KR100294539B1 - Method for controlling particle size in FHD process - Google Patents

Method for controlling particle size in FHD process Download PDF

Info

Publication number
KR100294539B1
KR100294539B1 KR1019970057752A KR19970057752A KR100294539B1 KR 100294539 B1 KR100294539 B1 KR 100294539B1 KR 1019970057752 A KR1019970057752 A KR 1019970057752A KR 19970057752 A KR19970057752 A KR 19970057752A KR 100294539 B1 KR100294539 B1 KR 100294539B1
Authority
KR
South Korea
Prior art keywords
particles
torch
inert gas
particle size
chemical reaction
Prior art date
Application number
KR1019970057752A
Other languages
Korean (ko)
Other versions
KR19990038117A (en
Inventor
송영휘
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019970057752A priority Critical patent/KR100294539B1/en
Publication of KR19990038117A publication Critical patent/KR19990038117A/en
Application granted granted Critical
Publication of KR100294539B1 publication Critical patent/KR100294539B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/453Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12038Glass (SiO2 based materials)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE: A flame hydrolysis deposition in which sizes of silica particles are controlled is provided which controls the sizes of the silica particles using chemical reaction gases required in forming silica particles together with an inert gas in a torch for FHD(flame hydrolysis deposition). CONSTITUTION: The flame hydrolysis deposition in which particle sizes are controlled comprises the steps of flowing out chemical reaction gases containing constituents of particles to be formed, oxygen and hydrogen through each nozzles(200,202,204) of a torch(206); flowing out the chemical reaction gases together with an inert gas through the nozzles(200,202,204), controlling flow rates of the inert gas and controlling a flame temperature of the torch(206) so that sizes of particles to be formed are controlled by reacting the chemical reaction gases with the oxygen or the hydrogen in the torch; depositing the produced particles on a substrate(208); and sintering the substrate(208) on which particles are deposited, wherein the inert gas is an argon gas.

Description

입자 크기가 조절되는 화염가수분해 증착법{Method for controlling particle size in FHD process}Flame hydrolysis deposition method with controlled particle size {Method for controlling particle size in FHD process}

본 발명은 입자 크기가 조절되는 화염가수분해 증착법(Flame Hydrolysis Deposition, 이하 FHD라 약함)에 관한 것으로, 보다 상세하게는 불활성 기체를 사용하여 입자 크기를 조절하는 화염가수분해 증착법에 관한 것이다.The present invention relates to Flame Hydrolysis Deposition (FHD), in which particle size is controlled, and more particularly to Flame Hydrolysis Deposition method for controlling particle size using an inert gas.

화염가수분해 증착법은 실리카(SiO2)를 기초로하여 광소자의 광도파막을 증착하는 기술로서, 증착율이 높아서 높은 생산성을 보장한다. 구체적으로 설명하면, 화염가수분해 증착법은 먼저 4인치 실리콘 웨이퍼(si wafer)를 약 20장 가량 원판 위에 장착한 후 회전시킨다. 이어서, 원료를 공급받아 화염을 형성하여 실리카를 생성하는 토치를 실리콘 기판이 장착된 원판 상에서 원판의 중심과 외곽을 직선 왕복운동하도록 하여 실리카를 균일하게 증착한다. 이렇게 증착된 실리카막은 구형의실리카 입자가 쌓여서 기공도가 매우 높은 층이므로, 치밀한 구조를 만들기위해 약 1300°C에서 소결(sintering)공정을 거치게 된다.Flame hydrolysis deposition is a technique for depositing an optical waveguide film of an optical device based on silica (SiO 2 ), high deposition rate ensures high productivity. Specifically, the flame hydrolysis deposition method first rotates a 4 inch silicon wafer (si wafer) about 20 sheets on the disk and then rotates. Subsequently, the torch, which generates a flame by receiving the raw material, forms a flame, and deposits silica uniformly by linearly reciprocating the center and the outside of the original disc on a disc equipped with a silicon substrate. The deposited silica film is a layer having a very high porosity due to the accumulation of spherical silica particles, and thus undergoes a sintering process at about 1300 ° C. to form a dense structure.

도 1은 토치에서 화염의 길이에 따라 생성되는 실리카 입자 크기를 도시한 것으로, 참조번호 100은 분자수준의 입자들이 응집된 단계를 나타내고, 102 내지 106의 입자는 화염길이에 따라 응집된 입자들이 점점 더 크게 덩어리지는 모양을 나타낸 것이다. 그러나, 이렇게 입자가 커지면 소결이 어려워지고 소결공정의 결과물인 유리내에 기공(pore)이 발생하기 쉽다.Figure 1 shows the silica particle size produced along the length of the flame in the torch, reference numeral 100 denotes a step of agglomeration of particles at the molecular level, the particles of 102 to 106 are gradually agglomerated particles according to the flame length It shows a larger lump. However, when the particles are thus large, sintering becomes difficult and pores are easily generated in the glass which is a result of the sintering process.

본 발명에 이루고자하는 기술적 과제는 FHD용 토치에서 실리카 입자 형성에 필요한 화학반응기체에 불활성 기체를 함께 사용하여 입자 크기를 조절하는 실리카 입자 크기가 조절되는 화염가수분해 증착법을 제공하는데 있다.The technical problem to be achieved in the present invention is to provide a flame hydrolysis deposition method in which the silica particle size is controlled by controlling the particle size by using an inert gas together with the chemical reaction gas required for the formation of silica particles in the FHD torch.

도 1은 토치에서 화염의 길이에 따라 생성되는 입자 크기를 도시한 것이다.Figure 1 shows the particle size produced along the length of the flame in the torch.

도 2는 본 발명에 따른 입자 크기가 조절되는 화염가수분해 증착법에 따른 공정을 도시한 것이다.Figure 2 shows a process according to the flame hydrolysis deposition method of controlling the particle size according to the present invention.

상기 기술적 과제를 이루기 위한, 본 발명에 따른 입자 크기가 조절되는 화염가수분해 증착법은 형성될 입자성분을 함유하는 화학반응기체, 산소 및 수소를 토치의 각 노즐를 통하여 유출시켜 화염내에서 입자를 형성하는 방법에 있어서, 상기 화학반응기체가 유출되는 노즐에 불활성 기체를 함께 유출시켜서 상기 불활성 기체의 유량에 따라 크기가 조절된 입자를 기판위에 형성하는 단계; 및 상기 입자가 형성된 기판을 소결하는 단계를 포함한다.In order to achieve the above technical problem, the flame hydrolysis deposition method of controlling the particle size according to the present invention discharges a chemical reaction gas, oxygen and hydrogen containing the particle component to be formed through each nozzle of the torch to form particles in the flame. A method, comprising: injecting an inert gas to a nozzle through which the chemical reaction gas flows to form particles on a substrate, the particles being sized according to the flow rate of the inert gas; And sintering the substrate on which the particles are formed.

이하에서 첨부된 도면을 참조하여 본 발명의 실시예에 대해 보다 상세히 설명하기로 한다. 도 2는 본 발명에 따른 입자 크기가 조절되는 화염가수분해 증착법에 따른 공정을 도시한 것이다. 먼저, a단계에서는 토치(206)를 통해 실리콘 기판(208)위에 수트(soot)가 증착된다. 즉, 토치(206)는 200 내지 204의 노즐을 포함하는데, 200번 노즐에는 입자 형성용 화학반응 기체, SiCl4, GeCl4, POCl3또는 BCl3가 공급되며, 여기에 불활성 기체, 바람직하기로는 아르곤(Ar)이 공급된다. 202번 노즐에는 수소, 204번 노즐에는 산소가 공급된다. 대표적인 예로 화학반응 기체가 SiCl4일 때 공급된 기체들은 다음 화학식과 같은 산화반응 또는 가수분해반응을 통해 실리카 입자를 형성하게 된다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Figure 2 shows a process according to the flame hydrolysis deposition method of controlling the particle size according to the present invention. First, in step a, a soot is deposited on silicon substrate 208 via torch 206. That is, the torch 206 includes 200 to 204 nozzles, the nozzle 200 of which is supplied with a chemical reaction gas, SiCl 4 , GeCl 4 , POCl 3 or BCl 3 , for inert gas, preferably Argon (Ar) is supplied. Hydrogen is supplied to nozzle 202 and oxygen is supplied to nozzle 204. As a representative example, when the chemical reaction gas is SiCl 4 , the supplied gases form silica particles through an oxidation reaction or a hydrolysis reaction as shown in the following formula.

SiCl4+ O2⇔ SiO2+2Cl2 SiCl 4 + O 2 ⇔ SiO 2 + 2Cl 2

SiCl4+ 2H2O ⇔ SiO2+4HClSiCl 4 + 2H 2 O ⇔ SiO 2 + 4HCl

여기서 200번의 화학반응 기체용 노즐에 상술한 불활성 기체를 함께 공급하여 유량을 조절하므로써, 유량변화에 따른 화염온도의 변화를 통해 화염내에서 실리카 입자의 성장을 조절하여 입자의 크기를 조절한다. 즉, 화염온도는 불활성 기체를 사용하지 않았을 때 가장 높게되고 불활성 기체의 유량을 증가시킴에 따라 낮아지게 된다. 실리카 입자의 점성은 화염온도에 따라 변화하게 되고 입자성장은 점성에 좌우되므로 상술한 바와 같이 화염온도를 조절하여 입자의 크기를 조절한다.Here, by adjusting the flow rate by supplying the above 200 inert gas nozzle to the chemical reaction gas nozzle, the size of the particles is controlled by controlling the growth of silica particles in the flame through the change of the flame temperature according to the flow rate change. That is, the flame temperature is the highest when no inert gas is used and is lowered as the flow rate of the inert gas is increased. Since the viscosity of the silica particles changes depending on the flame temperature and the particle growth depends on the viscosity, the particle size is controlled by adjusting the flame temperature as described above.

또한, 불활성 기체를 공급하므로써 입자가 화염내 잔류하는 시간이 감소하게 되어 입자 성장시간이 감소하게 되므로, 유량에 따라 입자 크기가 조절된다.In addition, by supplying an inert gas, the time the particles remain in the flame is reduced, and the particle growth time is reduced, so that the particle size is adjusted according to the flow rate.

도 2b단계는 도 2a 단계에서 형성된 결과물을 노(furnace, 214)에서 소결하여 유리(212)로 만드는 소결공정이다.FIG. 2B is a sintering process of sintering the resultant product formed in FIG. 2A in a furnace 214 to make glass 212.

도 2c는 소결 후 기판(208)에 실리카층(216)이 형성된 결과물을 보인 것이다.2C shows the result of the silica layer 216 formed on the substrate 208 after sintering.

본 발명에 의하면, FHD 공정에서 화학반응 기체와 함께 불활성 기체를 사용하여 형성되는 입자크기를 조절하므로써 소결공정을 용이하게 하고, 입자의 크기를 작게하여 투명한 입자층을 갖는 광소자를 제작하므로써 광손실을 작게할 수 있다.According to the present invention, the sintering process is facilitated by controlling the particle size formed by using an inert gas together with the chemical reaction gas in the FHD process, and the optical loss is reduced by manufacturing the optical device having the transparent particle layer by reducing the particle size. can do.

Claims (2)

형성될 입자성분을 함유하는 화학반응기체, 산소 및 수소를 토치의 각 노즐을 통하여 유출시키는 단계;Distilling the chemical reaction gas, oxygen, and hydrogen containing the particulate component to be formed through each nozzle of the torch; 상기 화학반응기체가 유출되는 노즐에 불활성 기체를 함께 유출시키되, 상기 불활성 기체의 유량을 조절하고, 그에 따라 상기 토치의 화염온도를 조절하여 상기 토치내에서 상기 화학반응기체가 상기 산소 또는 상기 수소와 반응하여 생성되는 입자크기를 조절하는 단계;Inert gas flows out together with the nozzle through which the chemical reaction gas flows out, and the flow rate of the inert gas is adjusted, and accordingly, the flame temperature of the torch is adjusted so that the chemical reaction gas is mixed with the oxygen or the hydrogen in the torch. Adjusting the particle size generated by the reaction; 생성된 입자를 기판위에 증착하는 단계; 및Depositing the resulting particles on a substrate; And 입자가 증착된 기판을 소결하는 단계를 포함함을 특징으로하는 입자 크기가 조절되는 화염가수분해 증착법.A particle size controlled flame hydrolysis deposition method comprising the step of sintering a substrate on which particles are deposited. 제1항에 있어서, 상기 불활성 기체는The method of claim 1, wherein the inert gas 아르곤임을 특징으로하는 입자 크기가 조절되는 화염가수분해 증착법.Flame hydrolysis deposition method characterized in that the particle size is characterized by argon.
KR1019970057752A 1997-11-03 1997-11-03 Method for controlling particle size in FHD process KR100294539B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970057752A KR100294539B1 (en) 1997-11-03 1997-11-03 Method for controlling particle size in FHD process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970057752A KR100294539B1 (en) 1997-11-03 1997-11-03 Method for controlling particle size in FHD process

Publications (2)

Publication Number Publication Date
KR19990038117A KR19990038117A (en) 1999-06-05
KR100294539B1 true KR100294539B1 (en) 2001-07-12

Family

ID=37527554

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970057752A KR100294539B1 (en) 1997-11-03 1997-11-03 Method for controlling particle size in FHD process

Country Status (1)

Country Link
KR (1) KR100294539B1 (en)

Also Published As

Publication number Publication date
KR19990038117A (en) 1999-06-05

Similar Documents

Publication Publication Date Title
JP4639274B2 (en) Method and apparatus for producing glass ingots from synthetic silica
JP2003226544A (en) Method of manufacturing optical fiber porous preform
EP0231022B1 (en) Apparatus for the production of porous preform of optical fiber
EP0561371B1 (en) Method and apparatus for producing glass thin film
CA1264614A (en) Method for producing glass preform for optical fiber
JP2003226543A (en) Method of manufacturing optical fiber preform and burner apparatus for manufacturing optical fiber using the same
KR100294539B1 (en) Method for controlling particle size in FHD process
JP2003313033A (en) Optical glass and method for manufacturing the same
EP1112973A3 (en) Process for producing a quartz glass product and the product so produced
JPH0776097B2 (en) Glass film manufacturing equipment
KR100346220B1 (en) Co-flow diffusion flame burner device for fabricating of optical waveguide
JP4236990B2 (en) Method for producing porous preform for optical fiber
US5207813A (en) Method for producing glass article
JP3169561B2 (en) Method for producing glass particle deposit
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JP3169409B2 (en) Manufacturing method of preform for optical fiber
JP2003313043A (en) Method for manufacturing porous preform for optical fiber and burner device for manufacture of optical fiber porous preform
JP3143445B2 (en) Manufacturing method of synthetic quartz
JPH0218291B2 (en)
US6988378B1 (en) Light weight porous structure
JP2881930B2 (en) Manufacturing method of quartz glass for optical transmission
JP3186572B2 (en) Method for producing glass preform for optical fiber
JP3788073B2 (en) Manufacturing method of optical fiber preform
JP3818567B2 (en) Method for producing synthetic quartz glass ingot
JPS6117776B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120329

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20130328

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150421

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee