JP3417962B2 - Manufacturing method of synthetic quartz glass member - Google Patents

Manufacturing method of synthetic quartz glass member

Info

Publication number
JP3417962B2
JP3417962B2 JP32861392A JP32861392A JP3417962B2 JP 3417962 B2 JP3417962 B2 JP 3417962B2 JP 32861392 A JP32861392 A JP 32861392A JP 32861392 A JP32861392 A JP 32861392A JP 3417962 B2 JP3417962 B2 JP 3417962B2
Authority
JP
Japan
Prior art keywords
gas
quartz glass
oxygen
glass member
synthetic quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32861392A
Other languages
Japanese (ja)
Other versions
JPH06157049A (en
Inventor
久利 大塚
勝也 沢田
政俊 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP32861392A priority Critical patent/JP3417962B2/en
Publication of JPH06157049A publication Critical patent/JPH06157049A/en
Application granted granted Critical
Publication of JP3417962B2 publication Critical patent/JP3417962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合成石英ガラス部材の製
造方法、特にはOH基含有量が30ppm 以下で、粘度が高
く、高温耐熱性を有する合成石英ガラス部材の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a synthetic quartz glass member, and more particularly to a method for producing a synthetic quartz glass member having an OH group content of 30 ppm or less, high viscosity and high temperature heat resistance.

【0002】[0002]

【従来の技術】合成石英ガラス部材の製造方法としては
四塩化けい素などのけい素化合物を必要に応じドーパン
トとしての四塩化けい素と共に多重管バーナーに供給
し、これを酸水素火炎中で火炎加水分解させて発生した
シリカ微粒子を耐熱性の担体上に堆積して多孔質シリカ
焼結体を作り、これを加熱、溶融して合成石英ガラス部
材とするという方法がよく知られている。しかし、この
方法で得られた合成石英ガラス部材はその目的が光ファ
イバー用であるということから、この方法で得られる石
英ガラス部材はOH基量は100ppm以下であるが、塩素量
が10〜100ppmと高いものとなっている。
2. Description of the Related Art As a method for producing a synthetic quartz glass member, a silicon compound such as silicon tetrachloride is supplied to a multi-tube burner together with silicon tetrachloride as a dopant as required, and this is burned in an oxyhydrogen flame. A well-known method is to deposit fine silica particles generated by hydrolysis on a heat-resistant carrier to prepare a porous silica sintered body, and heat and melt the porous silica sintered body to obtain a synthetic quartz glass member. However, since the purpose of the synthetic quartz glass member obtained by this method is for optical fibers, the quartz glass member obtained by this method has an OH group content of 100 ppm or less, but a chlorine content of 10 to 100 ppm. It is expensive.

【0003】また、この合成石英ガラス部材の製造方法
については四塩化けい素の分解反応を高周波プラズマで
の加熱による方法も知られており、これによればOH基
含有量を10ppm 以下とすることができるが、この場合も
塩素量は減少せず、10〜50ppm と可成り高いものになる
ため、高耐熱性および不純物の点で問題がある。
As a method of manufacturing this synthetic quartz glass member, a method of heating the decomposition reaction of silicon tetrachloride by high-frequency plasma is also known. According to this method, the OH group content should be 10 ppm or less. However, even in this case, the chlorine amount does not decrease, and it becomes considerably high at 10 to 50 ppm, so there is a problem in terms of high heat resistance and impurities.

【0004】[0004]

