜1100MHz・Km
(6dB以下)と極めてバラツキが大きく、また損
失のバラツキも従来の内付けCVD法のものに比
して大きいという問題が生じた。これはバーナ1
の炎5が、排気ガス14の排気速度の変動、バー
ナに送り込むガスの微小なゆらぎ、矢印11,1
2から送り込むガスの微小なゆらぎなどの動的な
外乱により時々刻々ゆらぎを生じて変動し、それ
によつて光フアイバ母材の屈折率、ガラスの物理
的性質が変動したことによるものと考えられた。
以上のように従来方法ではプロセスの状態を連続
的に検知、制御することがむずかしく、また動的
な外乱に対して極めて敏感に変動し易い。そのた
めに高品質な光フアイバを再現性良く作れなかつ
た。
DETAILED DESCRIPTION OF THE INVENTION One of the methods for continuously manufacturing an optical fiber base material is the method shown in FIG. This involves synthesizing glass particles using a flame hydrolysis burner 1, depositing the glass particles on a target to grow a porous base material 2 in the axial direction, and then zone-melting this base material using a heating furnace 3. In this method, the optical fiber base material 4 is degassed and made transparent. This method allows mass production of base materials at high speed. As a result of conducting various experiments on this method, the following problems arose. One is the reaction vessel 6 near the burner flame while depositing the porous base material.
The problem is that fine glass particles adhere to the inner circumference 6' of the film, and the inner circumference 6' becomes white and opaque over time, making it impossible to detect and control the state during the deposition process. be. This is done by passing the exhaust speed regulator 13 through the reaction vessel 6 through the arrow 14.
However, due to fluctuations in the gas flow in the reaction vessel 6 from arrows 11 and 12, fluctuations in the gas flow sent to the burner, fluctuations in the exhaust speed, etc., the gas flow in the reaction vessel 6 moves as shown by arrow 5'. This was caused by causing convection or turbulence to cause glass particles to adhere to the 6' portion of the reaction vessel. Another problem is that the baseband frequency band of the convergent optical fiber created using this method is 200 to 1100 MHz/Km.
(6 dB or less), and the variation in loss was also large compared to that of the conventional internal CVD method. This is burner 1
The flame 5 is caused by fluctuations in the exhaust speed of the exhaust gas 14, minute fluctuations in the gas sent to the burner, and arrows 11 and 1.
This is thought to be due to moment-to-moment fluctuations caused by dynamic disturbances such as minute fluctuations in the gas sent in from No. 2, which caused changes in the refractive index of the optical fiber base material and the physical properties of the glass. .
As described above, in the conventional method, it is difficult to continuously detect and control the process state, and it is extremely sensitive to dynamic disturbances and tends to fluctuate. For this reason, it was not possible to produce high-quality optical fibers with good reproducibility.

本発明は従来方法の上記問題点を解決すること
にある。まず一つは反応容器6内に対流あるいは
乱流が生じないようにし、反応容器の内周部6′
にガラス微粒子が付着しないようにする方法を提
供するものである。もう一つは動的な外乱によつ
てバーナの炎がゆらぐのを低減させる方法を提供
するものである。具体的方法はバーナ管の外周に
同心状に少なくとも2重管以上の多重管を設けて
それらの管内にガスを流し、反応容器内を層流状
態にするものである。
The object of the present invention is to solve the above-mentioned problems of the conventional method. First, it is necessary to prevent convection or turbulence from occurring within the reaction vessel 6, and to
The present invention provides a method for preventing glass particles from adhering to surfaces. Another method provides a method for reducing burner flame fluctuations caused by dynamic disturbances. A specific method is to provide at least two or more multiple tubes concentrically around the burner tube, and to flow gas through these tubes to create a laminar flow state inside the reaction vessel.

以下に実施例を用いて本発明を説明する。 The present invention will be explained below using Examples.

第2図は本発明の光フアイバ母材の製造方法の
一実施例を説明するための概略図である。ガラス
微粒子発生用バーナ管1の外周に同心状に4重管
(内側部から外側部に向つて15―1,15―
2,15―3,15―4)を設けたものである。
上記4重管の各々の管内にはガスが炎の流れに沿
つて流してある(矢印16―1,16―2,16
―3,16―4,16―5)。この4重管および
ガスによつてバーナの炎をシースし、安定性を保
つようにしてある。バーナの炎の外乱に対する安
定度を増すために、4重管の高さはバーナ管の高
さよりもl2だけ高くなつている。また4重管の
各々の管内に流すガス流量はバーナの炎をしぼり
込むように流す。この流量が多い場合には火炎の
大きさは小さくなり、逆に少ない場合には火炎の
大きさは大きくなる。集束型光フアイバ母材を作
る場合にはこのガス流によつて火炎中のドーパン
トの径方向拡がり量を制御することができ、その
結果、バーナ管から多孔質母材の成長端面までの
距離l1+l2を調節することができる。バーナの炎
の外乱に対する安定度をより増すためには、l2
大きく、かつ4重管の各々の管内に流すガスの流
量をバーナ管の近傍を少なく、バーナ管から遠ざ
かるにつれて増えるように設定すればよい。バー
ナ管近傍のガス流量を少なくするのは、このガス
流量が多いと火炎による上昇気流とこのガス流に
より、火炎とこのガス流との間にリサーキユレー
シヨンが生じ、火炎のゆらぎ量が大きくなるため
である。4重管内に流すガスはバーナによるガラ
ス原料の熱分解、火炎加水分解を完全に行なわせ
る点を考慮し、酸化性ガス(O2,CO2,N2O,空
気,オゾンなど)が好ましいが、不活性ガス
(Ar,N2,He,Neなど)、ガラス原料ガスを含ん
だ不活性ガスでもよい。さらには4重管の各々の
管内に流すガスの種類を変えてもよい。たとえ
ば、矢印16―1,16―3,16―5には不活
性ガス、矢印16―2,16―4には酸化性ガ
ス、あるいはその逆に矢印16―1,16―3,
16―5には酸化性ガス、矢印16―2,16―
4には不活性ガスのようにする。なおガラス微粒
子発生用バーナ1には従来用いられているもの
(たとえば、同心状の5重管構造のバーナ)を用
いる。なお、2はガラス多孔質母材、3は加熱
炉、4は光フアイバ母材、5は火炎、6は反応容
器、7はターゲツトの軸方向の移動方向、8はタ
ーゲツトの回転方向、9および10はガス導入
管、11および12はガス導入方向、13は排気
速度調節装置、14は排気ガスの排気方向、1
1′および12′はガス流の方向を示す。
FIG. 2 is a schematic diagram for explaining an embodiment of the method for manufacturing an optical fiber base material of the present invention. Quadruple tubes (15-1, 15-
2, 15-3, 15-4).
Gas flows along the flow of the flame in each of the quadruple pipes (arrows 16-1, 16-2, 16
-3,16-4,16-5). The flame of the burner is sheathed by the quadruple tube and the gas to maintain stability. In order to increase the stability of the burner flame against disturbances, the height of the quadruple tube is higher than the height of the burner tube by l 2 . Further, the flow rate of gas flowing into each pipe of the quadruple pipe is set so as to squeeze the flame of the burner. When the flow rate is large, the size of the flame becomes small, and conversely, when the flow rate is small, the size of the flame becomes large. When making a focused optical fiber preform, the amount of radial spread of the dopant in the flame can be controlled by this gas flow, and as a result, the distance l from the burner tube to the growth end face of the porous preform can be controlled. 1 + l 2 can be adjusted. In order to further increase the stability of the burner flame against disturbances, l 2 is set to be large, and the flow rate of gas flowing into each tube of the quadruple tube is set to be low near the burner tube and increase as it moves away from the burner tube. do it. The reason for reducing the gas flow rate near the burner tube is that if the gas flow rate is high, the upward airflow caused by the flame and this gas flow will cause recirculation between the flame and this gas flow, and the amount of flame fluctuation will increase. This is to become. The gas to be flowed into the quadruple tube is preferably an oxidizing gas (O 2 , CO 2 , N 2 O, air, ozone, etc.) in order to completely thermally decompose the glass raw material by the burner and flame hydrolyze it. , an inert gas (Ar, N 2 , He, Ne, etc.), or an inert gas containing glass raw material gas. Furthermore, the type of gas flowing into each tube of the quadruple tube may be changed. For example, arrows 16-1, 16-3, 16-5 are inert gas, arrows 16-2, 16-4 are oxidizing gas, or vice versa, arrows 16-1, 16-3,
16-5 shows oxidizing gas, arrows 16-2, 16-
For step 4, use an inert gas. Note that the burner 1 for generating glass particles is a conventionally used burner (for example, a burner with a concentric five-tube structure). In addition, 2 is a glass porous base material, 3 is a heating furnace, 4 is an optical fiber base material, 5 is a flame, 6 is a reaction vessel, 7 is a moving direction of a target in the axial direction, 8 is a rotating direction of a target, 9 and 10 is a gas introduction pipe, 11 and 12 are gas introduction directions, 13 is an exhaust speed adjusting device, 14 is an exhaust gas exhaust direction, 1
1' and 12' indicate the direction of gas flow.

第3図は本発明の光フアイバ母材の製造方法の
別の実施例を説明するための概略図である。これ
はバーナ管1の外周に同心状に設ける4重管1
5′―1,15′―2,15′―3,15′―4の高
さを変えたものである。4重管の各々の管内に流
すガスの流量をバーナ管の近傍を少なく、バーナ
管から遠ざかるにつれて増えるように設定するこ
とによつてバーナの炎をシースし、安定性を保つ
ようにしてある。4重管の各々の管の高さを変え
たのは管と管の間に発生するリサーキユレーシヨ
ンによつて乱流が生ずるのをできる限り減少させ
るようにするためである。16′―1〜16′―5
はガス導入方向を示す。
FIG. 3 is a schematic diagram for explaining another embodiment of the method for manufacturing an optical fiber preform of the present invention. This is a quadruple pipe 1 installed concentrically around the outer circumference of the burner pipe 1.
The heights of 5'-1, 15'-2, 15'-3, and 15'-4 are changed. By setting the flow rate of gas flowing into each tube of the quadruple tube to be low near the burner tube and to increase as the distance from the burner tube increases, the flame of the burner is sheathed and stability is maintained. The height of each tube in the quadruple tube is varied in order to reduce as much as possible turbulence caused by recirculation between the tubes. 16'-1 to 16'-5
indicates the direction of gas introduction.

第4図は本発明の光フアイバ母材製造方法の別
の実施例を説明するための概略図である。これも
第3図と同様にリサーキユレーシヨンによつて乱
流が生ずるのを低減させる方法の一例である。4
重管の各々の管15″―1,15″―2,15″―
3,15″―4の高さはバーナ管近傍が低く、バ
ーナ管から遠ざかるにつれて高くしてある。第2
図および第3図の場合よりもバーナの炎のシース
効果は大きくとれる。4重管の最外側管の高さは
ガラス多孔質母材2をおおうような高さにすれば
より効果的に外乱による炎のゆらぎを制御するこ
とができる。16″―1〜16″―5はガス導入方
向を示す。
FIG. 4 is a schematic diagram for explaining another embodiment of the optical fiber preform manufacturing method of the present invention. Similar to FIG. 3, this is also an example of a method for reducing turbulence caused by recirculation. 4
Each pipe of the heavy pipe 15″-1,15″-2,15″-
The height of 3,15''-4 is low near the burner tube and increases as it goes away from the burner tube.Second
The sheathing effect of the burner flame can be greater than in the cases shown in FIGS. If the height of the outermost tube of the quadruple tube is set to such a height that it covers the glass porous base material 2, flame fluctuations caused by external disturbances can be more effectively controlled. 16''-1 to 16''-5 indicate the gas introduction direction.

第5図は第4図の場合よりもバーナの炎のシー
ス効果をさらに大きくした場合の実施例である。
これは4重管の各々の管15′―1〜15―4
の先端部付近の管径を小さくし、火炎をつつみ込
むようにしたものであり、外乱による影響を排除
する効果がある。16―1〜16―5はガス
導入方向を示す。このように4重管、あるいはそ
の中に流すガスによつて炎をシースすることによ
り、外乱による炎のゆらぎを抑制することができ
る。しかも炎が一定流量の酸化性または不活性ガ
スによつておおわれているので、火炎が周囲の空
気と接触して燃焼反応を助長し不安定性を増すこ
ともない。またクリーンなガスでつねにおおわれ
ているので、空気中に含まれている光フアイバの
吸光損失の原因となる遷移金属イオン、OHイオ
ンなどの混入するおそれがなく、空気中のほこり
やゴミの混入するおそれもない。
FIG. 5 shows an embodiment in which the sheath effect of the burner flame is made even greater than in the case of FIG. 4.
This is for each pipe 15'-1 to 15-4 of the quadruple pipe.
The diameter of the tube near the tip of the tube is made smaller to enclose the flame, which has the effect of eliminating the effects of external disturbances. 16-1 to 16-5 indicate gas introduction directions. By sheathing the flame with the quadruple tube or the gas flowing therein, it is possible to suppress flame fluctuations caused by external disturbances. Moreover, because the flame is surrounded by a constant flow of oxidizing or inert gas, the flame does not come into contact with the surrounding air to promote combustion reactions and increase instability. In addition, since it is always covered with clean gas, there is no risk of contamination with transition metal ions, OH ions, etc. that cause light absorption loss in optical fibers contained in the air, and there is no risk of contamination with dust and dirt in the air. There's no fear.

次に本発明の方法の具体例について述べる。 Next, a specific example of the method of the present invention will be described.

第4図の概略図において、反応容器6には外径
178mm、肉厚3.5mm、長さ450mmのパイレツクス管
を用い、反応容器の中心軸にバーナ管(外径22
mm、5重管構造、石英ガラス製)を設置した。バ
ーナ管の外周に6重管(パイレツクス製)を設
け、各々の管内にガスを流すようにした。5重管
構造のバーナ管の中心管から外側管に向つて第
1,2,3,4,5管とすると、第1管にはAr
ガスをキヤリヤガスとしてSiCl4,GeCl4,POCl3
の蒸気をそれぞれ300c.c./min、150c.c./min,80
c.c./minを送り込んだ。第2管にはArガスをキヤ
リヤガスとしてSiCl4,BBr3の蒸気をそれぞれ、
300c.c./min、130c.c./minを送り込んだ。第3管
には3/minのArガスを送り、第4管にはH2
ガスを5/min、第5管にはO2ガスを10/
min送り込んだ。バーナ管の外周に設けた6重管
の各々の外径と肉厚はバーナ管に近い方から、そ
れぞれ、50mmと2mm、70mmと2.4mm、91mmと2.4
mm、112mmと2.6mm、133mmと3.0mm、152mmと3.5mm
を用いた。l″2を5cmとし、バーナに最も近い管
の高さを基準にして外側に向かうにしたがつて2
cmずつ管の高さが高くなるように6重管を配置し
た。そしてバーナ管に近い方の管から外側に向か
うようにしたがつて、それぞれO2ガスを2/
min、2.5/min、3/min、3.5/min、4
/min、4.5/min流した。l″1をパラメータに
し、矢印8方向に30rpmの速度で回転させながら
矢印7方向に6mm/minの速度を引上げ、約75mm
の外径を有する多孔質母材2を得た。この母材を
加熱炉3で加熱して透明ガラスロツドとした。そ
の結果、上記反応中に火炎発生部近傍の反応容器
6′にはガラス微粒子がほとんど付着せず、反応
開始から反応終了後までずつと肉眼で火炎の状態
を検知することができた。そして得られたガラス
ロツドをガラス管内に入れて融着、引き延ばし
後、線引きにより光フアイバとした。この光フア
イバのベースバンド周波数帯域を測定した結果、
13Kmの光フアイバ長に対し、920MHz・Km(6dB
低下)と極めて広い帯域特性を得ることができ、
従来法よりも約2.3倍も良い結果であつた。また
0.85μmにおける損失の平均値も2.9dB/Kmで低
損失であつた。
In the schematic diagram of FIG. 4, the reaction vessel 6 has an outer diameter
A Pyrex tube of 178 mm, wall thickness 3.5 mm, and length 450 mm was used, and a burner tube (outside diameter 22
mm, quintuple tube structure, made of quartz glass) was installed. A six-fold tube (manufactured by Pyrex) was installed around the outer circumference of the burner tube, and gas was allowed to flow through each tube. If a five-ply burner tube has 1st, 2nd, 3rd, 4th, and 5th tubes from the center tube to the outer tube, the first tube has Ar.
SiCl 4 , GeCl 4 , POCl 3 as carrier gas
steam of 300c.c./min, 150c.c./min, and 80c.c./min, respectively.
I sent in cc/min. In the second pipe, SiCl 4 and BBr 3 vapors were introduced using Ar gas as a carrier gas.
300c.c./min and 130c.c./min were sent. Ar gas is sent to the third pipe at a rate of 3/min, and H2 gas is sent to the fourth pipe.
Gas at 5/min, O 2 gas at 10/min in the fifth tube.
I sent min. The outer diameter and wall thickness of each of the six-layered tubes installed around the burner tube are 50 mm and 2 mm, 70 mm and 2.4 mm, and 91 mm and 2.4 mm, respectively, from the side closest to the burner tube.
mm, 112mm and 2.6mm, 133mm and 3.0mm, 152mm and 3.5mm
was used. l″ 2 is 5cm, and the height of the tube closest to the burner is taken as the standard, and the height is 2cm as it goes outward.
The sextuple tubes were arranged so that the height of the tubes increased by cm. Then, from the tube closest to the burner tube to the outside, add 2/2 O 2 gas to each tube.
min, 2.5/min, 3/min, 3.5/min, 4
/min, 4.5/min. l'' 1 as a parameter, rotate at a speed of 30 rpm in the direction of arrow 8, and increase the speed by 6 mm/min in the direction of arrow 7, approximately 75 mm.
A porous base material 2 having an outer diameter of was obtained. This base material was heated in a heating furnace 3 to form a transparent glass rod. As a result, during the reaction, almost no glass particles adhered to the reaction vessel 6' near the flame generation part, and the state of the flame could be detected with the naked eye from the start of the reaction to the end of the reaction. Then, the obtained glass rod was put into a glass tube, fused, stretched, and then made into an optical fiber by drawing. As a result of measuring the baseband frequency band of this optical fiber,
920MHz・Km (6dB
) and extremely wide band characteristics.
The results were about 2.3 times better than the conventional method. Also
The average value of loss at 0.85 μm was also low at 2.9 dB/Km.

本発明は上記実施例に限定されない。バーナ外
周に同心状に設ける多重管は2重管以上であれば
いくらでもよい。またこの多重管の形状はテーパ
状に拡がつていてもまた狭くなつていてもよい。
さらには局部的に外径が変形していてもよい。多
重管の各管内に流すガス流量は0.数/minから
20数/minの範囲から選定するのが好ましい。
多重管の管内には多孔質材をつめて各管内でのガ
スの乱れを緩和させてもよい。また多重管の各管
内に流すガスの温度を変えることによりバーナの
炎の径方向拡ゃり量を調節できる。すなわち、温
度を高くすれば拡がり量を大きく、低くすれば拡
がり量を小さくすることができる。
The invention is not limited to the above embodiments. Any number of multiple tubes may be provided concentrically around the outer circumference of the burner as long as the multiple tubes are double or more. Further, the shape of this multi-tube may be widened in a tapered manner or may be narrowed.
Furthermore, the outer diameter may be locally deformed. The gas flow rate flowing into each pipe of multiple pipes is from 0.5/min.
It is preferable to select from a range of 20/min.
A porous material may be filled in the tubes of the multiple tubes to alleviate gas turbulence within each tube. Furthermore, the amount of radial expansion of the burner flame can be adjusted by changing the temperature of the gas flowing into each tube of the multiple tube. That is, by increasing the temperature, the amount of expansion can be increased, and by decreasing the temperature, the amount of expansion can be decreased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法により光フアイバ母材を製造す
る装置を示す概略断面図、第2図、第3図、第4
図および第5図は本発明の実施例で用いた装置の
概略断面図である。 各図において、1はバーナ、2はガラス多孔質
母材、3は加熱炉、4は光フアイバ母材、5は火
炎、6は反応容器、9および10はガス導入管、
13は排気速度調節装置、15―1〜15―4,
15′―1〜15′―4,15″―1,15″―4お
よび15―1〜15―4は4重管を構成する
各々の管を示す。
Figure 1 is a schematic sectional view showing an apparatus for manufacturing optical fiber preforms by a conventional method, Figures 2, 3, and 4.
5 and 5 are schematic cross-sectional views of the apparatus used in the embodiment of the present invention. In each figure, 1 is a burner, 2 is a glass porous base material, 3 is a heating furnace, 4 is an optical fiber base material, 5 is a flame, 6 is a reaction vessel, 9 and 10 are gas introduction pipes,
13 is an exhaust speed adjusting device, 15-1 to 15-4,
15'-1 to 15'-4, 15''-1, 15''-4 and 15-1 to 15-4 indicate respective tubes constituting the quadruple tube.

Claims (1)

【特許請求の範囲】 1 反応容器内に出発部材を配置し、火炎加水分
解用の多重管バーナによつて合成されたガラス微
粒子をこの出発部材に吹付け、その軸方向に多孔
質ガラス母材を成長させる方法において、上記バ
ーナの外周にほぼ同心状に2重管以上の多重管を
設け、この多重管にガスを流すことを特徴とする
光フアイバ母材の製造方法。 2 特許請求の範囲第1項において、前記ガスは
前記バーナの炎を中心として略対称に流すことを
特徴とする光フアイバ母材の製造方法。 3 特許請求の範囲第1項において、前記バーナ
に近い方の多重管のガス流量を遠い方のそれより
も少なくすることを特徴とする光フアイバ母材の
製造方法。 4 特許請求の範囲第1項において、前記ガスは
酸化性ガス及びガラス原料を含んだガスのうちの
少なくとも一つを含むことを特徴とする光フアイ
バ母材の製造方法。 5 特許請求の範囲第1項において、前記多重管
に流されるガス管毎に別種類のガスを含むことを
特徴とする光フアイバ母材の製造方法。 6 特許請求の範囲第1項において、前記多重管
の高さは前記バーナの高さよりも高いことを特徴
とする光フアイバ母材の製造方法。 7 特許請求の範囲第1項において、前記多重管
の内側の方の高さを外側の方よりも高くしたこと
を特徴とする光フアイバ母材の製造方法。 8 特許請求の範囲第1項において、前記多重管
の外側の方の高さを内側の方よりも高くしたこと
を特徴とする光フアイバ母材の製造方法。 9 特許請求の範囲第1項において、前記多重管
の先端部付近の管径を小さくしたことを特徴とす
る光フアイバ母材の製造方法。
[Claims] 1. A starting member is placed in a reaction vessel, glass fine particles synthesized by a multi-tube burner for flame hydrolysis are blown onto the starting member, and a porous glass base material is formed in the axial direction of the starting member. 1. A method for producing an optical fiber base material, which comprises providing multiple tubes of double tubes or more approximately concentrically around the outer periphery of the burner, and flowing gas through the multiple tubes. 2. The method for manufacturing an optical fiber base material according to claim 1, wherein the gas is flowed approximately symmetrically with respect to the flame of the burner. 3. The method of manufacturing an optical fiber preform according to claim 1, characterized in that the gas flow rate of the multiplex tube closer to the burner is lower than that of the multiplex tube farther away. 4. The method for manufacturing an optical fiber base material according to claim 1, wherein the gas contains at least one of an oxidizing gas and a gas containing a glass raw material. 5. The method for manufacturing an optical fiber preform according to claim 1, characterized in that each gas pipe flowing into the multiplex pipe contains a different type of gas. 6. The method of manufacturing an optical fiber preform according to claim 1, wherein the height of the multiple tube is higher than the height of the burner. 7. The method for manufacturing an optical fiber preform according to claim 1, characterized in that the inner side of the multi-layer tube is higher than the outer side. 8. The method for manufacturing an optical fiber preform according to claim 1, characterized in that the outer side of the multiplex tube is higher than the inner side. 9. The method for manufacturing an optical fiber preform according to claim 1, characterized in that the tube diameter near the tip of the multiple tube is reduced.
JP13079079A 1979-10-12 1979-10-12 Preparation of optical fiber matrix Granted JPS5654243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13079079A JPS5654243A (en) 1979-10-12 1979-10-12 Preparation of optical fiber matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13079079A JPS5654243A (en) 1979-10-12 1979-10-12 Preparation of optical fiber matrix

Publications (2)

Publication Number Publication Date
JPS5654243A JPS5654243A (en) 1981-05-14
JPS62854B2 true JPS62854B2 (en) 1987-01-09

Family

ID=15042739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13079079A Granted JPS5654243A (en) 1979-10-12 1979-10-12 Preparation of optical fiber matrix

Country Status (1)

Country Link
JP (1) JPS5654243A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196738A (en) * 1981-05-29 1982-12-02 Nippon Telegr & Teleph Corp <Ntt> Drawing furnace for optical fiber
JP3169561B2 (en) * 1996-10-17 2001-05-28 信越化学工業株式会社 Method for producing glass particle deposit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523066A (en) * 1978-08-07 1980-02-19 Nippon Telegr & Teleph Corp <Ntt> Forming method for oxide powder layer for optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523066A (en) * 1978-08-07 1980-02-19 Nippon Telegr & Teleph Corp <Ntt> Forming method for oxide powder layer for optical fiber

Also Published As

Publication number Publication date
JPS5654243A (en) 1981-05-14

Similar Documents

Publication Publication Date Title
US4610709A (en) Method for producing glass preform for optical fiber
CA1268339A (en) Burner for producing glass fine particles
GB2128981A (en) Fabrication method of optical fiber preforms
GB2314077A (en) Making optical fibres by drawing rod-in-tube preforms
US7437893B2 (en) Method for producing optical glass
CA1171744A (en) Method of producing preform rod for optical transmission fiber
JPS62854B2 (en)
US6923024B2 (en) VAD manufacture of optical fiber preforms with improved deposition control
JP3675579B2 (en) Manufacturing method of optical fiber preform
US4318726A (en) Process for producing optical fiber preform
US6834516B2 (en) Manufacture of optical fiber preforms using modified VAD
JPS5919892B2 (en) Method for manufacturing focusing optical fiber base material
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
KR100554423B1 (en) method of controlling refractive index of optical fiber preform in MCVD and optical fiber made by the method
JPH09221335A (en) Production of precursor of optical fiber glass preform
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
JPS6259063B2 (en)
JP2960059B1 (en) Method and apparatus for manufacturing porous glass preform, and concentric multi-tube burner used therein
JPS59195547A (en) Manufacture of base material for optical fiber
JPH10330129A (en) Production of porous glass body for optical fiber
JPS62182129A (en) Production of preform for optical fiber
JPS6186440A (en) Manufacture of preform for optical fiber
JPS63162538A (en) Production of quartz rod lens
JP3953855B2 (en) Method for producing porous base material
JP2004002117A (en) Manufacture method of preform for optical fibers