JPS5925738B2 - Optical glass fiber manufacturing method - Google Patents
Optical glass fiber manufacturing methodInfo
- Publication number
- JPS5925738B2 JPS5925738B2 JP5626976A JP5626976A JPS5925738B2 JP S5925738 B2 JPS5925738 B2 JP S5925738B2 JP 5626976 A JP5626976 A JP 5626976A JP 5626976 A JP5626976 A JP 5626976A JP S5925738 B2 JPS5925738 B2 JP S5925738B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- optical glass
- glass fiber
- starting member
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Surface Treatment Of Glass (AREA)
Description
【発明の詳細な説明】
本発明は、伝送損失及び伝送信号歪の小さく、火炎加水
分解による欠点を除去した光学用ガラスファイバー製造
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing optical glass fibers that has low transmission loss and transmission signal distortion and eliminates drawbacks caused by flame hydrolysis.
従来の伝送損失及び伝送信号歪を小さくした光学用ガラ
スファイバー製造方法は、例えばシリコン等のガラス生
成原料ガスを火炎中で燃焼反応せしめて光学用ガラスの
粉末体を生向し、該光学用ガラスの粉末体を出発部材上
に積層し、次に該光学用ガラスの粉末体を制(財)ガス
雰囲気中で加熱焼成してガラス化された光学用ガラスを
生成し、該光学用ガラスを紡糸して光学用ガラスファイ
バーを製造する火炎加水分解による製造方法、又は石英
管等の内又は外周に原料ガスを供給することにより高周
波プラズマフレーム等を用いて光学用ガラスを積層し、
該光学用ガラスを紡糸して光学用ガラスファイバーを製
造するCVD法による製造方法が用いられていたのであ
る。A conventional optical glass fiber manufacturing method that reduces transmission loss and transmission signal distortion involves, for example, causing a combustion reaction in a flame of a glass-forming raw material gas such as silicon to produce an optical glass powder. The powder of the optical glass is laminated on a starting member, and then the powder of the optical glass is heated and fired in a controlled gas atmosphere to produce vitrified optical glass, and the optical glass is spun. A method of manufacturing optical glass fiber by flame hydrolysis, or a method of laminating optical glass using a high-frequency plasma flame, etc. by supplying a raw material gas to the inside or outside of a quartz tube, etc.
A CVD method was used in which optical glass fibers were produced by spinning the optical glass.
然しながら従来の方法、特に火炎加水分解を用いる方法
に於いては、加水分解によつて生じる廃ガスは腐食性の
塩酸を含んだ水蒸気が発生されるのでその処理が厄介で
あり、又脱水が容易でない。However, in conventional methods, especially those using flame hydrolysis, the waste gas generated by hydrolysis is difficult to dispose of as water vapor containing corrosive hydrochloric acid is generated, and it is also easy to dehydrate. Not.
従つて光伝送に用いる波長領域で波長が0.95μmの
ところに吸収ピークをもつOH基を多く含む為に伝送損
失を増大させる欠点がある。本発明は前述の欠点を除去
した新規な発明であつて、その目的とするところは、燃
焼反応などに於いて腐食性ガスが発生せず、OH基が少
なく且つ比較的低温で光学用ガラスを生成できる光伝送
損失の小さい光学用ガラスファイバー製造方法を提供す
るものである。Therefore, since it contains many OH groups that have an absorption peak at a wavelength of 0.95 μm in the wavelength range used for optical transmission, it has the disadvantage of increasing transmission loss. The present invention is a new invention that eliminates the above-mentioned drawbacks, and its purpose is to produce optical glass that does not generate corrosive gas during combustion reactions, has few OH groups, and at a relatively low temperature. The present invention provides a method for manufacturing optical glass fiber that can produce optical glass fiber with low optical transmission loss.
この目的を達成する為に、本発明の製造方法は、シリコ
ン及び他の元素の水素化物又は有機化合物を酸素ガスに
より燃焼反応せしめて光学用ガラスの粉末体を生成せし
め該光学用ガラスの粉末体を出発部材に積層せしめる工
程と、前記光学用ガラスの粉末体をハロゲンガスと酸素
ガスを含む水分の少ない不活性ガス雰囲気中で所定の温
度及び時間加熱してガラス化する工程と、該ガラス化さ
れた光学用ガラスを紡糸する工程とよりなることを特徴
とするものである。In order to achieve this object, the manufacturing method of the present invention involves producing an optical glass powder by subjecting silicon and other element hydrides or organic compounds to a combustion reaction using oxygen gas. a step of laminating the optical glass powder on a starting member; a step of vitrifying the optical glass powder by heating it at a predetermined temperature and time in an inert gas atmosphere with low moisture containing halogen gas and oxygen gas; The method is characterized by comprising a step of spinning the optical glass produced by the method.
以下第1図乃至第4図A,bを参照して本発明の実施例
を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 4A and 4B.
第1図は本発明の実施例の説明図であつて、1はSiH
4、又は希釈されたSiH4ガスのタンク、2はドープ
用原料ガスのタンク、3及び4は各流量計、5及び6は
流量調整装置、7は混合器、8は原料ガス送入管、9は
キヤリヤガス送入管、10は遮断用ガス送込管、11は
バーナー 12は光学用ガラス生成物、13は出発部材
、14は積層された光学用ガラスである。FIG. 1 is an explanatory diagram of an embodiment of the present invention, in which 1 is a SiH
4 or a tank for diluted SiH4 gas, 2 a tank for raw material gas for dope, 3 and 4 each flowmeter, 5 and 6 a flow rate adjustment device, 7 a mixer, 8 a raw material gas feed pipe, 9 10 is a carrier gas inlet pipe, 10 is a cutoff gas inlet pipe, 11 is a burner, 12 is an optical glass product, 13 is a starting member, and 14 is a laminated optical glass.
13Aは回転方向、13Bは移動方向をそれぞれ示す矢
印である。13A is an arrow indicating the direction of rotation, and 13B is an arrow indicating the direction of movement.
先ず、B2H6(ジボラン)、NH3(アンモニア)、
SiH4(シラン)、PH3(ホスフイン又は燐化水素
)、GeH4(四水素化ゲルマニウム)、AsH3(ア
ルシン)、SnH4(四水素化錫)、SbH3(スチピ
ン)等の室温付近で気体となり易い水素化物、或いは有
機化合物を石英ガラス或いは耐火性金属からなるバーナ
ーで酸素と混合して燃焼させることにより酸化物の光学
用ガラス生成物を作る。ここで火炎加水分解と比較して
例えばSlH4、GeH4と酸素との主反応を示すと、
水素化物の燃焼に於ける主反応は
SiH4+202=SiO2+2H20
GeH4+202−GeO2+2H20
火炎加水分解法に於ける主反応は
SiCl4+2H2+02=SiO2+4HCIGeC
114+2H2+02=GeO2+4HC1この場合火
炎加水分解法に用いられるSiC24(四塩化珪素)、
GeCl4(四塩化ゲルマニウム)等のハロゲン化物は
化合物として安定な為、一層高温にして(酸水素炎の熱
により)酸化物としなけ3ればならない。First, B2H6 (diborane), NH3 (ammonia),
Hydrides that easily become a gas near room temperature, such as SiH4 (silane), PH3 (phosphine or hydrogen phosphate), GeH4 (germanium tetrahydride), AsH3 (arsine), SnH4 (tin tetrahydride), and SbH3 (stipine), Alternatively, an oxide optical glass product is produced by mixing an organic compound with oxygen and burning it in a burner made of quartz glass or a refractory metal. Here, in comparison with flame hydrolysis, for example, the main reaction between SlH4, GeH4 and oxygen is shown.
The main reaction in hydride combustion is SiH4+202=SiO2+2H20 GeH4+202-GeO2+2H20 The main reaction in flame hydrolysis is SiCl4+2H2+02=SiO2+4HCIGeC
114+2H2+02=GeO2+4HC1 In this case, SiC24 (silicon tetrachloride) used in the flame hydrolysis method,
Since halides such as GeCl4 (germanium tetrachloride) are stable as compounds, they must be converted to oxides at higher temperatures (by the heat of an oxyhydrogen flame).
これに反してSiH4.GeH4等の水素化物、或いは
有機化合物は化合物として一層不安定な為、比較的低い
温度で酸化物とすることができる。なお原料としてSi
H4に他の水素化物を混合したものを用いれば、酸化物
のドープされたSiO2の光学用ガラス生成物ができる
。On the other hand, SiH4. Since hydrides such as GeH4 or organic compounds are more unstable as compounds, they can be converted into oxides at relatively low temperatures. Note that Si is used as a raw material.
H4 mixed with other hydrides produces oxide-doped SiO2 optical glass products.
第1図に示すように、前記酸化物の光学用ガラス生成物
とするSiH4ガス、又はAr,He,N2等の不活性
ガス或いはH2ガスによつて希釈されたSiH4ガスは
タンク1より流量計3を通り流量調整器5によつて所定
の流量に調整されてガス混合器7に送り込まれる。As shown in FIG. 1, the SiH4 gas to be used as the optical glass product of the oxide, or the SiH4 gas diluted with an inert gas such as Ar, He, N2, or H2 gas, is supplied from a tank 1 to a flowmeter. 3, the gas is adjusted to a predetermined flow rate by a flow rate regulator 5, and sent to a gas mixer 7.
又ドープ剤としての原料ガス(例えばGeH4)或いは
希釈されたドープ剤としての原料ガスはタンク2から流
量計4を通り、流量調整器6によつて所定の流量に調整
されてガス混合器7に送り込まれる。前記混合器7で混
合された混合ガスは送入管8から、そして燃焼用02ガ
スは送入管9から、夫々バーナー11に送り込まれる。
そして該バーナー11に於いてはその流出口で即反応し
て光学用ガラスの粉末体が付着し、流出口がつまつてし
まはないように、同時に反応遮断用としてAr,He,
N2等の不活性ガス又はH2ガスが送入管10からバー
ナー11に送入される。第2図A,bはバーナーを3重
ノズルにした場合で、aは縦断面図、bは横断面図、第
3図A,bは同様の5重ノズルにした場合で、aは縦断
面図、bは横断面図、第4図A,bは2種のノズルを流
出口附近で流出ガスを交差させるように配置した場合で
、aは縦断面図、bは横断面図である。In addition, the raw material gas (for example, GeH4) as a dopant or the diluted raw material gas as a dopant passes from the tank 2 through the flow meter 4, is adjusted to a predetermined flow rate by the flow regulator 6, and is sent to the gas mixer 7. sent. The mixed gas mixed in the mixer 7 is sent to the burner 11 from the feed pipe 8, and the 02 gas for combustion is sent from the feed pipe 9, respectively.
In the burner 11, at the same time, Ar, He,
An inert gas such as N2 or H2 gas is fed into the burner 11 from the feed pipe 10. Figures 2A and b show the case where the burner has triple nozzles, a is a longitudinal cross-section, b is a cross-sectional view, and Figures 3A and b are the same five-nozzle configuration, and a is the longitudinal cross-section. 4A and 4B are cross-sectional views, and FIGS. 4A and 4B are cross-sectional views in which two types of nozzles are arranged so that the outflow gas intersects near the outlet, where a is a longitudinal cross-sectional view and FIG. 4 b is a cross-sectional view.
各図に於いて、15は内側の原料ガス流出口、16は遮
断ガス流出口、17は酸素ガス流出口、18は内側酸素
ガス流出口、19は内側遮断ガス流出口、20は原料ガ
ス流出口、21は外側遮断ガス流出口、22は外側酸素
ガス流出口、23はMノズル、24は原料ガス流出口、
25は遮断ガス流出口、26はNノズル、27は酸素ガ
ス流出口をそれぞれ示す。例えば第2図A,bに示す如
きノズルを使用すれば、流出口附近では内側の原料ガス
流出口15から流出する原料ガスと外側の酸素ガス流出
口17から流出する酸素ガスとは中間の遮断ガス流出口
16より流出する遮断ガスで遮蔽されて流出する形とな
り、酸化反応が流出口附近では阻止される。In each figure, 15 is the inner raw material gas outlet, 16 is the cutoff gas outlet, 17 is the oxygen gas outlet, 18 is the inner oxygen gas outlet, 19 is the inner cutoff gas outlet, and 20 is the raw material gas flow. 21 is an outer blocking gas outlet, 22 is an outer oxygen gas outlet, 23 is an M nozzle, 24 is a raw material gas outlet,
25 is a cutoff gas outlet, 26 is an N nozzle, and 27 is an oxygen gas outlet. For example, if a nozzle as shown in FIGS. 2A and 2B is used, near the outlet, the raw material gas flowing out from the inner raw material gas outlet 15 and the oxygen gas flowing out from the outer oxygen gas outlet 17 are separated by an intermediate barrier. The gas flows out while being blocked by the blocking gas flowing out from the gas outlet 16, and the oxidation reaction is prevented near the outlet.
従つて流出口には光学用ガラスが沈積しない。同様に第
3図A,bに示す如きノズルを使用する場合は、内側か
ら外側に順に酸素ガス、原料ガス、酸素ガスの層が夫々
流出口18,20,22より流出されるが、中間の流出
口19及び21より流出される遮断ガス層によりそれぞ
れ遮蔽されて流出口附近では酸化反応が阻止されること
になり、ノズルの流出口には光学用ガラスが沈積しない
。又第4図A,bに示す如きノズルを使用する場合はM
ノズル23の流出口24より流出する原料ガスは流出口
25より流出する遮断ガスで被覆された状態で流出され
、Nノズル26の流出口27より流出する酸素ガスと流
出口よりやや離れたところで交差して燃焼反応をするこ
とになるので、両ノズル23及び26の流出口には光学
用ガラスの沈積が行われない。従つて、それぞれのノズ
ルに於いて流出口のサイ゛ズを一定に保つことができる
ので終始性能が一定の製品を生産することができること
となる。なおノズルとしては前述の構成のもの以外に前
記第2図A,b乃至第4図A,bに示すものを種々組合
せて用いることができる。Therefore, no optical glass is deposited at the outlet. Similarly, when using a nozzle as shown in FIGS. 3A and 3B, layers of oxygen gas, raw material gas, and oxygen gas are discharged from the outlet ports 18, 20, and 22 in order from the inside to the outside, but the intermediate layer The oxidation reaction is blocked in the vicinity of the outlets by being shielded by the blocking gas layers flowing out from the outlets 19 and 21, so that optical glass is not deposited at the outlet of the nozzle. In addition, when using nozzles such as those shown in Figure 4 A and b, M
The raw material gas flowing out from the outlet 24 of the nozzle 23 is covered with the blocking gas flowing out from the outlet 25, and intersects with the oxygen gas flowing out from the outlet 27 of the N nozzle 26 at a place slightly away from the outlet. Therefore, no optical glass is deposited at the outlets of both nozzles 23 and 26, as a combustion reaction occurs. Therefore, since the size of the outlet of each nozzle can be kept constant, it is possible to produce a product with constant performance from beginning to end. In addition to the nozzles described above, those shown in FIGS. 2A and 2B to 4A and 4B can be used in various combinations.
そしてバーナー11の流出口近傍から離れた位置に於い
て夫々のガスが混合反応して所定の酸化物をドープした
光学用SiO2ガラス生成物となる。Then, at a position away from the vicinity of the outlet of the burner 11, the respective gases undergo a mixing reaction to form an optical SiO2 glass product doped with a predetermined oxide.
該光学用ガラス生成物は第1図図示の13Aの方向に回
転し13Bの方向に往復運動をしている出発部材13上
へ均一に積層され、光学用ガラスの粉末体の層14を形
成していく。出発部材13としては石英ガラス、カーボ
ン、炭化珪素等の耐火物、或いはW,MO,r等の耐火
性金属の棒又は管を用いることができる。The optical glass product is uniformly laminated onto a starting member 13 rotating in the direction 13A and reciprocating in the direction 13B shown in FIG. 1 to form a layer 14 of optical glass powder. To go. As the starting member 13, a rod or tube made of a refractory material such as quartz glass, carbon, or silicon carbide, or a refractory metal such as W, MO, or r can be used.
斯くして出発部材13に積層された光学用ガラス棒又は
管14から前記出発部材13を除去するか又は前記出発
部材13を着けたまま、例えば温度勾配のある高温領域
で前記光学用ガラスに吸着したガスを或る特定の方向に
追出しながら溶融してガラス化する。この時の雰囲気を
真空とすれば水分乃至0H基も減少させることができる
。この場合、雰囲気として乾燥した酸素雰囲気とするこ
とも可能である。さらに積極的に0H基を除去するには
、ドーパントの分解を抑えるべく、若干の酸素ガスを含
み、0H基と反応するハロゲンガスを含む水分の極めて
少いHeガスのような不活性ガスを用いてもよい。特に
ハロゲンガスとしてF2を用いるとF2ガス分子は他の
ハロゲンガスに比べて小さく、光学用ガラス、又はその
粒子中に入り易く、又光学用ガラス中の0H基との反応
性も強いので0H基の除去には有効である。その時の反
応は
但し、こ\でF2は光学用ガラス中の0H基に対応する
量だけ送り込むことが必要である。The starting member 13 is removed from the optical glass rod or tube 14 stacked on the starting member 13, or the starting member 13 is adsorbed onto the optical glass in a high temperature region with a temperature gradient, for example, while the starting member 13 is attached. The gas is melted and vitrified while being expelled in a certain direction. If the atmosphere at this time is vacuum, moisture and OH groups can also be reduced. In this case, it is also possible to use a dry oxygen atmosphere as the atmosphere. To remove the 0H group more actively, an inert gas such as He gas containing a small amount of oxygen gas and a very low moisture content containing a halogen gas that reacts with the 0H group is used to suppress the decomposition of the dopant. It's okay. In particular, when F2 is used as a halogen gas, F2 gas molecules are smaller than other halogen gases and easily enter optical glass or its particles, and also have strong reactivity with OH groups in optical glass, so 0H groups It is effective in removing. However, in the reaction at this time, it is necessary to feed F2 in an amount corresponding to the 0H groups in the optical glass.
又HF(弗化水素)は光学用ガラスと反応するので出来
るだけ速かに除去するようにこれら焼結用混合ガスが流
入出するようにすることが好ましい。F2ガス原料とし
ては、大気中では極めて安定なSF6,CF4などの弗
素化合物ガスを使用し、焼結時の高温下で熱分解させれ
ばよい。なお従来の塩素ガスを使用する方法では焼結後
のガラス中に泡が残留し易く、また原料供給系の配管材
料が汚染され易く、得られたガラスフアイバの損失値が
高くなり、さらに発生廃ガスのCl2,HCIは弗素系
に比して濃度を下げ難く、処理が難かしい。つぎに、焼
結前又は後に出発部材13を除去した場合は、その除去
した為に出来た光学用ガラスの管孔の内面を弗酸水で洗
浄する。さらに洗浄だけでなく孔内面を弗酸水で削り取
る等して光学用ガラス管とする。次に該光学用ガラス管
を高温に加熱して軟化し、孔内面が表面張力により潰れ
て内実になるよう延伸して棒状体とする。その方法は例
えば前記光学用ガラス管をガラス旋盤にかけ、回転させ
ながら外側より酸水素炎、プラズマ炎、又は電気ヒータ
ー等で高温に加熱し、前記光学用ガラス管の孔を潰して
内実としながら、さらに加熱源又は管を軸方向に移動し
ていく。この場合孔内を減圧すれば孔を潰す作業は促進
される。又孔内に加熱源を設けて前記光学用ガラス管の
内側から加熱して内実の棒状態にすることも可能である
。このようにして成形された光学用ガラスの棒状体を石
英ガラス又はバイコール等比較的屈折率の小さいガラス
からなる管に挿入して複合体とし、該複合体を溶融紡糸
して光学用ガラスフアイバ一管を製造するのである。ま
た光学用ガラス管をそのま\溶融加熱して紡糸する方法
で光学用ガラスフアイバ一とすることも可能である。以
下具体的な本発明の実施例について説明する。Further, since HF (hydrogen fluoride) reacts with optical glass, it is preferable that the mixed gas for sintering be flowed in and out so as to be removed as quickly as possible. As the F2 gas raw material, a fluorine compound gas such as SF6 or CF4, which is extremely stable in the atmosphere, may be used and thermally decomposed at a high temperature during sintering. In addition, in the conventional method using chlorine gas, bubbles tend to remain in the glass after sintering, the piping materials of the raw material supply system are likely to be contaminated, the loss value of the obtained glass fiber is high, and the waste generated is Gases such as Cl2 and HCI are more difficult to reduce in concentration than fluorine-based gases, and are difficult to process. Next, when the starting member 13 is removed before or after sintering, the inner surface of the tube hole in the optical glass created by the removal is cleaned with hydrofluoric acid water. In addition to cleaning, the inner surface of the hole is scraped off with hydrofluoric acid water to obtain an optical glass tube. Next, the optical glass tube is heated to a high temperature to soften it, and stretched so that the inner surface of the hole collapses due to surface tension to form a rod-shaped body. The method is, for example, by placing the optical glass tube in a glass lathe, heating it from the outside to a high temperature with an oxyhydrogen flame, plasma flame, electric heater, etc. while rotating it, and crushing the holes in the optical glass tube to make it solid. The heating source or tube is further moved in the axial direction. In this case, reducing the pressure inside the hole will facilitate the operation of crushing the hole. It is also possible to provide a heating source inside the hole and heat the optical glass tube from the inside to make it into a solid rod shape. The rod-shaped optical glass thus formed is inserted into a tube made of glass with a relatively low refractive index such as quartz glass or Vycor to form a composite, and the composite is melt-spun to form an optical glass fiber. It manufactures pipes. It is also possible to make an optical glass fiber by melting and heating an optical glass tube as it is and spinning it. Specific examples of the present invention will be described below.
実施例 1第1図に於いて、最初に20%のSiH4を
含むArガス(第1ガスとする)と、ドープ済11とし
て50!)のGeH4を含むArガス(第2ガスとする
)を混合して原料ガスとし送入管8から第2図A,bに
示す構造のノズルを有するバーナー11に1、51/M
inの流量で150分間送り込み、次に第2ガスを閉め
、第1ガスのみを2.01/Minの流量で150分間
バーナー11に送り込んだ。Example 1 In FIG. 1, Ar gas containing 20% SiH4 (referred to as the first gas) and 50! ) is mixed with Ar gas (second gas) containing GeH4 and used as a raw material gas.
Then, the second gas was closed and only the first gas was fed into the burner 11 for 150 minutes at a flow rate of 2.01/min.
この原料ガスは流出口15から流出され、この原料ガス
と同時に遮断用ガスとしてH2ガスを21/Minの流
量で送入管10よりバーナー11内に送入し、流出口1
6より流出され、また燃焼用ガスとして02ガスを31
/Minの流量で送人管9よりバーナー11内に送入し
、流出口17より流出された。そして、外径10mmの
カーボン管よりなる出発部材13を軸を中心として60
rpmで回転し、200mu7/Minの速さで軸方向
に往復移動させつつバーナー11から流出されたガスの
反応によつて生成された光学用ガラスの粉末を前記出発
部材13の外周に積層させた。この結果、出発部材13
には7.5mmの厚さのGeO2−SiO2の層とその
上にさらに7.5mmの厚さのSiO2の層を有する光
学用ガラスの粉末の管状体ができた。該管状体を0.1
%F2と0.20t)02を含む乾燥Heガスの流れの
中に置いて前記管状体の出発部材(カーボン管)に通電
して加熱した。This raw material gas flows out from the outlet 15, and at the same time as this raw material gas, H2 gas is fed into the burner 11 as a shutoff gas from the feed pipe 10 at a flow rate of 21/min.
6, and 02 gas is also used as combustion gas at 31.
It was sent into the burner 11 from the sending pipe 9 at a flow rate of /Min, and was discharged from the outlet 17. Then, a starting member 13 made of a carbon tube with an outer diameter of 10 mm was placed at 60 mm with the axis as the center.
While rotating at rpm and reciprocating in the axial direction at a speed of 200 mu7/min, optical glass powder produced by the reaction of the gas discharged from the burner 11 was laminated on the outer periphery of the starting member 13. . As a result, starting member 13
A tube of optical glass powder was produced having a 7.5 mm thick layer of GeO2-SiO2 and a further 7.5 mm thick layer of SiO2 thereon. The tubular body is 0.1
The starting member (carbon tube) of the tubular body was heated by energizing it while placed in a flow of dry He gas containing % F2 and 0.20 t)02.
先ず最初に光学用ガラスの粉末の管状部に吸着した水分
を除く為に徐々に加熱していきそれから出発部材の温度
が1000℃を越えてから3時間かけて前記出発部材の
孔内を均一 に燃焼して該出発部材を薄くしていきなが
ら1750℃迄昇温した。この間出発部材のカーボンが
燃焼する為に発生する廃ガスを吸引する了ルミナ管と、
出発部材の管内に純酸素を流入するアルミナ管とを出発
部材の管内に挿入してガスの送入、吸出を行なつた。こ
のようにしてできた内径10mm1外径20m7!Lの
光学用ガラス管の内面を弗酸で洗浄し、2000℃程度
に高周波誘導加熱炉で加熱しつつ溶融紡糸して外径15
0μmの光学用ガラスフアイバ一とした。この光学用ガ
ラスフアイバ一の伝送損失は測定の結果、λ=0.84
μmの場合8dB/Kmで、λ−0.95μmの0H基
の吸収のある部分でも12dB/Kmとなり、極めて低
い伝送損失のクラツド型光学用ガラスフアイバ一とする
ことが出来たのである。実施例 2
前記の如く第1ガス、第2ガス、遮断用ガス、燃焼用ガ
ス及びバーナー11のノズル構造は実施例1と同一のも
のを使用し、出発部材13として外径101Em1内径
9mmの石英管をカーボン棒にかぶせたものを用い、回
転速度は60rpmで往復速度は300mm/Minと
した。First, in order to remove the moisture adsorbed on the tubular part of the optical glass powder, the starting member was heated gradually, and after the temperature of the starting member exceeded 1000°C, the inside of the pores of the starting member was uniformly heated for 3 hours. The temperature was increased to 1750° C. while burning and thinning the starting material. During this time, a lumina tube that sucks in the waste gas generated as the carbon in the starting material burns,
An alumina tube through which pure oxygen was introduced into the tube of the starting member was inserted into the tube of the starting member, and gas was introduced and sucked out. Inner diameter 10mm and outer diameter 20m7! The inner surface of an L optical glass tube was cleaned with hydrofluoric acid, and heated to approximately 2000°C in a high-frequency induction heating furnace while melt-spun to obtain an outer diameter of 15.
A 0 μm optical glass fiber was used. As a result of measurement, the transmission loss of this optical glass fiber is λ=0.84.
In the case of μm, it is 8 dB/Km, and even in the part where the 0H group absorbs at λ-0.95 μm, it is 12 dB/Km, making it possible to create a clad optical glass fiber with extremely low transmission loss. Example 2 As described above, the first gas, the second gas, the shutoff gas, the combustion gas, and the nozzle structure of the burner 11 were the same as in Example 1, and the starting member 13 was made of quartz with an outer diameter of 101 mm and an inner diameter of 9 mm. A tube covered with a carbon rod was used, and the rotational speed was 60 rpm and the reciprocating speed was 300 mm/min.
そして、第1ガスを1.51/Minの流量で1定とし
ておき、第2ガスを1.51/Minから3時間かけて
流量零になるように減少させて流しな。さらに第1ガス
のみを21/Minの流量で1時間流したところ、出発
部材13の外周には13muの厚さにGeO2−SiO
2及びSiO2からなる光学用ガラスの粉末体が積層し
た。次に該光学用ガラスの粉末体が積層した出発部材か
らカーボン棒を除去し、縦型の炉でしかも温度勾配のあ
る炉の中に上方から前記光学用ガラスの管状粉末体を徐
々に降下させ、吸着ガスが脱け出るような温度領域で3
0分間、そして1400℃以上の溶融を始める温度領域
で15分間程加熱した。そしてこの加熱時間中乾燥して
水分のないガス、例えばF2を0.2(!)、02を2
%含むHeガスを流し続けた。このようにしてガラス化
された光学用ガラス管は外径20mm、内径9mmを有
していたが、これを内径20mmになる迄孔内面を弗酸
水でエツチングして削り取つた。この工程により出発部
材の石英部分が削り取られるのである。そして前記光学
用ガラス管を溶融紡糸して外径150μmの光学用ガラ
スフアイバ一を生成した。前記光学用ガラスフアイバ一
の伝送損失は測定の結果、λ−0.84μmで7dB/
Kmとなり、極めて低い伝送損失を有し、且つ屈折率は
中心部分が大きく外側に向つて次第に小さくなるグレー
デツドインデツクス型の屈折率分布を有することが確認
された。Then, the first gas is kept constant at a flow rate of 1.51/Min, and the second gas is allowed to flow from 1.51/Min to a flow rate of zero over 3 hours. Further, when only the first gas was allowed to flow for 1 hour at a flow rate of 21/Min, GeO2-SiO was formed on the outer periphery of the starting member 13 to a thickness of 13 mu.
Optical glass powder bodies consisting of SiO2 and SiO2 were laminated. Next, the carbon rod is removed from the starting member on which the optical glass powder is laminated, and the optical glass tubular powder is gradually lowered from above into a vertical furnace with a temperature gradient. , 3 in the temperature range where the adsorbed gas escapes.
The mixture was heated for about 15 minutes in a temperature range of 1400° C. or higher where melting begins. During this heating time, dry and moisture-free gas is used, for example, F2 at 0.2 (!), 02 at 2
% He gas was continued to flow. The optical glass tube vitrified in this manner had an outer diameter of 20 mm and an inner diameter of 9 mm, but the inner surface of the hole was etched with hydrofluoric acid water and scraped off until the inner diameter was 20 mm. This step scrapes away the quartz portion of the starting member. Then, the optical glass tube was melt-spun to produce an optical glass fiber having an outer diameter of 150 μm. As a result of measurement, the transmission loss of the above-mentioned optical glass fiber is 7 dB/ at λ-0.84 μm.
Km, it was confirmed that it has extremely low transmission loss and has a graded index type refractive index distribution in which the refractive index is large in the center and gradually decreases toward the outside.
なお上に述べた実施例1および実施例2の焼結条件であ
るHe:99.7%、02:0.2%、F2:0.1%
、温度条件100『C×3hrおよびHe:97.8%
、02:2%、F2:0.2(f)、温度条件140『
C×15分に対して、従来のCl2ガスを用いた比較例
1としてHe:930!)、02:2%、Cl2:5%
、温度条件1000℃×3hrで製造したガラスフアイ
バ、および比較例2としてHe:97.8%、02:2
%、CZ2:0.2(:L1温度条件1000′CX3
hrで製造したガラスフアイバについて測定した損失の
評価を行つた。Note that the sintering conditions of Example 1 and Example 2 described above are He: 99.7%, 02: 0.2%, F2: 0.1%.
, temperature condition 100 "C x 3 hr and He: 97.8%
, 02:2%, F2:0.2(f), temperature condition 140'
For C×15 minutes, He: 930 as comparative example 1 using conventional Cl2 gas! ), 02:2%, Cl2:5%
, glass fiber manufactured under temperature conditions of 1000°C x 3 hr, and Comparative Example 2: He: 97.8%, 02:2
%, CZ2:0.2 (:L1 temperature condition 1000'CX3
An evaluation of the losses measured on glass fibers produced at hr.
その結果、比較例1では焼結後のガラスに泡を発生し、
フアイバでは評価できず、比較例2では、損失が0.9
5μm波長で8dB/Km.O.84μm波長では10
dB/Kmで、本発明のF2を用いた場合が優れている
。以上詳述したように、本発明はシリコン及び他の元素
の水素化物又は有機化合物を酸素ガスにより燃焼反応せ
しめて光学用ガラスの粉末体を生成せしめ、該光学用ガ
ラスの粉末体を出発部材に積層せしめる工程と、該積層
した光学用ガラスの粉末体をハロゲンガスと酸素ガスを
含む水分の少ない不活性ガス雰囲気中で所定の温度及び
時間加熱してガラス化する工程と該ガラス化された光学
用ガラスを延伸温度まで加熱して紡糸する工程とよりな
る光学用ガラスフアイバ一製造方法としたので、その合
成反応原料がハロゲン化物でなく水素化物又は有機化合
物であり、又、焼結時に弗素系ガスを使用するため、反
応部分に於いて廃ガスの腐食性塩酸による機材の腐食を
防止することが出来、燃焼を比較的低温で行なうことが
出来るので出発部材の軟化等による不正形の光学用ガラ
スとなることが防止出来る。As a result, in Comparative Example 1, bubbles were generated in the glass after sintering,
The fiber cannot be evaluated, and in Comparative Example 2, the loss was 0.9.
8dB/Km. at 5μm wavelength. O. 10 at 84 μm wavelength
In terms of dB/Km, the case using F2 of the present invention is excellent. As detailed above, the present invention produces an optical glass powder by subjecting silicon and hydrides or organic compounds of other elements to a combustion reaction using oxygen gas, and uses the optical glass powder as a starting member. a step of laminating the laminated optical glass powder, a step of vitrifying the laminated optical glass powder by heating it at a predetermined temperature and time in an inert gas atmosphere with low moisture containing halogen gas and oxygen gas, and vitrifying the vitrified optical glass. The manufacturing method for optical glass fiber consists of heating the glass to the drawing temperature and spinning it, so the raw materials for the synthesis reaction are hydrides or organic compounds rather than halides, and fluorine-based fibers are used during sintering. Since gas is used, it is possible to prevent equipment from being corroded by the corrosive hydrochloric acid in the waste gas in the reaction part, and combustion can be carried out at a relatively low temperature, so it is possible to prevent irregularly shaped optical materials due to softening of starting materials. It can prevent it from becoming glass.
しかも適当な焼結方法が採用出来るので極めて0H基の
低い光学用ガラスを作ることが出来る。また原料ガスの
水素化物や有機化合物は低沸点である為、蒸溜により極
めて不純物の少ない原料が容易に得られるので、これに
より生成された光学用ガラスフアイバ一は不純物が少な
く光伝送損失の小さいものとなる。さらに、バーナーの
流出口附近では遮断用ガスを用いて燃焼反応を遮断する
ように構成したので、流出口に光学用ガラスの粉末体が
できることを防止することができた。その結果、流量が
変化することがなく性能の一定した製品が得られる。更
に、原料ガスの組成や種類をマス・フローコントローラ
ー等の流量制御により容易に制御できるので、所定の組
成の光学用ガラスを作りながら積層させてゆくことが出
来る。その結果、半径方向に組成を変えて屈折率分布の
変つた所望の光学用ガラス、従つて所望の光学用ガラス
フアイバ一を製造することが出来るのである。さらにま
た、光学用ガラスの粉末体を温得勾配のある加熱領域で
、しかもドーパントの分解を抑えるため、少量の弗素を
含んだ主としてヘリウムよりなるガス雰囲気中で加熱し
てガラス化を行なう工程としたので0H基の除去された
光伝導損失の小さい光学用ガラスフアイバ一とすること
ができたのである。Furthermore, since an appropriate sintering method can be adopted, optical glasses with extremely low 0H groups can be produced. In addition, since the raw material gases hydrides and organic compounds have low boiling points, raw materials with extremely low impurities can be easily obtained by distillation, so the optical glass fiber produced by this process has low impurities and low optical transmission loss. becomes. Furthermore, since the combustion reaction was shut off using a blocking gas near the outlet of the burner, it was possible to prevent optical glass powder from forming at the outlet. As a result, a product with constant performance can be obtained without any change in flow rate. Furthermore, since the composition and type of the raw material gas can be easily controlled by controlling the flow rate using a mass flow controller or the like, it is possible to stack layers while producing optical glass having a predetermined composition. As a result, it is possible to produce a desired optical glass having a different refractive index distribution by changing the composition in the radial direction, and thus a desired optical glass fiber. Furthermore, a process of vitrifying an optical glass powder by heating it in a heating region with a temperature gradient and in a gas atmosphere mainly consisting of helium containing a small amount of fluorine in order to suppress the decomposition of the dopant. As a result, it was possible to create an optical glass fiber with low photoconductive loss from which the 0H group was removed.
第1図は本発明の1実施例の工程説明図、第2図A,b
乃至第4図A,bは各実施例に於けるバーナーの各ノズ
ルの縦断面図及び横断面図である。
1及び2はそれぞれ光学用ガラス生成物ガス及びドープ
用原料ガスのタンク、3及び4は流量計、5及び6は流
量調整器、7は混合器、8は原料ガス送入管、9は燃焼
用ガス送入管、10は遮断用ガス送人管、11はバーナ
ー 12は光学用ガラスの粉末体を生成する炎(フレー
ム)、13は出発部材、13Aはその回転方向、13B
はその移動方向、14は積層された光学用ガラスの粉末
体層、15,20及び24は原料ガス流出口、16,1
9,21及び25は遮断用ガス流出口、17,18,2
2及び27は酸素ガス流出口、23及び26は交差する
MノズルとNノズルを示す。Fig. 1 is a process explanatory diagram of one embodiment of the present invention, Fig. 2 A, b
4A to 4B are a longitudinal cross-sectional view and a cross-sectional view of each nozzle of the burner in each embodiment. 1 and 2 are tanks for optical glass product gas and dope raw material gas, respectively, 3 and 4 are flow meters, 5 and 6 are flow rate regulators, 7 is a mixer, 8 is a raw material gas feed pipe, and 9 is a combustion 10 is a gas supply pipe for shutoff, 11 is a burner, 12 is a flame (frame) for producing optical glass powder, 13 is a starting member, 13A is its rotation direction, 13B
14 is the stacked optical glass powder layer; 15, 20 and 24 are raw material gas outlet ports; 16, 1 are the moving directions;
9, 21 and 25 are gas outlet ports for shutoff, 17, 18, 2
2 and 27 are oxygen gas outlet ports, and 23 and 26 are intersecting M and N nozzles.
Claims (1)
応せしめてガラスの粉末体を生成し、該ガラスの粉末体
を出発部材に積層する工程と、該積層したガラスの粉末
体を少くとも弗素ガスを含む雰囲気中で所定の温度及び
時間加熱してガラス化する工程と、該ガラス化した後、
加熱して紡糸する工程とからなることを特徴とする光学
用ガラスファイバ製造方法。 2 前記弗素ガスを含む雰囲気中に酸素ガスを添加する
ことを特徴とする特許請求の範囲第1項記載の光学用ガ
ラスファイバ製造方法。[Claims] 1. A step of producing a glass powder by subjecting a vaporizable compound of silicon and other elements to a combustion reaction, and laminating the glass powder on a starting member; and a step of laminating the glass powder on a starting member; A step of vitrifying the body by heating it at a predetermined temperature and time in an atmosphere containing at least fluorine gas, and after the vitrification,
1. A method for producing optical glass fiber, comprising a heating and spinning step. 2. The optical glass fiber manufacturing method according to claim 1, wherein oxygen gas is added to the atmosphere containing fluorine gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5626976A JPS5925738B2 (en) | 1976-05-17 | 1976-05-17 | Optical glass fiber manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5626976A JPS5925738B2 (en) | 1976-05-17 | 1976-05-17 | Optical glass fiber manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52139447A JPS52139447A (en) | 1977-11-21 |
JPS5925738B2 true JPS5925738B2 (en) | 1984-06-20 |
Family
ID=13022357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5626976A Expired JPS5925738B2 (en) | 1976-05-17 | 1976-05-17 | Optical glass fiber manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5925738B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3031147A1 (en) * | 1980-08-18 | 1982-03-18 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR PRODUCING GLASS WITH A PRE-DETERMINED REFRIGERATION PROFILE AND ALKALINE-FREE GLASS FROM AN OXIS OF A BASE MATERIAL DOPED WITH ONE OR SEVERAL SUBSTANCES |
JPS57175748A (en) * | 1981-04-20 | 1982-10-28 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of infrared optical element |
JPS6011250A (en) * | 1983-06-28 | 1985-01-21 | Sumitomo Electric Ind Ltd | Fiber for optical transmission and its manufacture |
-
1976
- 1976-05-17 JP JP5626976A patent/JPS5925738B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS52139447A (en) | 1977-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4217027A (en) | Optical fiber fabrication and resulting product | |
CA2047187C (en) | Improved vitreous silica products | |
CA1188895A (en) | Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass | |
KR900008503B1 (en) | Manufacture of preform for glass fibres | |
JPH0127005B2 (en) | ||
Blankenship et al. | The outside vapor deposition method of fabricating optical waveguide fibers | |
JPS6038345B2 (en) | Manufacturing method of glass material for optical transmission | |
US4334903A (en) | Optical fiber fabrication | |
AU743831B2 (en) | Germanium chloride and siloxane feedstock for forming silica glass and method | |
WO2002090273A1 (en) | Method and use of a feedstock for making silica glass | |
CN101066834B (en) | Process of preparing fiber preformrod | |
KR100545813B1 (en) | Optical fiber preform manufacturing method using crystal chemical vapor deposition including dehydration and dechlorination process and optical fiber manufactured by this method | |
JPS5925738B2 (en) | Optical glass fiber manufacturing method | |
JPH0135779B2 (en) | ||
JP2793617B2 (en) | Manufacturing method of optical fiber preform | |
US4504299A (en) | Optical fiber fabrication method | |
JPS6036343A (en) | Production of glass material for optical transmission | |
EP0135126B1 (en) | Preparation of glass for optical fibers | |
US20230286851A1 (en) | Method for manufacturing optical fiber preform | |
JPH0551542B2 (en) | ||
AU643451B2 (en) | Method for producing porous glass preform for optical fiber | |
JPH10330129A (en) | Production of porous glass body for optical fiber | |
JPH0327491B2 (en) | ||
JP2000063147A (en) | Optical fiber preform and its production | |
JP3788073B2 (en) | Manufacturing method of optical fiber preform |