JPS6090836A - Manufacture of synthetic quartz - Google Patents

Manufacture of synthetic quartz

Info

Publication number
JPS6090836A
JPS6090836A JP19826883A JP19826883A JPS6090836A JP S6090836 A JPS6090836 A JP S6090836A JP 19826883 A JP19826883 A JP 19826883A JP 19826883 A JP19826883 A JP 19826883A JP S6090836 A JPS6090836 A JP S6090836A
Authority
JP
Japan
Prior art keywords
silica
synthetic quartz
ester silane
sintered body
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19826883A
Other languages
Japanese (ja)
Other versions
JPH0420853B2 (en
Inventor
Haruo Okamoto
岡本 治男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP19826883A priority Critical patent/JPS6090836A/en
Publication of JPS6090836A publication Critical patent/JPS6090836A/en
Publication of JPH0420853B2 publication Critical patent/JPH0420853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/86Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid by bubbling a gas through the liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To manufacture synthetic quartz contg. no Cl by burning specified ester silane, depositing produced silica on a substrate, and melting the resulting sintered body of porous silica by heating. CONSTITUTION:Ester silane represented by the formula (where R is H, methyl or ethyl, R' is methyl or ethyl, and n is 0-4) is fed from a tank 1 to an evaporator 3, where it is vaporized and mixed with an inert gas blown from a pipe 4. The mixture is optionally mixed with gaseous O2 introduced from a pipe 5, and it is fed to a burner 6. The vaporized ester silane is burned with gaseous O2 and gaseous H2 or gas of a combustible contg. no Cl fed from pipes 7-9 to produce silica, and this silica is deposited on a heat resistant substrate 10 to form a sintered body 11 of porous silica having 0.05-1.0g/cm<3> density. The sintered body 11 is dehydrated by heating to about 1,000 deg.C in a furnace kept at <=1X 10<-2>Torr degree of vacuum, and it is vitrified by heating to 1,400-1,600 deg.C in vacuum or an inert gaseous atmosphere contg. no moisture.

Description

【発明の詳細な説明】 本発明は合成石英、特には元素状もしくは化合物状の塩
素を含有しない合成石英の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing synthetic quartz, particularly synthetic quartz that does not contain elemental or compound chlorine.

合成石英の製造方法については、四塩化けい累をガス状
とし、これを酸水素炎中で那水分解し、こ\に発生する
シリカ(Si04)を火炎と共に耐熱性基体上に吹きつ
け、これを火炎のもつ顕熱によって溶融し、成長させて
いくという方法(米国特許第2,272.342号明細
瞥参照〕、またこのシリカを溶融しないでこれを多孔質
の塊状体として成長させ、ついでこれを電気炉でt40
0〜1700℃に加熱して溶融しガラス化する方法(米
国特許第3,806,570号明細書参照]が公知とさ
れているが、この前者の方法で得られる合成石英には元
累状または化合物状の塩素がlO〜200ppm、OH
基が700〜I 200.ppm も含まれており、後
者の方法で得られるものもOH琴含有誼はl OOpp
m程度以下になるが、塩素σ)仲は10〜100 p’
pm とかなり高いものになる。−!た、この合間石英
の製法については四塩化はい累の分解反応を高周波プラ
ズマでの刀口熱による方法も知られており、これによれ
ばOH基含有量をI Oppm以下にまで低くすること
ができるけチ1.ども、この場合でも塩素量は減少せず
、これは依然として10〜500’ppni と可成り
高いものになる。
The method for producing synthetic quartz is to make silica tetrachloride into a gas, decompose it in an oxyhydrogen flame, and spray the silica (Si04) generated from this onto a heat-resistant substrate together with the flame. There is a method in which silica is melted and grown using the sensible heat of a flame (see U.S. Pat. No. 2,272,342), and another method is to grow silica as a porous mass without melting it, and then This was heated to t40 in an electric furnace.
A method of melting and vitrifying by heating to 0 to 1700°C (see US Pat. No. 3,806,570) is known, but the synthetic quartz obtained by this former method has an original crystalline shape. Or compound chlorine is 1O~200ppm, OH
Group is 700-I200. ppm is also included, and those obtained by the latter method also contain OH koto.
It becomes less than about m, but the chlorine σ) average is 10 to 100 p'
pm, which is quite high. -! In addition, as for the manufacturing method of this quartz, it is also known that the decomposition reaction of tetrachloride quartz is carried out using sword heat using high-frequency plasma, and according to this method, the OH group content can be lowered to below IOppm. Stingy 1. However, even in this case, the amount of chlorine is not reduced and is still quite high, between 10 and 500'ppni.