【発明が解決しようとする課題】そのため、この合成石
英ガラス部材の製造方法についてはこの原料ガスを塩素
を含有しない一般式 R1 nSi(OR2)4-n(ここにR1は水素原
子、メチル基またはエチル基、R2はメチル基またはエチ
ル基、nは0〜4の正数)で示されるエステルシランと
する方法も提案されており(特開昭60-90836号公報参
照)、これによれば実質的に塩素を含まない合成石英ガ
ラス部材を得ることができるけれども、これにはここに
含まれるOH基含有量が40〜50ppm と可成り高いために
高温耐熱性の指標の一つである粘性が不充分になるとい
う欠点がある。
Therefore, the method for producing the synthetic quartz glass member is described by using the raw material gas of the general formula R 1 n Si (OR 2 ) 4-n (where R 1 is a hydrogen atom). , A methyl group or an ethyl group, R 2 is a methyl group or an ethyl group, and n is a positive number of 0 to 4) has been proposed (see JP-A-60-90836). According to this, a synthetic quartz glass member containing substantially no chlorine can be obtained. However, since the OH group content contained therein is 40 to 50 ppm, which is quite high, it is one of the indicators of high temperature heat resistance. However, there is a drawback that the viscosity is insufficient.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不
利、欠点を解決した合成石英ガラス部材の製造方法に関
するもので、これは一般式 R1 nSi(OR2)4-n(R1、R2、n
は前記に同じ)で示されるエステルシランの燃焼から得
られた多孔質シリカ焼結体を加熱溶融して合成石英ガラ
ス部材を製造する方法において、ここに使用する同心円
状の複数本のノズルからなる多重管バーナーの中心ノズ
ルから原料およびキャリアガスを導入し、二重管目から
は酸素ガスおよび不活性ガスの混合ガスを、さらにその
外方管からは水素ガス、酸素ガスの順で導入し、可燃性
の原料ガスが必要とする酸素理論量に対して二重管目か
ら導入する酸素ガス量をその 0.6〜1.2 倍量とすること
を特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a synthetic quartz glass member which solves the above disadvantages and drawbacks, which is represented by the general formula R 1 n Si (OR 2 ) 4-n (R 1 , R 2 , n
Is the same as the above) in a method for producing a synthetic quartz glass member by heating and melting a porous silica sintered body obtained by combustion of ester silane, and comprising a plurality of concentric nozzles used here. The raw material and carrier gas are introduced from the central nozzle of the multi-tube burner, a mixed gas of oxygen gas and an inert gas is introduced from the double tube, and hydrogen gas and oxygen gas are introduced from the outer tube in that order, It is characterized in that the amount of oxygen gas introduced from the double pipe is 0.6 to 1.2 times the theoretical amount of oxygen required by the flammable raw material gas.

【0006】すなわち、本発明者らは目的とする合成石
英ガラス部材のOH基含有量を30ppm 以下とする方法に
ついて、種々検討した結果、これについてはエステルシ
ランの燃焼時に必要とされる酸素量を理論量の 0.6〜1.
2 倍量とすればこのエステルシランの火炎加水分解また
は燃焼によって得られるシリカ微粒子のかさ密度が0.45
〜0.70g/cm3 の範囲に入り、適宜の粒径のものとなるの
で、OH基含有量が30ppm 以下のものとなることを見出
し、これによれば粘性の高い、高温耐熱性の合成石英ガ
ラス部材の得られることを確認して本発明を完成させ
た。以下にこれをさらに詳述する。
That is, the inventors of the present invention have made various examinations on a method for reducing the OH group content of the target synthetic quartz glass member to 30 ppm or less. As a result, the oxygen amount required for the combustion of ester silane is determined. The theoretical amount of 0.6-1.
If the amount is doubled, the bulk density of the silica fine particles obtained by flame hydrolysis or combustion of this ester silane is 0.45.
It was found that the content of OH group is 30ppm or less because it is in the range of ~ 0.70g / cm 3 and has an appropriate particle size. According to this, synthetic quartz with high viscosity and high temperature heat resistance The present invention was completed after confirming that a glass member was obtained. This will be described in more detail below.

【0007】[0007]

【作用】本発明は合成石英ガラス部材の製造方法に関す
るものであり、これはエステルシランの燃焼で得られた
多孔質シリカ焼結体を加熱溶融して合成石英ガラス部材
を製造する方法において、同心円状の複数本のノズルか
らなる多重管バーナーの中心ノズルより原料ガスとキャ
リアガスを導入し、二重管目から酸素ガスと不活性ガス
との混合ガスを、さらにその外方管から水素ガス、酸素
ガスの順で導入し、可燃性の原料ガスが必要とする酸素
理論量に対して二重管目から導入する酸素ガスの量をそ
の 0.6〜1.2 倍量とすることを特徴とするものである
が、これによればこのエステルシランから得られるシリ
カ微粒子のかさ密度を0.45〜0.70g/cm3 の範囲とするこ
とができ、これを適切な粒径なものとすることができる
ので、このOH基含有量を30ppm とすることができ、し
たがって粘度が高く、高温耐熱性の合成石英ガラス部材
を得ることができるという有利性が与えられる。
The present invention relates to a method for producing a synthetic quartz glass member, which is a method for producing a synthetic quartz glass member by heating and melting a porous silica sintered body obtained by combustion of ester silane. Material gas and carrier gas are introduced from the central nozzle of a multi-tube burner consisting of multiple nozzles, a mixed gas of oxygen gas and inert gas from the double tube, and hydrogen gas from the outer tube, It is characterized in that oxygen gas is introduced in order, and the amount of oxygen gas introduced from the double tube is 0.6 to 1.2 times the theoretical amount of oxygen required for flammable raw material gas. However, according to this, the bulk density of the silica fine particles obtained from this ester silane can be in the range of 0.45 to 0.70 g / cm 3 , and since it can be made to have an appropriate particle size, this OH group content 30p Therefore, it is possible to obtain a synthetic quartz glass member having a high viscosity and a high temperature and heat resistance.

【0008】本発明による合成石英ガラス部材の製造方
法は一般式 R1 nSi(OR2)4-n(R1、R2、nは前記のとお
り)で示されるエステルシランを原料ガスとして使用
し、これを同心円状の複数本のノズルからなる多重管バ
ーナーに供給し、ここで燃焼させることによって行なわ
れる。
The method for producing a synthetic quartz glass member according to the present invention uses an ester silane represented by the general formula R 1 n Si (OR 2 ) 4-n (R 1 , R 2 and n are as described above) as a source gas. Then, this is supplied to a multi-tube burner composed of a plurality of concentric nozzles and burned here.

【0009】これは例えばこの製造方法の縦断面図を示
した図1に記載した方法で行なわれる。すなわち、エス
テルシラン収納容器1に収納されているエステルシラン
はポンプ2よりガス化されキャリアガス3と共に多重管
バーナー4の中心ノズル5に導入され、この多重管バー
ナー4の二重管目6には支燃性ガスとしての酸素ガスと
不活性ガスとの混合ガスが、さらにその外方管7、8に
は燃焼ガスとしての水素ガスと酸素ガスが導入され、こ
れによってこの多重管バーナー4の先端に酸水素火炎9
が形成される。エステルシランはこの酸水素火炎中で火
炎加水分解または燃焼されてシリカ微粒子を発生し、こ
のシリカ微粒子は回転しているカーボン製または石英製
の耐熱性基体10上に堆積されるが、このものはこれを軸
方向に引上げることによって多孔質シリカ焼結体11とな
る。
This is carried out, for example, by the method described in FIG. 1 which is a longitudinal sectional view of this manufacturing method. That is, the ester silane stored in the ester silane storage container 1 is gasified by the pump 2 and introduced into the central nozzle 5 of the multi-tube burner 4 together with the carrier gas 3, and the double tube 6 of the multi-tube burner 4 A mixed gas of oxygen gas and an inert gas as a combustion-supporting gas, and hydrogen gas and oxygen gas as a combustion gas are introduced into the outer pipes 7 and 8 thereof, whereby the tip of the multi-tube burner 4 is introduced. Oxyhydrogen flame 9
Is formed. The ester silane is subjected to flame hydrolysis or combustion in the oxyhydrogen flame to generate silica fine particles, which are deposited on the rotating carbon or quartz heat resistant substrate 10. A porous silica sintered body 11 is obtained by pulling this up in the axial direction.

【0010】しかし、この二重管目に供給される酸素ガ
ス量が可燃性であるエステルシランが必要とされる酸素
理論量より少なくなるとエステルシランの燃焼効率がわ
るくなって燃焼温度が低くなり、したがって得られるシ
リカ微粒子が粒径の小さいものとなり、比表面積の大き
いものとなるのでシラノール基または吸着水分が抜けに
くくなり、OH基含有量が低下し難くなるが、これが逆
にエステルシランが必要とされる酸素理論量より過剰で
あるとエステルシランの燃焼効率がよくなって燃焼温度
が高くなり、したがって得られるシリカ微粒子は粒径の
大きいものとなり、比表面積が小さくなってシラノール
基または吸着水分が抜け易くなり、OH基含有量が低下
するので、これについてはシリカ焼結体のかさ密度を高
くすることがよいということが見出された。
However, when the amount of oxygen gas supplied to the double tube becomes less than the theoretical amount of oxygen required for the combustible ester silane, the combustion efficiency of the ester silane becomes poor and the combustion temperature becomes low. Therefore, the resulting silica fine particles have a small particle size and a large specific surface area, so that silanol groups or adsorbed water are less likely to escape, and the OH group content is less likely to decrease, but on the contrary, this requires ester silane. If the amount of oxygen exceeds the stoichiometric amount, the combustion efficiency of the ester silane will increase and the combustion temperature will increase, and the resulting silica fine particles will have a large particle size, resulting in a small specific surface area and silanol groups or adsorbed water content. Since it becomes easy to come off and the OH group content decreases, it is preferable to increase the bulk density of the silica sintered body. It has been found that say.

【0011】したがって、これについてさらに検討を進
めたところ、このエステルシランを燃焼させるときにそ
の燃焼のために必要とされる酸素供給量をその燃焼に必
要とされる酸素必要量の 0.6倍より小さくすると、原料
の燃焼効率が悪くなって燃焼温度が低くなり、生成する
シリカ微粒子も粒径が小さく、これから形成される多孔
質シリカ焼結体のかさ密度が0.45g/cm3 より小さくなる
ので、そのOH基含有量を30ppm 以下にすることが困難
となり、この酸素供給量を酸素必要量の 1.2倍より大き
くするとバーナーノズルからの噴出線速バランスが悪く
なって火炎が乱れ、多孔質シリカ焼結体の形成が困難に
なってしまう。
[0011] Therefore, when further studying this, when the ester silane is burned, the oxygen supply amount required for the combustion is smaller than 0.6 times the oxygen required amount for the combustion. Then, the combustion efficiency of the raw material deteriorates and the combustion temperature becomes low, the particle size of silica fine particles produced is also small, and the bulk density of the porous silica sintered body formed from this is less than 0.45 g / cm 3 , It becomes difficult to reduce the OH group content to 30 ppm or less. If this oxygen supply amount is greater than 1.2 times the required oxygen amount, the linear velocity of the jet from the burner nozzle will be unbalanced and the flame will be disturbed, resulting in porous silica sintering. The formation of the body becomes difficult.

【0012】しかし、このエステルシランの燃焼に必要
とされる酸素供給量を図2に示したようにその燃焼に必
要とされる酸素必要量の0.6〜1.2倍量、好ましく
は0.8〜1.0倍量とすると、この酸素量が生成する
シリカ微粒子の粒径サイズに寄与することから、ここに
生成される多孔質シリカ焼結体はそのかさ密度が0.4
5〜0.70g/cmの範囲、好ましくは0.5〜
0.6g/cmの範囲となるので、この多孔質シリカ
焼結体を真空下または水を含まない不活性ガス雰囲気下
で加熱溶融して合成石英ガラス部材とすると、この合成
石英ガラス部材をOH基含有量が30ppm以下のもの
とすることができるので、これを粘性が高く高温耐熱性
のものとすることができる。
However, as shown in FIG. 2, the oxygen supply amount required for the combustion of the ester silane is 0.6 to 1.2 times the oxygen required amount for the combustion, preferably 0. If the amount is 0.8 to 1.0 times, this amount of oxygen contributes to the particle size of the generated silica fine particles, so the porous silica sintered body generated here has a bulk density of 0.4.
Range of 5 to 0.70 g / cm 3 , preferably 0.5 to
Since it will be in the range of 0.6 g / cm 3 , when this porous silica sintered body is heated and melted under vacuum or in an inert gas atmosphere containing no water to form a synthetic quartz glass member, this synthetic quartz glass member is Since the OH group content can be 30 ppm or less, it can have high viscosity and high temperature heat resistance.

【0013】[0013]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1 図1に示した装置を使用し、この石英ガラス製4重管バ
ーナーの2重管目から酸素ガス 2.0Nm3/時とアルゴンガ
ス 1.0Nm3/時の混合ガスを、3重管面から水素ガス 4.0
Nm3/時を、4重管目から酸素ガス 2.0Nm3/時のガスをそ
れぞれ導入して酸水素火炎を形成させた。
EXAMPLES Next, examples and comparative examples of the present invention will be described. Example 1 Using the apparatus shown in FIG. 1, a mixed gas of 2.0 Nm 3 / hr of oxygen gas and 1.0 Nm 3 / hr of argon gas was supplied from the second tube of the quartet burner made of quartz glass to the triple tube. Hydrogen gas from the surface 4.0
Nm 3 / the hour, respectively to form a oxyhydrogen flame by introducing oxygen gas 2.0 Nm 3 / time of the gas from the quadruple pipe eyes.

【0014】ついで、この酸水素火炎中にバーナーの中
心ノズルからキャリアガスとしてのアルゴンガス 0.5Nm
3/時と原料としてのメチルトリメトキシシラン 2,000g/
時との混合ガスを供給し、このメチルトリメトキシシラ
ンの火炎加水分解でシリカ微粒子を生成させたところ、
このシリカ微粒子のかさ密度は0.55g/cm3 であったが、
このシリカ微粒子を回転している石英ガラス製ターゲッ
ト上に堆積させながら軸方向に引上げたところ、直径 2
50mmφ×長さ 800mmで重さが20kgの多孔質シリカ焼結体
が得られた。
Then, during this oxyhydrogen flame, 0.5 Nm of argon gas as a carrier gas was fed from the central nozzle of the burner.
3 / h and methyltrimethoxysilane as raw material 2,000g /
When mixed gas with time was supplied and silica fine particles were generated by flame hydrolysis of this methyltrimethoxysilane,
The bulk density of the silica fine particles was 0.55 g / cm 3 ,
The silica particles were pulled up in the axial direction while being deposited on a rotating quartz glass target.
A porous silica sintered body having a size of 50 mmφ × 800 mm length and a weight of 20 kg was obtained.

【0015】つぎに、この多孔質シリカ焼結体を1×10
-2Torrの真空下に 1,550℃まで昇温、加熱したところ、
直径 150mmφ×長さ 450mmで重さが20kgの透明ガラス体
が得られたが、このガラス体中に含まれるOH基を測定
したところ、これは19ppm であった。なお、この場合に
おける多孔質シリカ焼結体を製造するときの原料の必要
酸素理論量と2重管目に導入した酸素量との比は0.93で
あった。
Next, 1 × 10 5 of this porous silica sintered body was prepared.
When heated up to 1,550 ° C under vacuum of -2 Torr,
A transparent glass body having a diameter of 150 mm and a length of 450 mm and a weight of 20 kg was obtained. The OH group contained in the glass body was measured and found to be 19 ppm. In this case, the ratio of the theoretical amount of oxygen required for the raw material when manufacturing the porous silica sintered body to the amount of oxygen introduced into the double tube was 0.93.

【0016】実施例2 実施例1における2重管目に導入した酸素量を 1.3Nm3/
時とし、原料の必要酸素理論量と2重管目に導入した酸
素量との比を0.60としたほかは実施例1と同様に処理し
たところ、得られた多孔質シリカ焼結体のかさ密度、得
られた合成石英ガラス体中のOH基含有量について後記
する表1に示したとおりの結果が得られた。
Example 2 The amount of oxygen introduced into the double tube in Example 1 was 1.3 Nm 3 /
Occasionally, the bulk density of the obtained porous silica sintered body was obtained by treating in the same manner as in Example 1 except that the ratio of the theoretical required oxygen amount of the raw material to the oxygen amount introduced into the double tube was set to 0.60. Regarding the OH group content in the obtained synthetic quartz glass body, the results as shown in Table 1 below were obtained.

【0017】比較例1〜2 実施例1における2重管目に導入した酸素量を 1.1Nm3/
時(比較例1)、または3.21Nm3/時(比較例2)とし、
原料の必要酸素理論量と2重管目に導入した酸素量との
比を 0.5または 1.5としたほかは実施例1と同様に処理
したところ、得られた多孔質シリカ焼結体のかさ密度、
得られた合成生成ガラス体のOH基含有量についてつぎ
の表1に示したとおりの結果が得られた。
Comparative Examples 1-2 The amount of oxygen introduced into the double tube in Example 1 was 1.1 Nm 3 /
Hour (comparative example 1) or 3.21 Nm 3 / hour (comparative example 2),
When the same treatment as in Example 1 was carried out except that the ratio of the theoretical amount of oxygen required for the raw material to the amount of oxygen introduced into the double tube was 0.5 or 1.5, the bulk density of the obtained porous silica sintered body,
Regarding the OH group content of the obtained synthetically produced glass body, the results as shown in Table 1 below were obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明は合成石英ガラス部材の製造方法
に関するものであり、これは前記したように一般式 R1 n
Si(OR2)4-n(R1、R2、nは前記に同じ)で示されるエス
テルシランの燃焼で得られた多孔質シリカ焼結体を加熱
溶融して合成石英ガラス部材を製造する方法において、
同心円状の複数本のノズルからなる多重管バーナーの中
心ノズルから原料ガスとキャリアガスを導入し、二重管
目からは酸素ガスと不活性ガスとの混合ガスを、さらに
その外方管からは水素ガス、酸素ガスの順で導入し、可
燃性の原料ガスが必要とする酸素理論量に対して二重管
目から導入する酸素ガス量をその 0.6〜1.2 倍量とする
ことを特徴とするものであるが、これによればここに生
成される多孔質シリカ焼結体のかさ密度を0.45〜0.70g/
cm3 の範囲とすることができ、この多孔質シリカ焼結体
をガラス化して得られる合成石英ガラス体中に含有され
るOH基を30ppm 以下とすることができるので、これを
粘度が高く、高温耐熱性のものとすることができるとう
有利性が与えられる。
The present invention relates to a method for producing a synthetic quartz glass member, which has the general formula R 1 n as described above.
A synthetic silica glass member is manufactured by heating and melting a porous silica sintered body obtained by combustion of ester silane represented by Si (OR 2 ) 4-n (R 1 , R 2 and n are the same as above). In the method
A raw material gas and a carrier gas are introduced from a central nozzle of a multi-tube burner consisting of a plurality of concentric nozzles, a mixed gas of oxygen gas and an inert gas is introduced from the double tube, and further from its outer tube. It is characterized in that hydrogen gas and oxygen gas are introduced in this order, and the amount of oxygen gas introduced from the double tube is 0.6 to 1.2 times the theoretical amount of oxygen required for flammable raw material gas. According to this, the bulk density of the porous silica sintered body produced here is 0.45 to 0.70 g /
It can be in the range of cm 3 , and since the OH group contained in the synthetic silica glass body obtained by vitrifying this porous silica sintered body can be 30 ppm or less, it has a high viscosity, It is given the advantage that it can be of high temperature heat resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用される多孔質シリカ焼結体製造装
置の概略縦断面図を示したものである。
FIG. 1 is a schematic vertical sectional view of a porous silica sintered body manufacturing apparatus used in the present invention.

【図2】本発明におけるエステルシランの燃焼時におけ
る酸素量論比とOH基含有量(ppm)との関係図を示
したものである。
FIG. 2 is a diagram showing the relationship between the oxygen stoichiometric ratio and the OH group content (ppm) during combustion of ester silane in the present invention.

【符号の説明】[Explanation of symbols]

1…エステルシラン収納容器、 2…ポンプ、3…キャ
リアガス、 4…多重管バーナー、5…中心
ノズル、 6…二重管目ノズル、7,8…
外方管ノズル、 9…酸水素火炎、10…耐熱性
基体、 11…多孔質シリカ焼結体。
1 ... Ester silane storage container, 2 ... Pump, 3 ... Carrier gas, 4 ... Multi-tube burner, 5 ... Central nozzle, 6 ... Double-tube nozzle, 7, 8 ...
Outer tube nozzle, 9 ... Oxygen flame, 10 ... Heat resistant substrate, 11 ... Porous silica sintered body.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢田 勝也 新潟県中頸城郡頸城村大字西福島28番地 の1 信越化学工業株式会社 合成技術 研究所内 (72)発明者 滝田 政俊 新潟県中頸城郡頸城村大字西福島28番地 の1 信越化学工業株式会社 合成技術 研究所内 (56)参考文献 特開 昭60−90836(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsuya Sawada               28, Nishi-Fukushima, Kakubiki Village, Nakakubiki District, Niigata Prefecture               No. 1 Shin-Etsu Chemical Co., Ltd. Synthetic technology               In the laboratory (72) Inventor Masatoshi Takita               28, Nishi-Fukushima, Kakubiki Village, Nakakubiki District, Niigata Prefecture               No. 1 Shin-Etsu Chemical Co., Ltd. Synthetic technology               In the laboratory                (56) References JP-A-60-90836 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式R Si(OR4−n(ここ
にRは水素原子、メチル基またはエチル基、Rはメ
チル基またはエチル基、nは0〜の正数)で示される
エステルシランの燃焼で得られた多孔質シリカ焼結体を
加熱溶融して合成石英ガラス部材を製造する方法におい
て、同心円状の複数本のノズルからなる多重管バーナー
の中心ノズルから原料ガスとキャリアガスを導入し、二
重管目からは酸素ガスと不活性ガスとの混合ガスを、さ
らにその外方管からは水素ガス、酸素ガスの順で導入
し、可燃性の原料ガスが必要とする酸素理論量に対して
二重管目から導入する酸素ガス量をその0.6〜1.20倍量
とすることを特徴とする合成石英ガラス部材の製造方
法。
1. A general formula R 1 n Si (OR 2 ) 4-n (wherein R 1 is a hydrogen atom, a methyl group or an ethyl group, R 2 is a methyl group or an ethyl group, and n is a positive number from 0 to 3 ). In a method for producing a synthetic quartz glass member by heating and melting a porous silica sintered body obtained by combustion of ester silane, the raw material from the central nozzle of a multi-tube burner composed of a plurality of concentric nozzles Gas and carrier gas are introduced, mixed gas of oxygen gas and inert gas is introduced from the double tube, and hydrogen gas and oxygen gas are introduced from the outer tube in this order, and flammable raw material gas A method for producing a synthetic quartz glass member, characterized in that the amount of oxygen gas introduced from a double tube is 0.6 to 1.20 times the theoretical amount of oxygen required.
【請求項2】エステルシランがメチルトリメトキシシラ
ンまたはテトラメトキシシランである請求項1に記載し
た合成石英ガラス部材の製造方法。
2. The method for producing a synthetic quartz glass member according to claim 1, wherein the ester silane is methyltrimethoxysilane or tetramethoxysilane.
JP32861392A 1992-11-13 1992-11-13 Manufacturing method of synthetic quartz glass member Expired - Fee Related JP3417962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32861392A JP3417962B2 (en) 1992-11-13 1992-11-13 Manufacturing method of synthetic quartz glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32861392A JP3417962B2 (en) 1992-11-13 1992-11-13 Manufacturing method of synthetic quartz glass member

Publications (2)

Publication Number Publication Date
JPH06157049A JPH06157049A (en) 1994-06-03
JP3417962B2 true JP3417962B2 (en) 2003-06-16

Family

ID=18212233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32861392A Expired - Fee Related JP3417962B2 (en) 1992-11-13 1992-11-13 Manufacturing method of synthetic quartz glass member

Country Status (1)

Country Link
JP (1) JP3417962B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496421B2 (en) * 1999-12-27 2010-07-07 信越化学工業株式会社 Method for producing synthetic quartz glass
JP4535497B2 (en) * 2004-12-24 2010-09-01 信越石英株式会社 Method for producing synthetic silica glass with controlled OH group concentration

Also Published As

Publication number Publication date
JPH06157049A (en) 1994-06-03

Similar Documents

Publication Publication Date Title
KR0130007B1 (en) Improved vitreous silica products and its method
CA2037102C (en) Method of making fused silica
JP5880532B2 (en) Method for producing glass particulate deposit and method for producing glass base material
JPS6038345B2 (en) Manufacturing method of glass material for optical transmission
JP2004203736A (en) Method of manufacturing high purity fused silica
JP3007510B2 (en) Manufacturing method of synthetic quartz glass member
JP4043768B2 (en) Manufacturing method of optical fiber preform
GB2054553A (en) Process for producing high-purity silica glass with reduced oh-content
JP3470983B2 (en) Manufacturing method of synthetic quartz glass member
JP2000272925A (en) Production of silica by decomposition of organosilane
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
JPH0459254B2 (en)
JPS6090836A (en) Manufacture of synthetic quartz
JPS63242938A (en) Storage of porous preform for optical fiber
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPS629536B2 (en)
JPH01126236A (en) Production of optical fiber preform
JP3788073B2 (en) Manufacturing method of optical fiber preform
JPH10330129A (en) Production of porous glass body for optical fiber
JP3517250B2 (en) Method for producing glass fiber preform for optical transmission line
JPH0459253B2 (en)
JP2001151513A (en) Method of manufacturing aluminum addition quartz based porous preform
JPH05238758A (en) Production for synthetic quartz glass member
JPS5978943A (en) Manufacture of glass containing fluorine
JPS59137333A (en) Manufacture of base material for optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees