JP3788073B2 - Manufacturing method of optical fiber preform - Google Patents

Manufacturing method of optical fiber preform Download PDF

Info

Publication number
JP3788073B2
JP3788073B2 JP31471298A JP31471298A JP3788073B2 JP 3788073 B2 JP3788073 B2 JP 3788073B2 JP 31471298 A JP31471298 A JP 31471298A JP 31471298 A JP31471298 A JP 31471298A JP 3788073 B2 JP3788073 B2 JP 3788073B2
Authority
JP
Japan
Prior art keywords
glass
fluorine
burner
gas
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31471298A
Other languages
Japanese (ja)
Other versions
JP2000143274A (en
Inventor
佳生 横山
正志 大西
元宣 中村
正晃 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP31471298A priority Critical patent/JP3788073B2/en
Publication of JP2000143274A publication Critical patent/JP2000143274A/en
Application granted granted Critical
Publication of JP3788073B2 publication Critical patent/JP3788073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光フアイバの製造方法に関し、特に高濃度にフッ素を添加され複雑な屈折率分布を有する光フアイバを製造する方法に関するものである。本発明は特に長距離大容量通信システムに用いられる高性能の光ファイバ用母材の製造に適用して有利である。
【0002】
【従来の技術】
光フアイバの屈折率を調節するためにフッ素(F)を添加することは広く知られ実用されている。従来、OVD法又はVAD法等の気相合成法により高濃度のフッ素添加ガラス母材を得るには、ガラス微粒子合成用バーナーからガラス原料ガス、燃焼ガス、助燃性ガス、キャリヤーガス等を噴出して、バーナー火炎中でガラス原料の酸化または火炎加水分解反応により生成するガラス微粒子を堆積してガラス多孔質体を得た後、該ガラス多孔質体を焼結炉においてフッ素を含むガス雰囲気中にさらしてフッ素を含浸させ、その後焼結してフッ素添加ガラスとする方法が一般的であった(例えば特開昭55−67533号公報)。この方法は高濃度にフッ素添加されたガラス材を得ることができるが、フッ素を含むガスによる設備の消耗からの設備コスト高、処理時間の拡大など、生産性に関しては問題を抱えていた。
【0003】
これに対し、ガラス多孔質体を合成する際に、ガラス微粒子合成用バーナーにガラス原料ガス,燃焼用ガス等と共にSiF4のようなフッ素を含む原料ガスを流し、フッ素を含むガラス多孔質体を形成する方法が、特開平4−132631号公報等に提案されている。これらの方法によれば、焼結炉では既にフッ素を含有するガラス多孔質体を透明ガラス化するのみでよく、処理時間は短縮され設備消耗の度合いも低減できる。
【0004】
【発明が解決しようとする課題】
しかし、ガラス微粒子合成用のバーナーにガラス原料とともにフッ素含有原料を導入してフッ素含有ガラス多孔質体を得る従来法では、せいぜい0.2重量%程度のフッ素濃度を得るにとどまっている。このフッ素濃度は、ガラスの屈折率に換算すると、純石英(SiO2 )との比屈折率差で△n=−0.1%程度であって、長距離大容量通信システム用の高性能光ファイバを得るためには不十分であり、大きな比屈折率差を実現できるようにより高濃度のフッ素添加が要求されている。
本発明はガラス多孔質体形成時にフッ素を高濃度に添加できる方法を課題とし、これにより生産コストを低減して高性能な光フアイバを製造できる方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的は、
(1)ガラス微粒子合成用バーナーを用いてガラス多孔質体を合成し中間母材を得る光ファイバ用母材の製造方法において、ガラス微粒子合成用バーナーの火炎中にガラス原料ガスとともにフッ素原子含有化合物ガスを導入して生成するガラス微粒子を堆積してガラス多孔質体とすると共に、前記ガラス微粒子合成用バーナーに隣接した補助バーナーの火炎中に少なくともフッ素原子含有化合物ガスを含有するガスを噴出することにより堆積直後のガラス多孔質体にフッ素を添加し、前記ガラス微粒子合成用バーナーの火炎中のフッ素分圧を前記補助バーナーの火炎中のフッ素分圧より低くすることを特徴とする光ファイバ用母材の製造方法
によって達成することができる。