しかし、このように塩素を多量に含有する合成石英はそ
の含有率によってその程度は異なるけれども黄色して着
色しているため、光通信用−光学用としての特性が損な
われるという不利があり、こねはまた塩素を含有しない
ものにくらべて耐薬品性も劣るという欠点がある。
However, synthetic quartz that contains a large amount of chlorine is colored yellow, although the degree of chlorine content varies depending on its content, which has the disadvantage of impairing its properties for optical communication and optical applications. They also have the disadvantage of being inferior in chemical resistance compared to those that do not contain chlorine.

本発明はこのような不利を解決した、実質的に塩素、を
含まない合成石英の製造方法に関するもので、これは一
般式RnSi (OR’)4−r3 に\にRは水素原
子またはメチル基、エチル基−R/はメチル基またはエ
チル基、nは0〜4の正数)で示されるエステルシラン
またはこれと水素ガスもしくは塩素を含まない気化され
た可燃性物質との混合物ガスを燃焼させ、これによって
発生するりリカを基体上に堆積させたのら、こ\に得ら
れた多孔質シリカ焼結体を真空下または水を含まない不
活性ガス雰囲気下で即熱溶解することを特徴とするもの
である。
The present invention solves such disadvantages and relates to a method for producing synthetic quartz that does not substantially contain chlorine.This invention has the general formula RnSi (OR')4-r3, where R is a hydrogen atom or a methyl group. , ethyl group -R/ is a methyl group or ethyl group, n is a positive number from 0 to 4) or a mixture gas of this and a vaporized combustible substance that does not contain hydrogen gas or chlorine is combusted. , the resulting silica is deposited on the substrate, and the resulting porous silica sintered body is immediately melted under vacuum or in an inert gas atmosphere that does not contain water. That is.

これを説明すると、本発明者らは特に塩素を金員しない
合成石英の製造方法について種々検討しいということに
注目し、これについて研究を行つたところ1式 SiH
4で示されるシランも使出し得るけれどもこれは沸点が
−111,2℃と極めて低く、窄気中で爆発、燃焼する
という危険な物質で、しかも冒価であるが一上記した一
般式で示されるエステルシランは塩素を争〈含んでおら
ず、61一点も概ね100℃以上で燃焼速度も小さく収
扱いσノ容易なもので、しかもこれが工業rFJに安価
に供給されるものであるということから、これについて
の実験を重ね、これを使用てれば容易にしかも確実に塩
素を含まない合成石英を製造することかできることを確
認して本発明を完成させた。
To explain this, the present inventors focused on various methods of manufacturing synthetic quartz that do not use chlorine, and conducted research on this subject.
Although the silane represented by 4 can also be used, it has an extremely low boiling point of -111.2°C, and is a dangerous substance that can explode and burn in confined air. The ester silane produced does not contain chlorine, has a combustion rate of approximately 100°C or higher, has a low combustion rate, and is easy to handle.Moreover, it can be supplied to industrial rFJ at a low cost. After conducting repeated experiments on this, it was confirmed that chlorine-free synthetic quartz could be easily and reliably produced using this method, and the present invention was completed.

本発明の方法において始発材料とされるエステルシラン
は前記したように一般式Rn5i(ORす4−n で示
ばれるものであればよく、これにはメチルトリメトキシ
シラン−ジメチルジメトキシシラン、トリメチルメトキ
シシラン−テトラメトキシシラン、メチルトリエトキシ
シラン−テトラエトキシシランなどが例示されるが、こ
れは安価であり、扱いや丁いということから工業的には
メチルトリメトキシシラン、テトラメトキシシランとす
ることかよい。このエステルシランはメチルグロライド
と金庫けい素との直接反応による、シリコーンゴム、シ
リコーンワニス、シリコーン油の主f県料とされるジメ
チルジグロロシラン合成時の副生物であるトリメチル)
 IIグl÷:芽:、S7:7ノール、エタノールなど
のアルコールと反応させるか、あるいはこのジメチルジ
グロ口νランの製造工程から出る一般式(CH3)n8
1mCtxOyで示されるポリメチルボリグa「コポリ
シラン、ポリメチルボリグロロボリシロキサンを熱分解
して得られるモノメチルトリグσ口シランージメチルジ
グロ口νラン、トリメチルグロaノラン、モノメチルジ
グσロシランなどの混合物をアルコールと反応させるこ
とによって容易に得ることができるし、このテトラメト
キシシランは余塵けい素とメチルアルコールを触媒とし
てのNaOCH3の存在下に反厖させて次式 Si+40H10H−!切P旦シー→S i (OCH
3)4+:2H2”100〜ttU°C によって製造することもできるので、これは工業lT]
vc安価に供給することができる踵これはまたその原料
とされるグロaシランの精留マたはエステルシランの精
留によって容易に不純物を含まない精製物として収得て
ることができるので、これ(Cよれば純度の高い合成石
英が得られるという有利性を与える。
As mentioned above, the ester silane used as the starting material in the method of the present invention may be one represented by the general formula Rn5i (OR4-n), and examples thereof include methyltrimethoxysilane-dimethyldimethoxysilane, trimethylmethoxysilane, Examples include -tetramethoxysilane, methyltriethoxysilane, and tetraethoxysilane, but from an industrial standpoint, methyltrimethoxysilane and tetramethoxysilane are preferable because they are inexpensive and easy to handle. This ester silane is a by-product of the synthesis of dimethyldiglorosilane, which is the main raw material for silicone rubber, silicone varnish, and silicone oil, and is produced by the direct reaction between methyl glolide and safe silicon (trimethyl).
The general formula (CH3) n8 is produced by reacting with alcohol such as 7 alcohol or ethanol, or from the production process of this dimethyldiglomerate ν run.
1mCtxOy polymethylborigo copolysilane, a mixture of monomethyl trig σ-silane-dimethyl diglo-v run, trimethylgu-anolan, monomethyl di-g σ-rosilane obtained by thermally decomposing polymethyl polygloloborosiloxane. It can be easily obtained by reacting with alcohol, and this tetramethoxysilane can be obtained by reacting residual silicon and methyl alcohol in the presence of NaOCH3 as a catalyst to obtain the following formula: Si+40H10H-! i (OCH
3) 4+:2H2” can also be produced by 100~ttU°C, so this is an industrial IT]
VC can be supplied at low cost.It can also be easily obtained as a purified product free of impurities by rectification of glo-A silane, which is the raw material, or rectification of ester silane. C has the advantage that synthetic quartz with high purity can be obtained.

本発明の方法はまずこのエステルシランを燃焼させてシ
リカを発生させ、これを基体上に堆積させて多孔質シリ
カ焼結体とするのであるが、これにはこのエステルシラ
ンを適宜のキャリヤーガス。
In the method of the present invention, the ester silane is first burned to generate silica, which is deposited on a substrate to form a porous sintered silica body.

例えはアルゴンガスなどに搬送させ、空気中で燃焼させ
ればよい。この燃焼はエステルシランがその針子中IC
[料となるメチル基、エチル基−アルコキシ基をもって
いること1.またこれにはエステルシランに予じめ酸素
を混合することができることから、きわめて高い燃焼効
率を示すし、これは完全燃焼とすることができるので、
これによれば適度vc睨結された微細なりリカからなる
多孔質シリカ焼結体を得るための充分な高温を得ること
ができ、このエステルシラン中に塩素が含まれていない
ことから、全く塩素分を含まないシリカ焼結体を容易1
c得ることができる。
For example, it may be carried by argon gas or the like and burned in air. This combustion occurs because the ester silane is the IC in the needle.
[It has a methyl group, an ethyl group, and an alkoxy group as materials.1. In addition, since oxygen can be mixed with the ester silane in advance, it exhibits extremely high combustion efficiency, and complete combustion can be achieved.
According to this method, it is possible to obtain a sufficiently high temperature to obtain a porous silica sintered body made of fine silica that has been sintered with moderate VC, and since this ester silane does not contain chlorine, there is no chlorine Easily produce silica sintered bodies that do not contain
c can be obtained.

このようにして得られた多孔質シリカ焼結体はこのンソ
リカ生成のためのエステルシランの」L供給速度、反応
温度の反応条件によってそのかさ密度が相違するが、こ
れはそれが0.05g/d以下ではきわめてぐずれ易く
、かつこれを溶融してガラス化するときの収縮率が大き
いためにガラス化後の形状が不規則なものになるという
不利があり、逆にこれを1.0g/)!’を超えるよう
なものとするためにはこの焼結体の形成温度をかなり高
くする必要があり、そのためにこれが部分的にガラス化
され、これが溶融時に気泡となるという欠点が生じるの
で、これは0.05〜1、Ofl / eaの範囲のも
のとすることがよく、このためには始発材料としてのエ
ステルシランに補助燃料としての水素ガスを添那するか
、または気化された可燃性物質例えばメタン、エタン、
プロパンなどの塩素を含有しない揮発性炭化水素を添那
することがよい。
The bulk density of the porous silica sintered body thus obtained differs depending on the reaction conditions such as the ester silane supply rate and reaction temperature for producing this phosphoric acid. If it is less than d, it is extremely easy to sag, and when it is melted and vitrified, the shrinkage rate is large, resulting in an irregular shape after vitrification, which is disadvantageous. ! In order to exceed ', the formation temperature of this sintered body must be considerably high, which causes the disadvantage that it becomes partially vitrified, which becomes bubbles when melted. Ofl/ea is often in the range 0.05 to 1, Ofl/ea, for which the ester silane as the starting material is doped with hydrogen gas as an auxiliary fuel, or the ester silane as the starting material is enriched with hydrogen gas as an auxiliary fuel, or a vaporized combustible material, e.g. methane, ethane,
It is preferable to use a volatile hydrocarbon that does not contain chlorine, such as propane.

なお、このエステルシランの燃焼によって生成さり、る
シリカは耐熱性基体上に成長させるのであるが、この基
体としてはそれが耐熱性のものであればよいけれども、
これを同一の方法で製造した石英棒とすれば後述する溶
融によって中実のガラス体を製造することができるとい
う有利性が与えられる。しかし、この石英棒はこれをG
e−P−B−F−TI A4などでドープしたものとし
てもよく、これによればこの基体部分とこの上に丁\付
けされた部分とを屈折率の異なるガラス体とすることが
できる。また、この基板はこれを炭素または黒鉛製の棒
状体としてもよく、これによれば爾後における溶融、冷
却後にこれを抜き取ることによって中空状のガラス体を
得ることができる。
Incidentally, the silica produced by the combustion of this ester silane is grown on a heat-resistant substrate.
If this is a quartz rod manufactured by the same method, it has the advantage that a solid glass body can be manufactured by melting, which will be described later. However, this quartz rod
It may also be doped with e-P-B-F-TI A4 or the like, which allows the base portion and the portion attached thereon to be glass bodies with different refractive indexes. Further, this substrate may be a rod-shaped body made of carbon or graphite, and by this, a hollow glass body can be obtained by extracting the rod after melting and cooling.

つぎに本発明の方法による多孔質シリカ焼結体の製法を
図面にもとづいて説明すると、第1図はその系統図を示
したもの、第2図はその別の態様を示す要部縦断面図、
第3図は本発明方法の実施に使用されるバーナーを図示
したもので、この(atは上面図、(b)はその部分縦
断面図を示したものである。本発明方法における多孔質
シリカ焼結体の製法の実施は、まず第1図に示したよう
に、原料タンク1に貯えられたエステルシランが定量ポ
ンプ2で蒸発器3に送られる。この蒸発器におけるエス
テルシランの気化はこれを高温で行なうとエステルシラ
ンが分解重合するので、こ\にはアルゴン、窒素のよう
な不活性ガスをバイブ4から吹き込んで、エステルシラ
ンを低い7iMIfで気化させるようにする。この不活
性ガスに優流されるエステルシランにはこれを完全燃焼
させるため、さらには油動燃料としての水素ガスや可燃
性物質の使用徂を減少もしくは全く不要とするために、
必要に応じバイブ5からの酸素ガスが混入されるが、こ
の酸素量は必ずしも原料の完全燃焼に必要な化学理論量
でなくてもよくその残量はバーナー6に供給−するよう
にしてもよ(Soこのバーナー6にはさらに必要に応じ
バイブ7から酸素ガスまたは不活性ガス、バイブ8から
酸素ガス、バイブ9から水素ガスまたは可燃性ガスが供
給されるが、このバーナーの構造は第3図に示したよう
に同心多重環構造としこの中心からエステルシランを含
む県料ガスを供給し、その周囲に酸素ガスまたは不活性
ガス、−素ガス、水素ガスまたは可燃性ガスを供給する
ようにすればよい。このバーナー6から供給されるエス
テルシランはその周囲からのガスとの共存下で完全燃焼
し、反応炉内でシリカを発生するが、このシリカは炉内
に回転と同時に一定速度で引上げられるようにされた耐
熱性基体10に衝突しこ\に多孔質焼結体11ケ形成す
る。第2図はこの別の態様を示したものでこの場合には
回転する耐熱性基体10′がバーナー6′と相対的に水
平方向に往復運動をくり返丁ようにしたものであり、こ
れによれば基体10′の長さ方向に沿って多孔質シリカ
焼結体を筒状に形成させることができる。
Next, the method for producing a porous sintered silica body by the method of the present invention will be explained based on the drawings. FIG. 1 shows a system diagram thereof, and FIG. 2 is a vertical cross-sectional view of the main part showing another aspect thereof. ,
Figure 3 shows a burner used in carrying out the method of the present invention. To carry out the method for producing a sintered body, first, as shown in Fig. 1, ester silane stored in a raw material tank 1 is sent to an evaporator 3 by a metering pump 2.The ester silane is vaporized in this evaporator. If this is carried out at a high temperature, the ester silane will decompose and polymerize, so an inert gas such as argon or nitrogen is blown into the atmosphere from the vibrator 4 to vaporize the ester silane at a low 7iMIf. In order to completely burn out the ester silane that is being carried out, and furthermore, in order to reduce or eliminate the use of hydrogen gas and flammable substances as hydraulic fuel,
Oxygen gas from the vibrator 5 is mixed in if necessary, but the amount of oxygen does not necessarily have to be the stoichiometric amount required for complete combustion of the raw material, and the remaining amount may be supplied to the burner 6. (So this burner 6 is further supplied with oxygen gas or inert gas from a vibrator 7, oxygen gas from a vibrator 8, and hydrogen gas or combustible gas from a vibrator 9 as required. The structure of this burner is shown in Figure 3. As shown in Figure 2, it has a concentric multiple ring structure, and a prefectural gas containing ester silane is supplied from the center, and oxygen gas, inert gas, -element gas, hydrogen gas, or combustible gas is supplied around it. The ester silane supplied from this burner 6 is completely combusted in coexistence with gas from the surrounding area, and silica is generated in the reactor. 11 porous sintered bodies are formed. FIG. 2 shows another embodiment of this, in which the rotating heat-resistant base 10' is It is designed to repeatedly move back and forth in the horizontal direction relative to the burner 6', and according to this, the porous silica sintered body can be formed into a cylindrical shape along the length direction of the base body 10'. I can do it.

本発明の方法はこのようにして得た多孔質シリカ焼結体
を、ついで溶融ガラス化して合成石英とするのであるが
、これには上記の方法で得た多孔質シリカ焼結体を即熱
炉中でそのガラス化温度である1400℃程度vc/I
I]熱し、溶融処理すればよf<’、この処PMに当っ
てはこの焼結体に吸着されている水分や=sioH基を
脱水、組合除去する必要があるので、これには炉内をl
Xl0)−ル以下のような真空度に保ち、炉内をそのガ
ラス化温度である1400℃以下の1000℃前後に保
ってこの脱水処Fl!を行なったのら、炉内温度を14
00〜1600℃IC那熱してガラス化するようvc−
fればよい。しかし、このガラス化についてはこの焼結
体を高具窒下で浴融ガラス化すると、シリカが蒸発した
り、こり中に僅かに存在する異物が気泡となってガラス
中に残留するようになるので、これには水を含有しない
不活性ガス、例えはヘリツム。窒素、アノにボンのよう
なガスを封入もしくは流通させながらガラス化すればよ
く、これによればOH基含有率を50 ppm 以下に
することができる。
In the method of the present invention, the porous silica sintered body obtained in this way is then melted and vitrified to obtain synthetic quartz. The vitrification temperature in the furnace is about 1400℃ vc/I
I] Heat and melt treatmentf l
This dehydration process is carried out by maintaining the degree of vacuum below Xl0)-1 and keeping the inside of the furnace at around 1000°C, which is below the vitrification temperature of 1400°C. After doing this, increase the temperature inside the furnace to 14
00~1600℃ IC heat to vitrify vc-
f is enough. However, when this sintered body is bath-fused vitrified under a high nitrogen atmosphere, the silica evaporates, and a small amount of foreign matter present in the sinter becomes bubbles and remains in the glass. Therefore, this includes an inert gas that does not contain water, such as helium. Vitrification may be carried out while enclosing or circulating a gas such as nitrogen or carbon, and by this method, the OH group content can be reduced to 50 ppm or less.

これを要するに、本発明は塩素を全く含まないエステル
シランを始発材料としてシリカを発生させ、これを多孔
質シリカ焼結体として取得し、ついでこれを溶融して合
成石英とするものであるから、これによれば塩素を全く
含まない合成石英を容易に得ることができ、これはtた
その溶融ガラス化工程における真空下処理で充分脱水を
行なえばOH基含有率を50 ppm 以下とすること
ができるので、レンズ、プリズムなどの光学機器用。
In short, the present invention generates silica using ester silane, which does not contain any chlorine, as a starting material, obtains this as a porous sintered silica, and then melts it to produce synthetic quartz. According to this method, it is possible to easily obtain synthetic quartz that does not contain any chlorine, and it is possible to reduce the OH group content to 50 ppm or less if sufficient dehydration is performed in the vacuum treatment in the fusing and vitrification process. For optical equipment such as lenses and prisms.

さらには光通信用の母材を容易に得ることができるし、
この方伍で得られる中窄石英管は低損失の光ファイバー
を製造するための内付けCvP用管としても有用とされ
る。
Furthermore, base materials for optical communication can be easily obtained,
The hollow quartz tube obtained in this manner is said to be useful as an internal CvP tube for manufacturing low-loss optical fibers.

つぎに本発明方法の実施例をあげる。Next, examples of the method of the present invention will be given.

実施例1゜ メチルトリメトキシシラン(0H3S i (OCH3
)It沸点1り2℃〕を収容した蒸発器内にキャリヤー
ガスとしてのアルゴンガスを吹込んでアルゴンガス20
 N t/h中に1’oofllbのメチルトリメトキ
シシランを含む原料ガスを作り、これに酸素ガスを50
 N t/hで混合したものをバーナーに送り、このバ
ーナーにさらに補助燃料用の水素ガス] OO’N t
/h−燃焼用酸素ガス80 N t/hを供給して、第
1図に示した方法で合成石英製の基叡土に多孔質りリカ
焼結体を作ることとし、これを2時間連続的に行なわせ
たところ、58gの焼結体が得られたが、このもののか
せ密度は0.55.!9/Cdであった。
Example 1゜Methyltrimethoxysilane (0H3S i (OCH3
)It boiling point 1-2℃] Argon gas as a carrier gas is blown into the evaporator containing 20℃ of argon gas.
A raw material gas containing 1'oofllb of methyltrimethoxysilane in Nt/h is prepared, and 50% of oxygen gas is added to it.
Send the mixture at a rate of N t/h to a burner, and add hydrogen gas for auxiliary fuel to this burner] OO'N t
/h - By supplying 80 Nt/h of oxygen gas for combustion, a porous sintered body of silica was made on a synthetic quartz matrix using the method shown in Figure 1, and this was continued for 2 hours. As a result, a sintered body weighing 58 g was obtained, and the sintered body had a skein density of 0.55. ! It was 9/Cd.

つぎにこの焼結体を真空炉に入h1、I X I O−
2トールの真空度でi ] oo′Cに2時間保持した
のら、真空を保持しILが61550℃に即熱してガラ
ス化したところ、53gの合成石英が得られたが、これ
は塩素を全く含んでおらず、そのOH基含有窄も25 
ppm であった。
Next, this sintered body is placed in a vacuum furnace.
After holding at i]oo'C for 2 hours in a vacuum of 2 torr, the vacuum was maintained and the IL was immediately heated to 61,550°C to vitrify it, yielding 53g of synthetic quartz, which contained no chlorine. It does not contain any OH group, and its OH group content is 25
It was ppm.

笑雁伊12 テトラメトキシシラン(Si (OOH)+ 沸点4 121℃〕を収容した蒸発器にキャリヤーガスとしての
アルゴンガスを吹き込んでアルゴンガス5ONt/h中
に130.!9/hのテトラメトキシシランを含む原料
ガスを作り、これに酸素ガスを30 N t/bで混合
したものをバーナーに送り、このバーナーにさらに補助
燃料としての水素ガスを1.2ONt/h−燃焼用の酸
素ガス7ONt/hfr−供給して一第1図に示した方
法で合成石英製の基板上に多孔質シリカ焼結体を作るこ
ととし、これを285時1Stl連続旧に行なわせたと
ころ、かせ密度が0.33g/crIの焼結体94gが
得られた。
Shoganii 12 Argon gas as a carrier gas was blown into an evaporator containing tetramethoxysilane (Si (OOH) + boiling point 4 121°C) to form 130.!9/h of tetramethoxysilane in 5ONt/h of argon gas. A raw material gas containing 1.2 ONt/h of oxygen gas is mixed with 30 Nt/b of oxygen gas and sent to the burner. A porous silica sintered body was prepared on a synthetic quartz substrate using the method shown in FIG. 94 g of sintered body of 33 g/crI was obtained.

つぎにこの焼結体を真空炉に入れ1XIO)−ルの真空
下1c1100℃に2時開放置したのら、こ\にヘリウ
ムガスを大気圧まで充填し、ヘリウムガスfr−100
Nt/hの割合で流通しながら1560℃まで昇温しで
ガラス化したところ、91gの合成石英が得られ、これ
は塩素を全く含1ず、そのOH基含有量は45ppm 
であった。
Next, this sintered body was placed in a vacuum furnace, left open for 2 hours at 1100°C under a vacuum of 1XIO), and then filled with helium gas up to atmospheric pressure.
When vitrified by raising the temperature to 1560°C while flowing at a rate of Nt/h, 91 g of synthetic quartz was obtained, which contained no chlorine at all and had an OH group content of 45 ppm.
Met.

実施例3゜ 原ネー[とじてメチルトリットキシシランまたはテトラ
メトキシシランを使用し、これをキャリヤーガスとして
のアルゴンガスで搬送し、酸素ガスを混合してからバー
ナーに供給すると共に、このバーナーに補助燃料用の水
素ガスを供給して、このエステルシランを燃焼させ、こ
れによって発生したりリカを第2図に示したように水平
に保持されている回転しつつある直径20a+の黒鉛製
棒状体上に堆積させた。この際、バーナーは基体と同一
の水平面内に配置し、これを基体か害に沿って400I
llI+の距離で往復運動するようにしたところ。
Example 3: Using methyltritoxysilane or tetramethoxysilane as a raw material, it is transported with argon gas as a carrier gas, mixed with oxygen gas, and then supplied to a burner, and the burner is auxiliary. The ester silane is combusted by supplying hydrogen gas for fuel, and the resulting Lika is placed on a rotating graphite rod-shaped body with a diameter of 20 mm held horizontally as shown in Figure 2. It was deposited in At this time, the burner is placed in the same horizontal plane as the substrate, and the 400I
A reciprocating motion is made at a distance of llI+.

基体上に、略々均一の厚さでシリカが堆積した多孔質シ
リカ焼結体が得られたので、これを真空炉中でI X 
I F2)−ルの重空下で1150℃に2時間保持した
のら、ヘリウムガス中または真空下で溶融してガラス化
し、冷却後にこの基体を抜きとっtところ、パイプ状の
合成石英が得られた。
A porous silica sintered body in which silica was deposited with a substantially uniform thickness on the substrate was obtained, and this was then heated in a vacuum furnace using IX.
The substrate was held at 1150°C for 2 hours under the heavy atmosphere of an IF2)-cooler, then melted and vitrified in helium gas or under vacuum, and after cooling, the substrate was extracted and a pipe-shaped synthetic quartz was obtained. It was done.

なお、この場合の燃焼条件、溶融条件、得られた焼結体
、合成石英の性状はつぎの第1表に示すとおりでめった
The combustion conditions, melting conditions, and properties of the obtained sintered body and synthetic quartz were as shown in Table 1 below.

第 1 表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の系統図、第2図は本発明の別の悲
様を示す要部縦断面図、第3図は本発明1C使用される
バーナーを図示したもので(alはその上面図−+b+
はその部分縦断面図である。 1・・・原料タンク、 2・・・定量ポンプ。 3・・・蒸発器。 11−11” ・・・多孔質シリカ焼結体。 第2図 第3図 手続補正書 事件の表示 昭和58年特許願第198268号 発明の名称 合成石英の製造方法 補正をする者 事件との関係 特許出願人 名称 (206)信越化学工業株式会社′(理ス 住所 〒103東京都中央区日本橋本町4丁目9番地補
正命令の日付 発送日 昭和59年 1月31日 補正の対象
Fig. 1 is a system diagram of the method of the present invention, Fig. 2 is a vertical cross-sectional view of the main part showing another aspect of the present invention, and Fig. 3 is a diagram showing the burner used in the present invention 1C (al is its Top view -+b+
is a partial vertical sectional view thereof. 1... Raw material tank, 2... Metering pump. 3... Evaporator. 11-11" ... Porous silica sintered body. Figure 2 Figure 3 Display of procedural amendment case 1982 Patent Application No. 198268 Name of the invention Relationship with the person who amends the manufacturing method of synthetic quartz case Patent applicant name (206) Shin-Etsu Chemical Co., Ltd. Address: 4-9 Nihonbashi Honmachi, Chuo-ku, Tokyo 103 Date of amendment order Sent date: January 31, 1980 Subject of amendment

Claims (1)

【特許請求の範囲】 1一般式RnSi (OR’) に\KRは水素−fi 原子またはメチル基、エチル基、R′はメチル基オたは
エチル基−nは0〜4の正数)で示されろエステルシラ
ンまたはこれと水素ガスもしくは塩素を含まない気化さ
れた可燃性物質との混合ガスを燃焼させ、こり、lCよ
って発生するシリカを基体上に堆積させたのち、こ\に
得られた多孔質シリカ焼結体を真空下または水を含まな
い不活性ガス雰囲気下で即熱溶解することを特徴とする
合成石英の製造方法。 2 エステルシランがメチルトリメトキシシランまたは
テトラメトキシシランである特許請求の範!甫第1項記
載の合成石英の製造方法。 3、基体が炭素またに黒鉛製品である特許請求の範囲第
1項または第2項記載の合成石英の製造方法。
[Claims] 1 In the general formula RnSi (OR'), \KR is a hydrogen atom or a methyl group or an ethyl group, R' is a methyl group or an ethyl group, and n is a positive number from 0 to 4). This is obtained by burning ester silane or a mixed gas of this with hydrogen gas or a vaporized combustible substance that does not contain chlorine, and depositing the silica generated by 1C on a substrate. 1. A method for producing synthetic quartz, which comprises immediately melting a porous sintered silica body under vacuum or in an inert gas atmosphere containing no water. 2. Claims in which the ester silane is methyltrimethoxysilane or tetramethoxysilane! A method for producing synthetic quartz according to item 1. 3. The method for producing synthetic quartz according to claim 1 or 2, wherein the substrate is a carbon or graphite product.
JP19826883A 1983-10-25 1983-10-25 Manufacture of synthetic quartz Granted JPS6090836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19826883A JPS6090836A (en) 1983-10-25 1983-10-25 Manufacture of synthetic quartz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19826883A JPS6090836A (en) 1983-10-25 1983-10-25 Manufacture of synthetic quartz

Publications (2)

Publication Number Publication Date
JPS6090836A true JPS6090836A (en) 1985-05-22
JPH0420853B2 JPH0420853B2 (en) 1992-04-07

Family

ID=16388307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19826883A Granted JPS6090836A (en) 1983-10-25 1983-10-25 Manufacture of synthetic quartz

Country Status (1)

Country Link
JP (1) JPS6090836A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138145A (en) * 1987-08-20 1989-05-31 Shin Etsu Chem Co Ltd Production of synthetic quartz glass member
JPH0394843A (en) * 1989-09-04 1991-04-19 Shin Etsu Chem Co Ltd Synthetic quartz glass crucible and its production
JPH04270130A (en) * 1990-08-16 1992-09-25 Corning Inc Method for manufacture of non-porous body of highly pure fused silica glass
JPH06199532A (en) * 1991-06-29 1994-07-19 Shinetsu Quartz Prod Co Ltd Production of quartz glass member for excimer laser
US5470369A (en) * 1991-12-16 1995-11-28 Sumitomo Electric Industries, Ltd. Process for consolidation of porous preform for optical fiber
JPH11116247A (en) * 1997-10-09 1999-04-27 Nikon Corp Production of synthetic quartz glass
JP2008050204A (en) * 2006-08-24 2008-03-06 Sumitomo Electric Ind Ltd Manufacturing process of quartz glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125232A (en) * 1980-03-04 1981-10-01 Nippon Telegr & Teleph Corp <Ntt> Preparation of multicomponent glass fiber preform rod

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125232A (en) * 1980-03-04 1981-10-01 Nippon Telegr & Teleph Corp <Ntt> Preparation of multicomponent glass fiber preform rod

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138145A (en) * 1987-08-20 1989-05-31 Shin Etsu Chem Co Ltd Production of synthetic quartz glass member
JPH0394843A (en) * 1989-09-04 1991-04-19 Shin Etsu Chem Co Ltd Synthetic quartz glass crucible and its production
JPH04270130A (en) * 1990-08-16 1992-09-25 Corning Inc Method for manufacture of non-porous body of highly pure fused silica glass
USRE39535E1 (en) 1990-08-16 2007-04-03 Corning Incorporated Method of making fused silica by decomposing siloxanes
JPH06199532A (en) * 1991-06-29 1994-07-19 Shinetsu Quartz Prod Co Ltd Production of quartz glass member for excimer laser
US5470369A (en) * 1991-12-16 1995-11-28 Sumitomo Electric Industries, Ltd. Process for consolidation of porous preform for optical fiber
JPH11116247A (en) * 1997-10-09 1999-04-27 Nikon Corp Production of synthetic quartz glass
JP2008050204A (en) * 2006-08-24 2008-03-06 Sumitomo Electric Ind Ltd Manufacturing process of quartz glass
JP4640293B2 (en) * 2006-08-24 2011-03-02 住友電気工業株式会社 Quartz glass body manufacturing method

Also Published As

Publication number Publication date
JPH0420853B2 (en) 1992-04-07

Similar Documents

Publication Publication Date Title
CA2037102C (en) Method of making fused silica
JP2744695B2 (en) Improved vitreous silica products
US6312656B1 (en) Method for forming silica by combustion of liquid reactants using oxygen
JP3233298B2 (en) Method for making non-porous objects of high purity fused silica glass
US5703191A (en) Method for purifying polyalkylsiloxanes and the resulting products
US5879649A (en) Method for purifying polyalkylsiloxanes and the resulting products
JPS6090836A (en) Manufacture of synthetic quartz
EP0770584A1 (en) Method for producing heat-resistant synthetic quartz glass
EP0146659A1 (en) A method for the preparation of synthetic quartz glass suitable as a material of optical fibers
JP3470983B2 (en) Manufacturing method of synthetic quartz glass member
JPS6172644A (en) Manufacture of optical fiber having low transmission loss
JPH0459254B2 (en)
US6378337B1 (en) Method for producing bulk fused silica
JPH01126236A (en) Production of optical fiber preform
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
JPS629536B2 (en)
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPH0459253B2 (en)
JP2001151513A (en) Method of manufacturing aluminum addition quartz based porous preform
JPS5978943A (en) Manufacture of glass containing fluorine
JPS59137333A (en) Manufacture of base material for optical fiber
JPS638054B2 (en)
JPS63147839A (en) Doping method for porous glass base material
AU638702C (en) Vitreous silica products
JPS58213638A (en) Doping in preparation of optical glass