JPH0551542B2 - - Google Patents

Info

Publication number
JPH0551542B2
JPH0551542B2 JP16599384A JP16599384A JPH0551542B2 JP H0551542 B2 JPH0551542 B2 JP H0551542B2 JP 16599384 A JP16599384 A JP 16599384A JP 16599384 A JP16599384 A JP 16599384A JP H0551542 B2 JPH0551542 B2 JP H0551542B2
Authority
JP
Japan
Prior art keywords
glass
fluorine
porous glass
glass layer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16599384A
Other languages
Japanese (ja)
Other versions
JPS6144725A (en
Inventor
Tamotsu Kamya
Motohiro Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP16599384A priority Critical patent/JPS6144725A/en
Publication of JPS6144725A publication Critical patent/JPS6144725A/en
Publication of JPH0551542B2 publication Critical patent/JPH0551542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/14Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron and fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石英系多孔質ガラス層にフツ素をドー
プするための処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a treatment method for doping a silica-based porous glass layer with fluorine.

(従来技術) 石英系光フアイバにおいて、コア・クラツド相
互の相対的屈折率差を大きくすべく、あるいは光
フアイバの耐放射線性を高めるべく、そのクラツ
ド中にフツ素をドープすることがすでに実施され
ている。
(Prior art) Fluorine has already been doped into the cladding of a silica optical fiber in order to increase the relative refractive index difference between the core and the cladding, or to improve the radiation resistance of the optical fiber. ing.

光フアイバ母材の製造に際してフツ素ドープト
石英を合成するとき、1例として火炎加水分解法
における火炎(酸水素炎)中に直接フツ素化合物
を混入し、その合成ガラス中にフツ素をドープす
る方法がとられている。
When synthesizing fluorine-doped quartz in the production of optical fiber base material, for example, a fluorine compound is directly mixed into the flame (oxyhydrogen flame) in the flame hydrolysis method, and fluorine is doped into the synthetic glass. A method is being taken.

この方法の場合、酸水素炎中にフツ素化合物を
混入しているため、きわめて容易に大量のHFガ
スが合成され、しかもそのHFがSiO2などの合成
ガラスを侵食してこれをSiF4などのガスに転換
し、揮散させてしまう。
In this method, since a fluorine compound is mixed into the oxyhydrogen flame, a large amount of HF gas is synthesized very easily, and the HF corrodes the synthetic glass such as SiO 2 and converts it into SiF 4 etc. It converts into gas and evaporates.

それゆえ上記方法の場合、反応収率が低い問題
があり、ガラス中にドープできるフツ素の量にも
限界があつた。
Therefore, in the case of the above method, there is a problem that the reaction yield is low, and there is also a limit to the amount of fluorine that can be doped into the glass.

(発明の目的) 本発明は上記の問題点に鑑み、ガラス揮散を抑
制して石英系ガラス中に必要かつ十分な量のフツ
素をドープすることのできる石英系多孔質ガラス
層の処理方法を提供しようとするものである。
(Object of the Invention) In view of the above problems, the present invention provides a method for treating a porous silica glass layer that can suppress glass volatilization and dope a necessary and sufficient amount of fluorine into the silica glass. This is what we are trying to provide.

(発明の構成) 本発明に係る方法は、所定ハロゲン化原料の化
学反応により生成されたガラス微粒子を堆積して
B2O3−SiO2系多孔質ガラス層を形成し、該多孔
質ガラス層フツ素含有雰囲気中にて加熱処理する
ことを特徴としている。
(Structure of the Invention) The method according to the present invention deposits glass fine particles produced by a chemical reaction of a predetermined halogenated raw material.
The method is characterized in that a B2O3 - SiO2- based porous glass layer is formed and the porous glass layer is heat-treated in a fluorine-containing atmosphere.

(実施例) つぎに図面を参照して本発明方法の具体的な実
施例を説明する。
(Example) Next, a specific example of the method of the present invention will be described with reference to the drawings.

第1図は、本発明方法の処理対象となる石英系
多孔質ガラス層1が石英系ガラス棒2の外周に堆
積形成された状態を示している。
FIG. 1 shows a state in which a silica-based porous glass layer 1 to be treated in the method of the present invention is deposited on the outer periphery of a quartz-based glass rod 2. As shown in FIG.

上記ガラス棒2は既知のMCVD法とか、VAD
法、OVD法などを介してつくられたものであり、
該棒2は1例として純SiO2からなる。
The above glass rod 2 is made using the known MCVD method or VAD method.
It was created through the law, OVD law, etc.
The rod 2 is made of pure SiO 2 by way of example.

一方、上記ガラス層1はOVD法、VAD法など
を介してガラス棒2の外周に前記のごとく形成さ
れているのであり、これはB2O5−SiO2系からな
る。
On the other hand, the glass layer 1 is formed on the outer periphery of the glass rod 2 by OVD method, VAD method, etc. as described above, and is made of B2O5 - SiO2 system.

多孔質ガラス層1をガラス棒2の外周に堆積形
成するとき、既知の多重管(三重管)構造からな
るバーナが用いられ、該バーナ中心にある第1流
道には原料ガスが、つぎの第2流道には酸素が、
さらに第3流道には水素がそれぞれ供給されると
ともにこれらの火炎加水分解反応により生成され
たガラス微粒子(スート状)がガラス棒2の外周
に堆積され、多孔質ガラス層1となる。
When depositing and forming the porous glass layer 1 on the outer periphery of the glass rod 2, a burner having a known multi-tube (triple tube) structure is used, and a first flow path in the center of the burner carries the raw material gas. Oxygen is in the second flow path,
Further, hydrogen is supplied to each of the third channels, and glass fine particles (soot-like) generated by these flame hydrolysis reactions are deposited on the outer periphery of the glass rod 2, forming the porous glass layer 1.

多孔質ガラス層1を形成する際のより具体的な
例として、四塩化ケイ素250cc/分と、三塩化ホ
ウ素50cc/分と、アルゴン900cc/分とを混合し
た原料ガスが第1流道へ供給され、第2流道、第
3流道にはそれぞれ61/分の水素、41/分の酸素
が供給される。
As a more specific example of forming the porous glass layer 1, a raw material gas containing 250 cc/min of silicon tetrachloride, 50 cc/min of boron trichloride, and 900 cc/min of argon is supplied to the first flow path. The second flow path and the third flow path are supplied with hydrogen at a rate of 61/min and oxygen at a rate of 41/min, respectively.

上記のようにしてガラス棒2の外周に形成され
た多孔質ガラス層1は、三フツ化ホウ素1%・残
部ヘリウムとした混合ガス、しかもその混合ガス
供給量が301/分である1400℃のフツ素含有雰囲
気中にて加熱処理されるのであり、ここで多孔質
ガラス層1にはフツ素がドープされ、同時に該層
1が透明ガラス化される。
The porous glass layer 1 formed on the outer periphery of the glass rod 2 as described above is made of a mixed gas of 1% boron trifluoride and the balance helium at a temperature of 1400°C with a gas supply rate of 301/min. Heat treatment is performed in a fluorine-containing atmosphere, where the porous glass layer 1 is doped with fluorine and at the same time the layer 1 is made into transparent glass.

この際の加熱処理に用いられる装置は、第2図
に例示するごとく下部に給気口3、上部に排気口
4を備なえた石英製炉心管5の外周に電気ヒータ
6が配置されたものであり、該炉心管5内には下
部の給気口3から上記混合ガスが供給されるとと
もにその上部から多孔質ガラス層1付のガラス棒
2が低速で挿入降下され、多孔質ガラス層1が電
気ヒータ6により加熱処理される。
The device used for this heat treatment is one in which an electric heater 6 is arranged around the outer periphery of a quartz furnace tube 5, which is equipped with an air supply port 3 at the bottom and an exhaust port 4 at the top, as shown in FIG. The above-mentioned mixed gas is supplied into the core tube 5 from the air supply port 3 at the lower part, and the glass rod 2 with the porous glass layer 1 is inserted and lowered from the upper part at a low speed, and the porous glass layer 1 is heated by an electric heater 6.

上記処理により得らたガラス棒を光フアイアバ
母材とし、これを紡糸して光フアイバにしたとこ
ろ、その屈折率分布は第3図イのごとく、SiO2
製コア7の屈折率=1.46におけるクラツド8との
比屈折率差△が1.0%にもなり、クラツド8にフ
ツ素が十分ドープされていることが確認できた。
The glass rod obtained by the above treatment was used as an optical fiber base material, and when this was spun into an optical fiber, the refractive index distribution was as shown in Figure 3 A, SiO 2
The relative refractive index difference Δ with respect to the cladding 8 when the refractive index of the core 7 was 1.46 was as much as 1.0%, and it was confirmed that the cladding 8 was sufficiently doped with fluorine.

比較のため、フツ素化合物を含まない雰囲気中
で加熱処理することにより得られた上記母材を紡
糸し、光フアイバを製造したところ、この比較例
での△は第3図ロのごとく0.25%とかなり小さい
ものになつてしまつた。
For comparison, the above base material obtained by heat treatment in an atmosphere free of fluorine compounds was spun to produce an optical fiber, and the △ in this comparative example was 0.25% as shown in Figure 3 B. It has become quite small.

なお、B2O3−SiO2系でのB2O3の効果として、
B2O3はFとの反応性が高く、これと容易に反応
してガラス中にFを取りこむ。
In addition, the effect of B 2 O 3 in the B 2 O 3 −SiO 2 system is as follows:
B 2 O 3 has high reactivity with F and easily reacts with it to incorporate F into the glass.

換言すれば、わずかにFが存在する処理雰囲気
中でも上記反応が進み、多量のFをガラス中に取
りこむ。
In other words, the above reaction proceeds even in a processing atmosphere where a small amount of F is present, and a large amount of F is incorporated into the glass.

また、一般に純SiO2製とした多孔質ガラスを
フツ素化合物含有雰囲気中で加熱処理すると、そ
のガラスの大半が揮散してしまうが、本発明のご
とくB2O3を含むSiO2系の場合、上記処理による
ガラス揮散が10%以下であり、フツ素ドープ時の
ガラス歩どまりが高く、かつ、フツ素の反応収率
も高い。
Furthermore, when porous glass made of pure SiO 2 is generally heat treated in an atmosphere containing fluorine compounds, most of the glass evaporates, but in the case of SiO 2 containing B 2 O 3 as in the present invention, The glass volatilization due to the above treatment is 10% or less, the glass yield when doping with fluorine is high, and the reaction yield of fluorine is also high.

(発明の効果) 以上説明した通り、本発明方法によるときは、
B2O3−SiO2系の多孔質ガラスをフツ素含有雰囲
気中にて加熱処理するから、ガラス揮散を抑制し
て石英系ガラス中に必要かつ十分な量のフツ素を
ドープすることができる。
(Effect of the invention) As explained above, when using the method of the present invention,
Since B 2 O 3 −SiO 2 -based porous glass is heat-treated in a fluorine-containing atmosphere, it is possible to suppress glass volatilization and dope the necessary and sufficient amount of fluorine into silica glass. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法において処理対象となる多
孔質ガラス層の略示説明図、第2図は本発明方法
に用いる装置の略示説明図、第3図は本発明方法
での処理母材から得られた光フアイバとその比較
例における光フアイバのそれぞれ屈折率分布を示
した説明図である。 1……多孔質ガラス層、5……炉心管、6……
電気ヒータ。
FIG. 1 is a schematic explanatory diagram of a porous glass layer to be treated in the method of the present invention, FIG. 2 is a schematic explanatory diagram of the apparatus used in the method of the present invention, and FIG. 3 is a schematic diagram of the base material to be treated in the method of the present invention. FIG. 2 is an explanatory diagram showing the refractive index distributions of an optical fiber obtained from the above and a comparative example thereof. 1... Porous glass layer, 5... Furnace tube, 6...
electric heater.

Claims (1)

【特許請求の範囲】[Claims] 1 所定ハロゲン化原料の化学反応により生成さ
れたガラス微粒子を堆積してB2O3−SiO2系多孔
質ガラス層を形成し、該多孔質ガラスをフツ素含
有雰囲気中にて加熱処理することを特徴とする石
英系多孔質ガラス層の処理方法。
1. Depositing glass particles generated by a chemical reaction of a predetermined halogenated raw material to form a B2O3 - SiO2- based porous glass layer, and heat-treating the porous glass in a fluorine-containing atmosphere. A method for processing a silica-based porous glass layer, characterized by:
JP16599384A 1984-08-08 1984-08-08 Method of treating quartz porous glass layer Granted JPS6144725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16599384A JPS6144725A (en) 1984-08-08 1984-08-08 Method of treating quartz porous glass layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16599384A JPS6144725A (en) 1984-08-08 1984-08-08 Method of treating quartz porous glass layer

Publications (2)

Publication Number Publication Date
JPS6144725A JPS6144725A (en) 1986-03-04
JPH0551542B2 true JPH0551542B2 (en) 1993-08-02

Family

ID=15822874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16599384A Granted JPS6144725A (en) 1984-08-08 1984-08-08 Method of treating quartz porous glass layer

Country Status (1)

Country Link
JP (1) JPS6144725A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776092B2 (en) * 1985-10-09 1995-08-16 住友電気工業株式会社 Glass manufacturing method
JP2580542Y2 (en) * 1991-03-13 1998-09-10 日本精工株式会社 Steering column support device
US5203898A (en) * 1991-12-16 1993-04-20 Corning Incorporated Method of making fluorine/boron doped silica tubes
JP3713108B2 (en) * 1996-08-14 2005-11-02 富士写真フイルム株式会社 Pillow type packaging equipment

Also Published As

Publication number Publication date
JPS6144725A (en) 1986-03-04

Similar Documents

Publication Publication Date Title
US4979971A (en) Method for producing glass preform for optical fiber
US5221309A (en) Method for producing glass preform for optical fiber
JPS60257408A (en) Optical fiber and its production
JPH05351B2 (en)
EP0164103B1 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS6081033A (en) Manufacture of optical fiber
JPH0551542B2 (en)
US20020108404A1 (en) Drying agent and improved process for drying soot preforms
JPH0463365B2 (en)
JPS6289B2 (en)
JPH0559052B2 (en)
JP2831842B2 (en) Manufacturing method of optical fiber base material
JP2635563B2 (en) Manufacturing method of glass material for optical transmission body
JPH0524093B2 (en)
JPS6140843A (en) Optical fiber
JP2540056B2 (en) Method for manufacturing fluorine-containing clad optical fiber foam
JPS6251215B2 (en)
JP4069381B2 (en) Method for producing doped synthetic quartz glass
JPS63129032A (en) Manufacture of glass doped with fluorine
JPS61197438A (en) Method of converting porous parent material for optical fiber into clarified glass
JPH03115136A (en) Optical fiber preform and its production
JPS5925738B2 (en) Optical glass fiber manufacturing method
AU698054B2 (en) Increasing the retention of GeO2 during production of glass articles
JPS63315531A (en) Production of optical fiber preform
JPH0791082B2 (en) Method and apparatus for manufacturing optical fiber preform

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term