【0006】
【発明の実施の形態】
まず、本発明に到達できた考察から説明する。従来法に従い、ガラス微粒子の原料となるSiCl4 等の原料ガスと共にフッ素を含む原料ガスを同一バーナーに流すことにより、同じ火炎中でガラス微粒子中にフッ素を含ませることは可能であるが、火炎中でのフッ素の化学ポテンシャル(フッ素分圧)を上げるにはこの方法では限界があり、結果としてガラス微粒子中のフッ素濃度を△n=−0.1〜0.2%にするところがせいぜいであった。このようにフッ素の化学ポテンシャルが下がるのは、火炎中のフッ素濃度がSiCl4 等の共存するガスによって希釈されるためと考えられる。
【0007】
また、同一火炎中でフッ素を含ませる場合をフッ素源としてCF4 を例に説明すると、
【化1】
CF4 (g) +O2 (g) =CO2(g)+2F2 (g) ・・・ (a)
2 (g) =2F ( in SiO2 ) ・・・ (b)
なる反応が進むことによってフッ素がガラス微粒子に添加されると考えられるが、フロン(CF4 )は化学的に安定な物質であるため、(a) の反応は速やかには進まない。これを解決するには、反応時間を長く稼ぐか、(a) の式からわかるようにO2 分圧を上げてやればよい。
しかし、反応時間については、VAD法によるガラス微粒子合成では原料が混合されてからガラス微粒子の堆積面に到達するまでの時間が短いので反応時間を長くとることは困難である。
2 分圧を考えると、そもそも火炎中でガラス微粒子を合成するために、
【化2】
SiCl4 (g) +O2 (g) +2H2 (g) =SiO2 (s) +4HCl(g) ・(c)
上記(c) 式のようにO2 が消費されてしまうので (a)の反応に対してはマイナスである。その分、O2 を増せばよいという考えかたもあるが、VAD法は通常常圧(1atm)の雰囲気で稼働させており、O2 を増加すると他のガスは希釈されて低分圧となってしまう。
【0008】
そこで本発明においては、ガラス微粒子合成用バーナーの近傍に、フッ素添加用の補助バーナーを設けて、合成されたばかりのガラス微粒子に更にフッ素を含有させるものである。ただし、CF4 ,SF6 などのフッ素源ガス100%を流すのではなく、H2 ,O2 を含む火炎中にフッ素源ガスを加えて流す。このようにしてフッ素の生成に必要なO2 がガラス原料等により消費されることがなく、火炎中でのフッ素分圧の高い条件で流すことにより合成された直後のガラス微粒子に△n>0.5%という高濃度でフッ素を添加できる。
【0009】
本発明においては、フッ素を添加されるガラス微粒子の組成については特に限定されるところはなく、純石英(SiO2 )であっても、ドーパントを含むものであってもよい。
このとき、ガラス合成原料と同一のバーナー中にフッ素原子含有化合物ガス(フッ素源ガス)を流すことにより生成された、予めフッ素が添加されているガラス微粒子に、その堆積直後に補助バーナーによりフッ素を添加するとフッ素添加量向上により有効である。この方法によれば、従来のガラス微粒子合成用バーナーにフッ素源を加えることにより△nで最大0.2%程度、補助バーナーにより更に△n0.5%以上という高添加量が実現できる。
【0010】
例えば、図1に示される屈折率プロファイルを有するガラス多孔質体を図2に示されるような5本のバーナを用いて合成することにより中間母材を得る。この場合、第1ガラス微粒子合成用バーナー(第1合成用バーナーと略記)と第2ガラス微粒子合成用バーナー(第2合成用バーナーと略記)の間、第3ガラス微粒子合成用バーナー(第3合成用バーナーと略記)の上方に第1補助バーナー及び第2補助バーナーを設ける。第1〜第3合成用バーナーの火炎中にはガラス合成用原料と共にフッ素原子含有化合物ガスを流してフッ素含有ガラス微粒子を合成するが、同時に第1及び第2補助バーナーの火炎中にはフッ素原料ガスを流す。第1合成用バーナーで合成されたガラス微粒子が堆積することにより形成されるガラス多孔質体部分aは、ガラス微粒子が堆積した直後に第1補助バーナーによりフッ素添加される。また、第3合成用バーナーで合成されたガラス微粒子が堆積することにより形成されるガラス多孔質体部分cについても、堆積直後に第2補助バーナーでフッ素添加される。第2合成用バーナーで合成されたガラス多孔質体b部分については補助バーナーによるフッ素添加は行わない。以上により図1に示すように、a部分では比屈折率差で−0.55%と非常に高濃度にフッ素が添加され、しかもフッ素の拡散によるすそ引き等のないシャープな階段状のプロファイルを実現できる。なお、図1および後記する図3、図4、図6において縦軸はSiO2を基準とした比屈折率差(△n)、横軸は半径方向長さ(無単位)を示す。
【0011】
本発明において前記補助バーナーの火炎中のフッ素分圧は前記ガラス微粒子合成用バーナーの火炎中のフッ素分圧より高くすることが好ましい。すなわち、ガラス微粒子合成用バーナーにもフッ素原子含有化合物ガスを導入する場合には、補助バーナーにおけるフッ素分圧より合成用バーナー火炎中のフッ素分圧が低くなるように導入する。このようにする理由は、前記ガラス微粒子合成用バーナーによって合成されたガラス多孔質態中に含まれるフッ素濃度は前記ガラス微粒子合成用バーナーの火炎中のフッ素分圧によって決まるため、該ガラス多孔質体中のフッ素濃度をさらに引き上げるためには、より高いフッ素分圧の雰囲気に曝すことが必要であるためである。
【0012】
本発明は例えばOVD法、VAD法等の気相反応によりガラス微粒子を合成し、これを堆積させてガラス多孔質体とする製造方法であれば、いずれの方法にも適用できる。図示の例では複数バーナーを用いているが、ガラスロッドまたはガラス管に1本の合成用バーナーを用いてガラス多孔質体を形成する場合にも勿論適用できる。
【0013】
本発明のガラス原料としてはこの種分野で公知の例えばSiCl4 ,SiHCl3 ,SiH2 Cl2 ,Si(CH3 4 などを用いることができ、好ましくはSiCl4 が挙げられる。また屈折率調整用の例えばGeCl4 等の各種ドーパントを加えることができる。
【0014】
本発明のフッ素原子含有化合物ガスとしては、例えばSF6 ,CF4 ,SiF4 ,CCl2 2 などを用いることができ、好ましくはSF6 が挙げられる。
【0015】
本発明の燃料ガスとしては例えばH2 ,CH4 ,CO等を用いることができ、好ましくはH2 が挙げられる。また、助燃性ガスとしてはO2 が挙げられる。
キャリアガスとしては例えばAr,He ,O2 ,H2 等が挙げられ、バーナーの構造にもよるが例えばAr,O2 等が一般的である。さらに、シールガスとしては不活性ガス、例えばAr,He ,N2 等を用いることができる。
ガラス微粒子合成条件等は特に限定されるところはないが、前記のようにフッ素含有ガラス微粒子合成用バーナー中のフッ素分圧よりも補助バーナー中のフッ素分圧を高くするほうが好ましい。
【0016】
【実施例】
以下本発明を実施例により更に詳細に説明するが限定を意図するものではない。
(実施例1)
VAD法により第1〜第3ガラス微粒子合成用バーナー(第1〜3合成用バーナーと略記)及びフッ素添加用に第1及び第2補助バーナー、の計5本のバーナを用いて、図1に示す様な屈折率分布を形成するためのガラス多孔質体の合成を行った。図2は、VADによるガラス多孔質体の合成の模式図を示す。第1合成用バーナーにはSiCl4 ,CF4 ,H2 ,O2 及びAr、第1補助バーナーにはCF4 ,H2 ,O2 及びAr、第2合成用バーナーにはSiCl4 ,GeCl4 ,CF4 ,H2 ,O2 及びAr、第3合成用バーナーにはSiCl4 ,CF4 ,H2 ,O2 及びAr、第2補助バーナーにはCF4 ,H2 ,O2 及びArをそれぞれ供給した。各ガス流量は下記の表の通りとした(単位はSLM)。
【0017】
【表1】

Figure 0003788073
【0018】
すなわち、第1〜第3合成用バーナーには従来と同様な手法によりSiCl4とCF4を同時に供給し、△n=−0.1%程度のフッ素を含有するガラス多孔質体を合成した。第合成用バーナーには△nを上昇させるために同時にGeCl4も供給した。第1及び第2補助バーナーにはSiCl4等のガラス微粒子の原料となるガスは供給せず、CF4及びH2,O2及びArのみ供給し、第1及び第3合成用バーナーで合成した微量フッ素添加ガラス微粒子への高濃度フッ素添加を行った。第1及び第2補助バーナーでは、第1及び第3合成用バーナーよりも火炎中のCF4濃度が高く保持され、かつSiCl4等との反応によるO2の消費が少ないため、火炎中での化学ポテンシャルを高く保つことができた。結果として、図1に示すように、補助バーナーを用いた第1及び第3合成用バーナー部分で合成したa及びcの部分において、△nの極めて大きい屈折率分布を形成することができた。
【0019】
(実施例2)
実施例1では、第1及び第2補助バーナーにSiCl4 等のO2 と反応する原料ガスを全く流さなかった結果、極めて高いフッ素濃度を有するガラス多孔質体を得ることができたが、これらのガスは必要に応じて、先にガラス微粒子を合成するバーナーよりも高いフッ素分圧が得られる合成条件が実現されれば、同時に少量供給されていても同様な効果を有ることができる。
実施例1と同様の装置構成において、表2に示すガス流量条件でガラス多孔質体を形成した結果、図3に示す屈折率分布の母材が得られた。
【0020】
【表2】
Figure 0003788073
【0021】
(実施例3)
本実施例では、多孔質体の一部につきフッ素を含まないガラス微粒子を合成した後、補助バーナーでフッ素添加を行なう方法で作成した。
図1の装置構成と同様に、VAD法により3本のガラス微粒子合成用バーナー、2本の補助バーナーの構成によりガラス多孔質体を合成した。計5本のバーナーのうち、第1合成用バーナーだけにはフッ素を含むガスを流さずに合成を行った。各ガス流量は下記の表3のとおりとした(単位はSLM)。
【0022】
【表3】
Figure 0003788073
【0023】
上記で得られたガラス多孔質体を透明化した後に測定した屈折率分布を、図1と同様に図4に示す。第1ガラス微粒子合成用バーナーにCF4 を流した場合に比べて該バーナーで合成した部分のフッ素濃度は若干低下したが、充分量のフッ素添加ができている。
【0024】
(実施例4)
本実施例では図5に示すように、4本のガラス微粒子合成用バーナー、2本の補助バーナーを用いて、最外層が純シリカ層であるガラス多孔質体を合成した。各バーナーから流すガス流量の条件は、下記の表4の通りとした(単位はSLM)。
【0025】
【表4】
Figure 0003788073
【0026】
上記で得られたガラス多孔質体を透明化した後に測定した屈折率分布を図6に示す。第4ガラス微粒子合成用バーナーによりフッ素分圧0の火炎で加熱されたことにより、第3ガラス合成用バーナーで合成した部分の外周部のフッ素濃度が低下し、屈折率が若干上昇したが、第3、4合成用バーナーでそれぞれ合成した部分の間に階段状の屈折率分布を形成することができた。
【0027】
本発明によると、ガラス微粒子体の合成直後に、火炎中でのフッ素濃度が前記のガラス微粒子体を合成するバーナー火炎中でのフッ素濃度より高い補助バーナーからフッ素を添加することにより、ガラス微粒子堆積体中へのフッ素添加濃度を非常に高くすることができる。これにより、高濃度にフッ素添加された光ファイバ用母材を、設備コスト及び製造時間を低減して製造することが可能となる。従って、特に長距離大容量通信システムに用いられる高性能の光ファイバを経済的に提供することができるので、本発明の産業上の利用価値は非常に高い。
【図面の簡単な説明】
【図1】図1は本発明の実施例1で作製したガラス多孔質母材の透明化後の屈折率分布を示すグラフである。
【図2】図2は本発明によるガラス多孔質体の合成の状況を説明するための概念図である。
【図3】図3は本発明の実施例2で作製したガラス多孔質母材の透明化後の屈折率分布を示すグラフである。
【図4】図4は本発明の実施例3で作製したガラス多孔質母材の透明化後の屈折率分布を示すグラフである。
【図5】図5は本発明の実施例4におけるガラス多孔質体の合成の状況を説明するための概念図である。
【図6】図6は本発明の実施例4で作製したガラス多孔質母材の透明化後の屈折率分布を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber manufacturing method, and more particularly to a method of manufacturing an optical fiber having a complex refractive index distribution in which fluorine is added at a high concentration. The present invention is particularly advantageous when applied to the production of a high-performance optical fiber preform used in a long-distance large-capacity communication system.
[0002]
[Prior art]
The addition of fluorine (F) to adjust the refractive index of the optical fiber is widely known and put into practical use . Conventionally, in order to obtain a high-concentration fluorine-added glass base material by a gas phase synthesis method such as OVD method or VAD method, glass raw material gas, combustion gas, auxiliary gas, carrier gas, etc. are ejected from a glass fine particle synthesis burner. The glass porous body is obtained by depositing glass fine particles generated by oxidation or flame hydrolysis reaction of the glass raw material in a burner flame, and then the glass porous body is placed in a gas atmosphere containing fluorine in a sintering furnace. Further, it has been common to impregnate fluorine and then sinter into a fluorine-added glass (for example, JP-A-55-67533). This method can obtain a fluorine-the added glass material at a high concentration, the equipment cost from exhaustion equipment using a gas containing fluorine, such as enlargement processing time, had a problem with respect to productivity.
[0003]
On the other hand, when synthesizing a glass porous body, a glass raw material gas containing fluorine, such as SiF 4 , is flowed together with a glass raw material gas, a combustion gas, etc. to a glass fine particle synthesis burner, and a glass porous body containing fluorine is obtained. A method of forming is proposed in Japanese Laid-Open Patent Publication No. 4-132631 and the like. According to these methods, it is only necessary to make the glass porous body already containing fluorine transparent glass in the sintering furnace, the processing time is shortened, and the degree of equipment consumption can be reduced.
[0004]
[Problems to be solved by the invention]
However, in the conventional method for obtaining a fluorine-containing glass porous body by introducing a fluorine-containing raw material together with a glass raw material into a burner for glass fine particle synthesis, a fluorine concentration of about 0.2% by weight is obtained at most. When converted to the refractive index of glass, this fluorine concentration is about Δn = −0.1% in terms of the relative refractive index difference from pure quartz (SiO 2 ). It is insufficient to obtain a fiber, and a higher concentration of fluorine is required to realize a large relative refractive index difference.
An object of the present invention is to provide a method by which fluorine can be added at a high concentration during the formation of a glass porous body, thereby reducing the production cost and producing a high-performance optical fiber.
[0005]
[Means for Solving the Problems]
The above purpose is
(1) In a method for manufacturing an optical fiber base material by synthesizing a porous glass body using a glass fine particle synthesis burner to obtain an intermediate base material , a fluorine atom-containing compound together with a glass raw material gas in the flame of the glass fine particle synthesis burner The glass fine particles produced by introducing the gas are deposited to form a glass porous body, and a gas containing at least a fluorine atom-containing compound gas is ejected into the flame of the auxiliary burner adjacent to the glass fine particle synthesis burner. The optical fiber mother , wherein fluorine is added to the glass porous body immediately after deposition by the method, and the partial pressure of fluorine in the flame of the glass fine particle synthesis burner is lower than the partial pressure of fluorine in the flame of the auxiliary burner. Manufacturing method of materials ,
Can be achieved.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
First, the discussion that has reached the present invention will be described. According to the conventional method, it is possible to include fluorine in glass fine particles in the same flame by flowing a raw material gas containing fluorine together with a raw material gas such as SiCl 4 as a raw material of glass fine particles in the same flame. In this method, there is a limit to increasing the chemical potential (fluorine partial pressure) of fluorine in the glass, and as a result, the fluorine concentration in the glass fine particles is set to Δn = −0.1 to 0.2% at most. It was. The reason why the chemical potential of fluorine decreases in this way is considered to be that the fluorine concentration in the flame is diluted by a coexisting gas such as SiCl 4 .
[0007]
Further, when CF 4 is described as an example of the case where fluorine is included in the same flame,
[Chemical 1]
CF 4 (g) + O 2 (g) = CO 2 (g) + 2F 2 (g) (a)
F 2 (g) = 2F (in SiO 2 ) (b)
It is considered that fluorine is added to the glass fine particles as the reaction proceeds. However, since Freon (CF 4 ) is a chemically stable substance, the reaction (a) does not proceed rapidly. In order to solve this, the reaction time may be increased or the O 2 partial pressure may be increased as can be seen from the equation (a).
However, regarding the reaction time, in the synthesis of glass fine particles by the VAD method, it is difficult to increase the reaction time because the time from the mixing of raw materials to the arrival of the glass fine particle deposition surface is short.
Considering O 2 partial pressure, in order to synthesize glass particles in the flame,
[Chemical 2]
SiCl 4 (g) + O 2 (g) + 2H 2 (g) = SiO 2 (s) + 4HCl (g) (c)
Since O 2 is consumed as in the above formula (c), the reaction (a) is negative. There is a way of thinking that it is sufficient to increase O 2 accordingly , but the VAD method is usually operated in an atmosphere of normal pressure (1 atm), and when O 2 is increased, other gases are diluted and the partial pressure is reduced. turn into.
[0008]
Therefore, in the present invention, an auxiliary burner for fluorine addition is provided in the vicinity of the burner for synthesizing the glass fine particles, and the glass fine particles just synthesized further contain fluorine. However, 100% fluorine source gas such as CF 4 and SF 6 is not flowed, but the fluorine source gas is added to the flame containing H 2 and O 2 to flow. In this way, O 2 necessary for the generation of fluorine is not consumed by the glass raw material or the like, and Δn> 0 is added to the glass fine particles immediately after being synthesized by flowing under the condition of high fluorine partial pressure in the flame. Fluorine can be added at a high concentration of 5%.
[0009]
In the present invention, the composition of the glass fine particles to which fluorine is added is not particularly limited, and it may be pure quartz (SiO 2 ) or a dopant.
At this time, fluorine is added to the glass fine particles to which fluorine has been added in advance by flowing a fluorine atom-containing compound gas (fluorine source gas) in the same burner as the glass synthesis raw material by an auxiliary burner immediately after the deposition. When added, it is effective in improving the amount of fluorine added. According to this method, by adding a fluorine source to a conventional burner for synthesizing glass fine particles, a high addition amount of Δn of about 0.2% at maximum and Δn of 0.5% or more can be realized by an auxiliary burner.
[0010]
For example, to obtain an intermediate preform by combining with five burners as shown glass porous body having a refractive index profile shown in FIG. 1 in FIG. In this case, between the first glass fine particle synthesis burner (abbreviated as first synthesis burner) and the second glass fine particle synthesis burner (abbreviated as second synthesis burner) , a third glass fine particle synthesis burner (third A first auxiliary burner and a second auxiliary burner are provided above the abbreviated composition burner). In the flames of the first to third synthesis burners, a fluorine atom-containing compound gas is flowed together with the glass synthesis raw material to synthesize fluorine-containing glass fine particles. At the same time, the fluorine raw materials are contained in the flames of the first and second auxiliary burners. Flow gas. The glass porous body portion a formed by depositing the glass fine particles synthesized by the first synthesis burner is fluorine-added by the first auxiliary burner immediately after the glass fine particles are deposited. Further, the glass porous body portion c formed by depositing the glass fine particles synthesized by the third synthesis burner is also fluorine-added by the second auxiliary burner immediately after the deposition. Fluorine addition by an auxiliary burner is not performed on the porous glass body b synthesized by the second synthesis burner. As described above, as shown in FIG. 1, a sharp step-like profile in which the fluorine is added at a very high concentration of -0.55% in the portion a and there is no skirting or the like due to the diffusion of fluorine. realizable. In FIG. 1 and FIGS. 3, 4, and 6 to be described later, the vertical axis represents the relative refractive index difference (Δn) with respect to SiO 2 , and the horizontal axis represents the radial length (unitless).
[0011]
In the present invention, the fluorine partial pressure in the flame of the auxiliary burner is preferably higher than the fluorine partial pressure in the flame of the glass fine particle synthesis burner. That is, when the fluorine atom-containing compound gas is also introduced into the glass fine particle synthesis burner, the fluorine partial pressure in the synthesis burner flame is lower than the fluorine partial pressure in the auxiliary burner. The reason for this is that the fluorine concentration contained in the glass porous state synthesized by the glass fine particle synthesis burner is determined by the partial pressure of fluorine in the flame of the glass fine particle synthesis burner. This is because it is necessary to expose to an atmosphere with a higher partial pressure of fluorine in order to further increase the fluorine concentration inside.
[0012]
The present invention can be applied to any method as long as it is a production method in which glass fine particles are synthesized by vapor phase reaction such as OVD method and VAD method and deposited to form a glass porous body. In the illustrated example, a plurality of burners are used, but the present invention can of course be applied to the case where a porous glass body is formed by using one synthesis burner for a glass rod or glass tube.
[0013]
As the glass raw material of the present invention, for example, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Si (CH 3 ) 4 and the like known in this kind of field can be used, and SiCl 4 is preferable. Further, various dopants such as GeCl 4 for adjusting the refractive index can be added.
[0014]
As the fluorine atom-containing compound gas of the present invention, for example, SF 6 , CF 4 , SiF 4 , CCl 2 F 2 and the like can be used, and SF 6 is preferable.
[0015]
As the fuel gas of the present invention, for example, H 2 , CH 4 , CO and the like can be used, and preferably H 2 is used. Also, O 2 can be cited as supporting gas.
Examples of the carrier gas include Ar, He, O 2 , H 2 and the like, and Ar, O 2, and the like are common although depending on the structure of the burner. Further, an inert gas such as Ar, He, N 2 or the like can be used as the seal gas.
The conditions for synthesizing the glass fine particles are not particularly limited, but it is preferable that the partial pressure of fluorine in the auxiliary burner is higher than the partial pressure of fluorine in the fluorine-containing glass fine particle synthesis burner as described above.
[0016]
【Example】
The invention will now be described in more detail by way of examples, which are not intended to be limiting.
Example 1
Using a total of five burners, the first and third glass fine particle synthesis burners (abbreviated as first to third synthesis burners) and the first and second auxiliary burners for fluorine addition by the VAD method, FIG. A porous glass body was synthesized to form a refractive index distribution as shown. FIG. 2 shows a schematic diagram of the synthesis of a porous glass body by VAD. The first synthesis burner is SiCl 4 , CF 4 , H 2 , O 2 and Ar, the first auxiliary burner is CF 4 , H 2 , O 2 and Ar, and the second synthesis burner is SiCl 4 , GeCl 4. , CF 4 , H 2 , O 2 and Ar, the third synthesis burner is SiCl 4 , CF 4 , H 2 , O 2 and Ar, and the second auxiliary burner is CF 4 , H 2 , O 2 and Ar. Each was supplied. Each gas flow rate was as shown in the following table (unit: SLM).
[0017]
[Table 1]
Figure 0003788073
[0018]
That is, SiCl 4 and CF 4 were simultaneously supplied to the first to third synthesis burners by the same method as before, and a glass porous body containing about Δn = −0.1% fluorine was synthesized. To the second synthesis burner, GeCl 4 was simultaneously supplied to increase Δn. The first and second auxiliary burners were not supplied with the raw material for glass fine particles such as SiCl 4 , but only CF 4, H 2 , O 2 and Ar were supplied and synthesized with the first and third synthesis burners. High-concentration fluorine was added to a small amount of fluorine-added glass fine particles. In the first and second auxiliary burners, the CF 4 concentration in the flame is kept higher than in the first and third synthesis burners, and the consumption of O 2 due to the reaction with SiCl 4 or the like is less. The chemical potential could be kept high. As a result, as shown in FIG. 1, an extremely large refractive index distribution of Δn could be formed in the portions a and c synthesized by the first and third synthesis burner portions using the auxiliary burner.
[0019]
(Example 2)
In Example 1, the raw material gas that reacts with O 2 such as SiCl 4 was not allowed to flow through the first and second auxiliary burners. As a result, a glass porous body having an extremely high fluorine concentration could be obtained. If necessary, the same effect can be obtained even if a small amount of gas is supplied at the same time as long as a synthesis condition that can obtain a higher fluorine partial pressure than the burner that synthesizes the glass fine particles is realized.
As a result of forming a porous glass body under the gas flow rate conditions shown in Table 2 in the same apparatus configuration as in Example 1, a base material having a refractive index distribution shown in FIG. 3 was obtained.
[0020]
[Table 2]
Figure 0003788073
[0021]
Example 3
In this example, the glass fine particles not containing fluorine were synthesized for a part of the porous body, and then the fluorine was added by an auxiliary burner.
Similar to the apparatus configuration of FIG. 1, a glass porous body was synthesized by the configuration of three glass fine particle synthesis burners and two auxiliary burners by the VAD method. Of the total of five burners, only the first synthesis burner was synthesized without flowing a gas containing fluorine. Each gas flow rate was as shown in Table 3 below (unit: SLM).
[0022]
[Table 3]
Figure 0003788073
[0023]
FIG. 4 shows the refractive index distribution measured after the glass porous body obtained above was made transparent, as in FIG. Compared with the case where CF 4 was passed through the first glass fine particle synthesis burner, the fluorine concentration in the portion synthesized with the burner was slightly reduced, but a sufficient amount of fluorine was added.
[0024]
(Example 4)
In this example, as shown in FIG. 5, a glass porous body whose outermost layer was a pure silica layer was synthesized using four burners for synthesizing glass particles and two auxiliary burners. The conditions of the gas flow rate flowing from each burner were as shown in Table 4 below (unit: SLM).
[0025]
[Table 4]
Figure 0003788073
[0026]
FIG. 6 shows the refractive index distribution measured after the glass porous body obtained above was made transparent. By heating with a flame having a fluorine partial pressure of 0 by the fourth glass fine particle synthesis burner, the fluorine concentration in the outer peripheral portion of the portion synthesized with the third glass synthesis burner decreased and the refractive index slightly increased. A stepwise refractive index distribution could be formed between the portions synthesized by the 3 and 4 synthesis burners.
[0027]
According to the present invention, immediately after the synthesis of the glass fine particles, glass fine particles are deposited by adding fluorine from an auxiliary burner in which the fluorine concentration in the flame is higher than the fluorine concentration in the burner flame for synthesizing the glass fine particles. The concentration of fluorine added to the body can be very high. Thereby, it becomes possible to manufacture the optical fiber preform doped with high concentration of fluorine with reduced equipment cost and manufacturing time. Therefore, since a high-performance optical fiber used for a long-distance large-capacity communication system can be provided economically, the industrial utility value of the present invention is very high.
[Brief description of the drawings]
FIG. 1 is a graph showing a refractive index distribution after transparency of a glass porous base material produced in Example 1 of the present invention.
FIG. 2 is a conceptual diagram for explaining the state of synthesis of a porous glass body according to the present invention.
FIG. 3 is a graph showing the refractive index distribution after the glass porous preform produced in Example 2 of the present invention has been made transparent.
FIG. 4 is a graph showing the refractive index distribution after the glass porous base material produced in Example 3 of the present invention has been made transparent.
FIG. 5 is a conceptual diagram for explaining a state of synthesis of a porous glass body in Example 4 of the present invention.
FIG. 6 is a graph showing the refractive index distribution after transparentization of a glass porous base material produced in Example 4 of the present invention.

Claims (1)

ガラス微粒子合成用バーナーを用いてガラス多孔質体を合成し中間母材を得る光ファイバ用母材の製造方法において、ガラス微粒子合成用バーナーの火炎中にガラス原料ガスとともにフッ素原子含有化合物ガスを導入して生成するガラス微粒子を堆積してガラス多孔質体とすると共に、前記ガラス微粒子合成用バーナーに隣接した補助バーナーの火炎中に少なくともフッ素原子含有化合物ガスを含有するガスを噴出することにより堆積直後のガラス多孔質体にフッ素を添加し、前記ガラス微粒子合成用バーナーの火炎中のフッ素分圧を前記補助バーナーの火炎中のフッ素分圧より低くすることを特徴とする光ファイバ用母材の製造方法。In a method for manufacturing an optical fiber preform that synthesizes a porous glass body using a glass particulate synthesis burner to obtain an intermediate preform, a fluorine atom-containing compound gas is introduced into the flame of the glass particulate synthesis burner together with the glass raw material gas. Immediately after deposition, a glass porous body is deposited by depositing the generated glass fine particles, and a gas containing at least a fluorine atom-containing compound gas is blown into the flame of an auxiliary burner adjacent to the glass fine particle synthesis burner. The optical fiber preform is characterized in that fluorine is added to the glass porous body, and the fluorine partial pressure in the flame of the glass fine particle synthesis burner is made lower than the fluorine partial pressure in the flame of the auxiliary burner. Method.
JP31471298A 1998-11-05 1998-11-05 Manufacturing method of optical fiber preform Expired - Fee Related JP3788073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31471298A JP3788073B2 (en) 1998-11-05 1998-11-05 Manufacturing method of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31471298A JP3788073B2 (en) 1998-11-05 1998-11-05 Manufacturing method of optical fiber preform

Publications (2)

Publication Number Publication Date
JP2000143274A JP2000143274A (en) 2000-05-23
JP3788073B2 true JP3788073B2 (en) 2006-06-21

Family

ID=18056662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31471298A Expired - Fee Related JP3788073B2 (en) 1998-11-05 1998-11-05 Manufacturing method of optical fiber preform

Country Status (1)

Country Link
JP (1) JP3788073B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690956B2 (en) * 2006-07-07 2011-06-01 古河電気工業株式会社 Optical fiber preform manufacturing method

Also Published As

Publication number Publication date
JP2000143274A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
US5154744A (en) Method of making titania-doped fused silica
JP2744695B2 (en) Improved vitreous silica products
JPH04270130A (en) Method for manufacture of non-porous body of highly pure fused silica glass
CN104661972B (en) Hydrogen-supported fluorination of soot bodies
JP2001524064A (en) Germanium-doped silica-forming feedstock and method
US4765815A (en) Method for producing glass preform for optical fiber
JPH0314789B2 (en)
JP3788073B2 (en) Manufacturing method of optical fiber preform
WO2004083139A1 (en) Method for producing glass material
US20020108404A1 (en) Drying agent and improved process for drying soot preforms
US4781740A (en) Method for producing glass preform for optical fiber
KR20050065398A (en) Method of manufacturing fluorine doped silica glass article, and method of manufacturing optical fiber preform and optical fiber using the method, and optical fiber made by such method
JPH0465019B2 (en)
JP2005206452A (en) Method of manufacturing fluorine-added silica glass body, optical fiber preform, method of manufacturing optical fiber and optical fiber
JP2000169175A (en) Production of glass preform
US5207813A (en) Method for producing glass article
JP4292862B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method
JPS6036343A (en) Production of glass material for optical transmission
JPH0463365B2 (en)
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
JPH0551542B2 (en)
JP3864580B2 (en) Manufacturing method of optical fiber preform
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JPS596819B2 (en) Method for manufacturing doped quartz glass rod
JPS6144823B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees