JP3169561B2 - Method for producing glass particle deposit - Google Patents
Method for producing glass particle depositInfo
- Publication number
- JP3169561B2 JP3169561B2 JP27434296A JP27434296A JP3169561B2 JP 3169561 B2 JP3169561 B2 JP 3169561B2 JP 27434296 A JP27434296 A JP 27434296A JP 27434296 A JP27434296 A JP 27434296A JP 3169561 B2 JP3169561 B2 JP 3169561B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- glass
- raw material
- flame
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1415—Reactant delivery systems
- C03B19/1423—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/06—Concentric circular ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
- C03B2207/22—Inert gas details
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/36—Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光ファイバ用ガラ
ス母材等の製造に使用されるガラス微粒子堆積体の製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glass particle deposit used for producing a glass preform for an optical fiber and the like.
【0002】[0002]
【従来の技術】ガラス微粒子を生成する方法として、ガ
ラス原料ガスを火炎中で加水分解反応させる方法があ
る。光ファイバ用ガラス母材の製造においては、ガラス
原料ガスとして、四塩化ケイ素(SiC14)などのケ
イ素化合物と、屈折率を上げるためのドーパント原料の
四塩化ゲルマニウム(GeC14)などがあり、これら
を水素ガス(H2)、メタンガス(CH4)などの可燃性
ガスと、酸素ガス(02)などの助燃性ガスの混合炎中
に供給して加水分解してガラス微粒子を生成する。これ
を耐熱性のターゲットやガラスロッドに堆積させて堆積
体とする場合もある。2. Description of the Related Art As a method for producing glass fine particles, there is a method in which a glass raw material gas is subjected to a hydrolysis reaction in a flame. In the production of glass preform for optical fibers, as a glass raw material gas, Four and a silicon compound such as silicon tetrachloride (SiCl 4), germanium tetrachloride of dopant material to increase the refractive index (GeC1 4) include, these Is supplied to a mixed flame of a combustible gas such as hydrogen gas (H 2 ) and methane gas (CH 4 ) and a combustible gas such as oxygen gas (O 2 ) to be hydrolyzed to generate glass particles. This may be deposited on a heat-resistant target or glass rod to form a deposit.
【0003】[0003]
【発明が解決しようとする課題】しかし、ガラス原料ガ
ス、可燃性ガス及び助燃性ガスの供給量は、ガラス微粒
子の生成の場合と、ガラス微粒子を被付着体に堆積させ
る場合とでは最適供給量は一般的に差があり、前者の場
合、通常は生成、堆積における最適原料供給量の中間の
原料供給量で生成、堆積せざるをえない。例えば、ガラ
ス微粒子の生成の場合は、最適ガス供給量は、容量比で
ガラス原料ガス1に対して、可燃性ガス2〜40及び助燃
性ガス1〜20であるが、一方ガラス微粒子を被付着体に
堆積させる場合は、最適ガス供給量は、容量比でガラス
原料ガス1に対して、可燃性ガス2〜40及び助燃性ガス
1.5 〜15である。また、従来のガラス微粒子生成用バー
ナーは、形状、供給する各原料ガスの種類や量の如何に
関わらず、ガラス微粒子を生成する最適ガス供給量で
は、多重管バーナー最外層のガス流速がガラス原料ガス
流速との差が大きいため、火炎が拡散ないしは収束して
しまう。このため、ガラス微粒子を被付着体に堆積する
場合、ガラス微粒子の堆積効率が悪くなり、また堆積後
の多孔質ガラス体の密度も低下する。However, the supply amounts of the glass raw material gas, the flammable gas, and the auxiliary combustion gas are optimal supply amounts in the case of generating glass particles and in the case of depositing glass particles on an adherend. Generally, there is a difference. In the former case, it is usually necessary to generate and deposit a raw material supply amount that is intermediate between the optimum raw material supply amounts in generation and deposition. For example, in the case of producing glass particles, the optimum gas supply amount is a combustible gas of 2 to 40 and a combustible gas of 1 to 20 with respect to the glass raw material gas 1 by volume ratio. In the case of depositing on the body, the optimum gas supply amount is the ratio of flammable gas 2 to 40 and combustible gas to glass raw material gas 1 by volume ratio.
1.5 to 15. In addition, conventional burners for producing glass fine particles require that the gas flow rate of the outermost layer of the multi-tube burner be controlled by the optimal gas supply amount for generating glass fine particles, regardless of the shape and the type and amount of each raw material gas supplied. Because of a large difference from the gas flow velocity, the flame diffuses or converges. For this reason, when glass particles are deposited on the adherend, the deposition efficiency of the glass particles is reduced, and the density of the porous glass body after the deposition is also reduced.
【0004】[0004]
【課題を解決するための手段】本発明は、上記の問題点
に鑑みなされたもので、ガラス微粒子の生成及び付着領
域での火炎中の温度分布を最適化させ、効率良くガラス
微粒子の生成、堆積をすることができる。即ち本発明
は、火炎中でガラス原料ガスの加水分解反応によりガラ
ス微粒子を生成しガラス微粒子堆積体を製造する方法に
おいて、多重管バーナーの最外層に酸素濃度が15〜2
5容量%の酸素含有ガスを、ガラス原料ガスの30〜6
0容量%で流速を0.1〜3倍にして流すことを特徴と
するものである。SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has been made in consideration of the above circumstances. Accordingly, the present invention optimizes the production of glass fine particles and the temperature distribution in a flame in an adhesion region to efficiently generate glass fine particles. Deposits can be made. That is, the present invention relates to a method for producing glass fine particles by producing glass fine particles by a hydrolysis reaction of a glass raw material gas in a flame, wherein the outermost layer of the multi-tube burner has an oxygen concentration of 15 to 2 times.
5% by volume of an oxygen-containing gas is mixed with 30 to 6
The flow rate is 0.1 to 3 times the flow rate at 0% by volume.
【0005】[0005]
【発明の実施の形態】本発明は、多重管バーナーの最外
層に酸素含有ガスを流すことにより、火炎の拡散、収束
を防ぎ、これを自由に制御することができ、またその供
給量を調節することで火炎全体の拡散を制御し、ガラス
微粒子の生成領域及び堆積領域での火炎中の温度分布を
最適化させることができ、効率よくガラス微粒子の生
成、堆積が行われるのである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention prevents the diffusion and convergence of a flame by flowing an oxygen-containing gas to the outermost layer of a multi-tube burner, and can control the flame freely, and regulates the supply amount. By doing so, it is possible to control the diffusion of the entire flame, optimize the temperature distribution in the flame in the generation region and the deposition region of the glass fine particles, and efficiently generate and deposit the glass fine particles.
【0006】多重管バーナーの最外層に流す酸素含有ガ
スの酸素濃度は、15容量%未満では、火炎の温度が低
下し、堆積後の多孔質ガラス体の密度が低くなり、25
容量%を超えると火炎温度が最適なガラス微粒子生成領
域から逸脱し、ガラス微粒子の生成及び堆積効率が低下
するので、15〜25容量%の範囲とすることが必要で
ある。酸素含有ガスとしては、窒素ガスやHeガス、A
rガス等の不活性ガスに酸素を含有させたものや空気な
どが好ましい。酸素含有ガスの供給量は、火炎中のガラ
ス微粒子の生成領域の温度分布に悪影響を及ぼさず、ガ
ラス微粒子の堆積に最適な温度領域をより大きく確保す
る理由から、ガラス原料ガスの3〜60容量%とするの
が好ましい。また、酸素含有ガスの流速をガラス原料ガ
スの流速の0.1〜3倍とすることにより、火炎の拡散
や収束を防止することができる。If the oxygen concentration of the oxygen-containing gas flowing through the outermost layer of the multi-tube burner is less than 15% by volume, the temperature of the flame decreases, the density of the porous glass body after deposition decreases, and
If the volume percentage is exceeded, the flame temperature deviates from the optimal glass particle generation region, and the generation and deposition efficiency of the glass particles decrease, so it is necessary to set the range to 15 to 25% by volume. As the oxygen-containing gas, nitrogen gas, He gas, A
An inert gas such as r gas containing oxygen or air is preferable. The supply amount of the oxygen-containing gas does not adversely affect the temperature distribution in the region in which the glass fine particles are generated in the flame, and from 3 to 60 vol. % Is preferable. Further, by setting the flow rate of the oxygen-containing gas to be 0.1 to 3 times the flow rate of the glass raw material gas, it is possible to prevent diffusion and convergence of the flame.
【0007】本発明では、ガラス微粒子を被付着体に堆
積させる場合でも、ガラス原料ガス、可燃性ガス、助燃
性ガスの供給量はガラス微粒子生成効率が最適のものと
すれば良く、これは公知の条件で行えばよく、例えば容
量比でガラス原料ガス1に対して可燃性ガス2〜40、助
燃性ガス1〜20の比率とすればよい。In the present invention, even when glass particles are deposited on the adherend, the supply amounts of the glass raw material gas, the flammable gas, and the auxiliary gas may be determined so that the glass particle generation efficiency is optimal. For example, the ratio of the combustible gas 2 to 40 and the combustible gas 1 to 20 may be set to the glass raw material gas 1 in terms of volume ratio.
【0008】多重管バーナーは公知のもので良く、例え
ば中心管よりガラス原料ガス、助燃性ガス、可燃性ガ
ス、シールガス及び最外層に酸素含有ガスのノズルをこ
の順で設けた5重管が例示されるが、本願発明では、5
重管に限定されるものではなく、5重管より多くても少
なくとも良く、要は最外層に酸素含有ガスのノズルが設
けられていれば良い。The multi-tube burner may be a known one. For example, a quintuple tube having nozzles for a glass raw material gas, a combustible gas, a flammable gas, a seal gas, and an oxygen-containing gas provided in the outermost layer in this order from the center tube is used. As an example, in the present invention, 5
It is not limited to a heavy pipe, and may be at least more than a quintuple pipe. In short, it is only necessary that an oxygen-containing gas nozzle is provided in the outermost layer.
【0009】[0009]
実施例 5重管バーナーの中心ノズルより順に、四塩化ケイ素ガ
ス10SLM (標準状態でのガス供給速度、リットル/分、
以下同じ)、水素ガス150SLM、酸素ガス100SLM、アルゴ
ンガス10SLM を各ノズルに供給し、最外層のノズルには
空気5SLM を供給し、この空気により火炎の拡散を防ぎ
ながら、寸法50mm×50mm×3mm厚さのガラス板に、この
火炎をガラス板の表面から垂直に30cm離して、ガラス微
粒子を7mmの厚さに堆積させたところ、堆積効率は全ガ
ラス微粒子量の53%となり、堆積密度は0.6g/cm3であっ
た。Example 5 In order from the center nozzle of a quintuple tube burner, silicon tetrachloride gas 10SLM (gas supply rate under standard conditions, liter / min,
The same applies to the following), 150 SLM of hydrogen gas, 100 SLM of oxygen gas, and 10 SLM of argon gas are supplied to each nozzle, and 5 SLM of air is supplied to the outermost nozzle. When this flame was vertically separated from the surface of the glass plate by 30 cm on a glass plate having a thickness of 7 mm and the glass fine particles were deposited to a thickness of 7 mm, the deposition efficiency was 53% of the total glass fine particle amount, and the deposition density was 0.6%. g / cm 3 .
【0010】比較例 5重管バーナーの最外層のノズルに空気を供給しなかっ
た点以外は実施例と同じ条件でガラス微粒子を堆積した
ところ、堆積効率は全ガラス微粒子量の47%で、堆積密
度は0.45g/cm3 であった。Comparative Example When glass fine particles were deposited under the same conditions as in the example except that air was not supplied to the outermost nozzle of the five-tube burner, the deposition efficiency was 47% of the total glass fine particle amount. The density was 0.45 g / cm 3 .
【0011】[0011]
【発明の効果】本発明によれば、効率よくガラス微粒子
を生成、堆積することができる。According to the present invention, glass particles can be efficiently generated and deposited.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平沢 秀夫 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 精密機能材料研究所 内 (56)参考文献 特開 平4−193730(JP,A) 特開 昭60−5036(JP,A) 特開 昭56−54243(JP,A) 特開 昭60−215515(JP,A) 実開 平1−142425(JP,U) 実開 平2−90631(JP,U) (58)調査した分野(Int.Cl.7,DB名) C03B 37/018 C03B 8/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hideo Hirasawa 2-13-1 Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Functional Materials Research Laboratories (56) References JP-A-4-193730 (JP) JP-A-60-5036 (JP, A) JP-A-56-54243 (JP, A) JP-A-60-215515 (JP, A) JP-A-1-142425 (JP, U) JP-A 2-90631 (JP, U) (58) Fields studied (Int. Cl. 7 , DB name) C03B 37/018 C03B 8/04
Claims (1)
によりガラス微粒子を生成しガラス微粒子堆積体を製造
する方法において、多重管バーナーの最外層に酸素濃度
が15〜25容量%の酸素含有ガスを、ガラス原料ガス
の3〜60容量%で流速を0.1〜3倍にして流すこと
を特徴とするガラス微粒子堆積体の製造方法。1. A manufacturing raw form glass particles deposit fine glass particles by hydrolysis reaction of the glass raw material gas in a flame
At the method of the outermost layer to the oxygen concentration of the multi-tube burner 15 to 25 volume% of the oxygen-containing gas, the glass raw material gas
3-60 method of manufacturing a soot preform you characterized in that flow to the flow rate from 0.1 to 3 times in volume percent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27434296A JP3169561B2 (en) | 1996-10-17 | 1996-10-17 | Method for producing glass particle deposit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27434296A JP3169561B2 (en) | 1996-10-17 | 1996-10-17 | Method for producing glass particle deposit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10120429A JPH10120429A (en) | 1998-05-12 |
JP3169561B2 true JP3169561B2 (en) | 2001-05-28 |
Family
ID=17540329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27434296A Expired - Fee Related JP3169561B2 (en) | 1996-10-17 | 1996-10-17 | Method for producing glass particle deposit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3169561B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003252643A (en) * | 2002-03-04 | 2003-09-10 | Fujikura Ltd | Production method for optical fiber preform, and oxyhydrogen flame burner |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5654243A (en) * | 1979-10-12 | 1981-05-14 | Hitachi Ltd | Preparation of optical fiber matrix |
US4465708A (en) * | 1983-05-31 | 1984-08-14 | At&T Technologies, Inc. | Technique for fabricating single mode lightguide soot-forms |
JPS60215515A (en) * | 1984-04-10 | 1985-10-28 | Mitsubishi Metal Corp | Preparation of synthetic quartz mass and device therefor |
JPH01142425U (en) * | 1988-03-22 | 1989-09-29 | ||
JPH0290631U (en) * | 1988-12-27 | 1990-07-18 | ||
JPH04193730A (en) * | 1990-11-26 | 1992-07-13 | Fujikura Ltd | Production of base material for optical fiber and hood for oxyhydrogen burner |
-
1996
- 1996-10-17 JP JP27434296A patent/JP3169561B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10120429A (en) | 1998-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4043768B2 (en) | Manufacturing method of optical fiber preform | |
US4765815A (en) | Method for producing glass preform for optical fiber | |
JP3169561B2 (en) | Method for producing glass particle deposit | |
US4781740A (en) | Method for producing glass preform for optical fiber | |
JP3157637B2 (en) | Method for producing porous glass base material | |
US5207813A (en) | Method for producing glass article | |
TW200533616A (en) | Method for producing porous glass base material for optical fiber and glass base material | |
US20020028415A1 (en) | Co-flow diffusion flame burner device used for fabricating an optical waveguide | |
JP3176949B2 (en) | Method for producing porous silica preform | |
JP3143445B2 (en) | Manufacturing method of synthetic quartz | |
KR100294539B1 (en) | Method for controlling particle size in FHD process | |
JP3131087B2 (en) | Method for producing porous glass preform for optical fiber | |
JPH0324417B2 (en) | ||
JP2800554B2 (en) | Manufacturing method of glass base material | |
JP3169409B2 (en) | Manufacturing method of preform for optical fiber | |
JP3785120B2 (en) | Method for producing silica porous matrix | |
JP3215358B2 (en) | Burner for glass particle generation | |
JP2003313043A (en) | Method for manufacturing porous preform for optical fiber and burner device for manufacture of optical fiber porous preform | |
JPH03112820A (en) | Production of porous glass preform | |
JPS604979Y2 (en) | Glass particle synthesis torch | |
JPH04228443A (en) | Burner for producing optical fiber preform | |
JPH0733467A (en) | Production of porous glass preform for optical fiber | |
JPH0416418B2 (en) | ||
JPS6126526A (en) | Burner for synthesizing porous quartz glass base material | |
JP4053305B2 (en) | Method for producing porous preform for optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100316 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110316 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110316 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120316 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120316 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140316 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |