JPS61197438A - Method of converting porous parent material for optical fiber into clarified glass - Google Patents

Method of converting porous parent material for optical fiber into clarified glass

Info

Publication number
JPS61197438A
JPS61197438A JP3809985A JP3809985A JPS61197438A JP S61197438 A JPS61197438 A JP S61197438A JP 3809985 A JP3809985 A JP 3809985A JP 3809985 A JP3809985 A JP 3809985A JP S61197438 A JPS61197438 A JP S61197438A
Authority
JP
Japan
Prior art keywords
base material
atmosphere
porous
oxygen
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3809985A
Other languages
Japanese (ja)
Inventor
Kunio Ogura
邦男 小倉
Katsumi Orimo
折茂 勝巳
Akira Iino
顕 飯野
Shinichi Yano
慎一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3809985A priority Critical patent/JPS61197438A/en
Publication of JPS61197438A publication Critical patent/JPS61197438A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:A porous parent material is heat-treated in a specific atmosphere containing a gas which reduces and dissipates dopants and clarified in a specific atmosphere to give the clarified parent material which has appropriate distribution in refractive indexes in the core and clad parts and causes no dimensional fluctuation. CONSTITUTION:The porous parent material is heat-treated in an atmosphere containing a gas which reduces and dissipates dopants such as GeO2 in the porous material of doped quartz optical fibers such as an atmosphere containing SOCl2 but no oxygen at such a temperature as the material is not completely shrunk. Then, the material is clarified by treating it in an oxygen-containing and reducing agent-free atmosphere such as an atmosphere containing 5-50% of oxygen and the rest of inactive gases. Thus, distribution of refractive index becomes appropriate in the core and clad parts and the dimensional accuracy becomes high in individual parts.

Description

【発明の詳細な説明】 r産業上の利用分野1 本発明はドープト石英系からなる光ファイバ用多孔質母
材を透明ガラス化する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 1 The present invention relates to a method for transparently vitrifying a porous base material for optical fibers made of doped quartz.

r従来の技術J 石英系光ファイバ母材の作製手段として採用されている
一つに既知のVAD法があり、現状では下記の二通りが
主流となっている。
rPrior Art J The known VAD method is one of the methods adopted as a method for producing a silica-based optical fiber preform, and at present, the following two methods are mainstream.

その一つは、第6図(A)に示すごとくコア用反応バー
ナ1aとクラッド用反応バーナlbとを用いてS + 
02−G e 02からなるコア用多孔質層2 、 G
em2からなるクラッド用多孔質層3をそれぞれ合成し
、これにより得られた多孔質母材4を透明ガラス化する
方法である。
One of them is to use a reaction burner 1a for the core and a reaction burner lb for the cladding as shown in FIG. 6(A).
02-G e Porous layer 2 for core consisting of 02, G
In this method, porous layers 3 for cladding made of em2 are synthesized, and the porous base material 4 obtained thereby is made into transparent glass.

他の一つは、第6図(B)に示すごとく一本の反応バー
ナlcでS+02−GeO2からなる多孔質母材4を作
製した後、所定の母材処理により、多孔質母材4の外周
部からドーパントを揮散させてコアとなる層の外周にク
ラッドとなる層を形成し、以下その処理母材を透明ガラ
ス化する方法である。
The other method is to prepare a porous base material 4 made of S+02-GeO2 using one reaction burner lc, as shown in FIG. This is a method in which a dopant is volatilized from the outer periphery to form a cladding layer around the outer periphery of a core layer, and the treated base material is then turned into transparent glass.

これらVAD法により光ファイバ用の母材を作製すると
き、第7図のごとき屈折率分布を得るのが理想とされて
いる。
When producing a base material for an optical fiber by these VAD methods, it is considered ideal to obtain a refractive index distribution as shown in FIG.

r発明が解決しようとする問題点J ところで、前述した第6図(A)の方法にて多孔質母材
を作製するとき、両バーナla、 lbが互いに影響し
合うため屈折率分布の制御がむずかしく。
Problems to be Solved by the Invention J By the way, when producing a porous base material by the method shown in FIG. Difficult.

コア用多孔質層2、クラッド用多孔質層3との界面にお
いて屈折率不整を生じることがあり、しかも母材合成時
におけるコア用ガラス微粒子の乱舞とか、透明ガラス化
時におけるコア用ドーパントの揮散により、高屈折率ド
ーパントがクラッド側にまで拡散するため、第8図(A
)のごとき「裾だれ」 「角(つの)状」などの屈折率
異常があられれる。
Refractive index irregularities may occur at the interface between the core porous layer 2 and the cladding porous layer 3, and in addition, the core glass fine particles may scatter during base material synthesis, and the core dopant may volatilize during transparent vitrification. As a result, the high refractive index dopant diffuses to the cladding side.
), refractive index abnormalities such as ``sagging'' and ``corner'' may occur.

一方、第6図(B)の方法によるときも、第8図(B−
1)(B−2)に示す屈折率異常が生じる。
On the other hand, when using the method shown in FIG. 6(B), the method shown in FIG. 8(B-
1) The refractive index abnormality shown in (B-2) occurs.

第8図(B−1)のr裾だれ」が生じる原因は、多孔質
母材4の外周部からドーパント(Ge02)を揮散させ
るとき、その母材処理雰囲気中の還元剤としてC12を
用いたことによる。
The cause of the occurrence of "r tail sagging" in Figure 8 (B-1) is that when dopant (Ge02) is volatilized from the outer periphery of the porous base material 4, C12 is used as a reducing agent in the base material processing atmosphere. It depends.

すなわち上記母材処理では、下記反応式(1)に示す可
逆反応を利用しているため、−たんG e CI 4と
なって母材から飛び出したものが、再びG e 02と
なって母材外周部(クラッド部)へ付着し、このような
現象が絶えず起こることによりl裾だれ」が生じる。
In other words, in the above-mentioned base material treatment, since the reversible reaction shown in the following reaction formula (1) is utilized, -tan G e CI 4 that jumps out of the base material becomes G e 02 again and is transferred to the base material. It adheres to the outer periphery (cladding part), and this phenomenon occurs constantly, resulting in ``sagging''.

GeO2+2CI2:GeCl、+02@ @ * *
 (1)第8図(B−2)の異常高屈折率が生じる原因
は、前記母材処理雰囲気中の還元剤としてSOCl2 
2を用いたことによる。
GeO2+2CI2: GeCl, +02@@ * *
(1) The cause of the abnormally high refractive index shown in FIG. 8 (B-2) is that SOCl2 is used as a reducing agent in the base material processing atmosphere.
This is due to the use of 2.

この場合の反応は下記の式(2)に示す不可逆反応であ
り、−たんG e C1aとなったものは、無酸素雰囲
気ではG e 02にもどらず、したがって−たん揮散
したG e 02は前記のごとくクラッド部へ再付着し
ないが、ここで用いられる5OC12はきわめて還元力
が強く、GeO2の揮散後、5I02をも還元するため
5i−0−C:Iのような形でCIを母材外周部に付着
させていまい、その結果、CIの含有量が多くなってク
ラッド部の屈折率が高くなる。
The reaction in this case is an irreversible reaction shown in the following formula (2), and what becomes -phenium G e C1a does not return to G e 02 in an oxygen-free atmosphere. Therefore, the -phosphorus volatilized G e 02 is However, the 5OC12 used here has extremely strong reducing power, and after GeO2 volatilizes, it also reduces 5I02, so CI is attached to the outer periphery of the base material in the form of 5i-0-C:I. As a result, the content of CI increases and the refractive index of the cladding portion increases.

GeO2+2SOC12−+GeCl4+2S02−−
−− (2)上述したように、従来2法によるときは第
7図に示した理想的な屈折率分布が得られず、ゆえに上
記母材を光ファイバに加工したとき、これの伝送特性が
悪化し、コア、クラッドの寸法も所定通りに仕上がらな
い。
GeO2+2SOC12-+GeCl4+2S02--
-- (2) As mentioned above, when conventional method 2 is used, the ideal refractive index distribution shown in Figure 7 cannot be obtained, so when the above base material is processed into an optical fiber, its transmission characteristics are As a result, the dimensions of the core and cladding cannot be completed as specified.

本発明は上記の問題点に鑑み、屈折率分布の不整が生ぜ
ず、コア、クラッドの寸法が変動することのない光ファ
イバ用多孔質母材の透明ガラス化方法を提供しようとす
るものである。
In view of the above-mentioned problems, the present invention aims to provide a transparent vitrification method for a porous preform for an optical fiber, which does not cause irregularities in the refractive index distribution and does not cause variations in the dimensions of the core and cladding. .

r問題点を解決するための手段」 本発明は、ガラス微粒子の堆積物からなるドープト石英
系の光ファイバ用多孔質母材を高温の雰囲気中で熱処理
してその多孔質母材を透明ガラス化する方法において、
上記多孔質母材中のドーパントを還元揮散させるガスを
含み、その多孔質母材を完全収縮させない温度の熱処理
雰囲気内にて当該多孔質母材を処理し、その後、還元剤
は含まず、酸素を含む透明ガラス化雰囲気内にて上記処
理母材を透明ガラス化することを特徴としている。
"Means for Solving Problems" The present invention heat-treats a doped quartz-based porous base material for optical fibers made of deposits of glass particles in a high-temperature atmosphere to turn the porous base material into transparent vitrification. In the method of
The porous base material is treated in a heat treatment atmosphere that contains a gas that reduces and volatilizes the dopant in the porous base material and has a temperature that does not completely shrink the porous base material. The method is characterized in that the treated base material is transparently vitrified in a transparent vitrification atmosphere containing.

「作用1 本発明方法の場合、Ge 02などのドーパントを含有
するドープト石英系の多孔質母材を、例えば前述した第
6図(B)の方法により作製し、その多孔質母材を高温
の雰囲気中で熱処理して透明ガラス化するとき、その母
材処理工程を下記の二工程に分けて実施する。
Effect 1 In the case of the method of the present invention, a doped quartz-based porous base material containing a dopant such as Ge 02 is prepared, for example, by the method shown in FIG. 6(B), and the porous base material is heated to a high temperature. When transparent vitrification is performed by heat treatment in an atmosphere, the base material treatment process is divided into the following two steps.

はじめの処理工程では、多孔質母材中のドーパントを還
元揮散させるガスを含み、その多孔質母材を完全収縮さ
せない温度(1000〜1300℃)の熱処理雰囲気(
電気炉)内にて当該多孔質母材を処理するが、この際の
雰囲気は、He、 Ar、 N2などの不活性ガスと還
元材であるSOCl 2または(COCl)2とで形成
し、酸素は添加しない。
In the first treatment step, a heat treatment atmosphere (1000 to 1300°C) containing a gas that reduces and volatilizes the dopant in the porous base material and does not completely shrink the porous base material (1000 to 1300 ° C.) is used.
The porous base material is treated in an electric furnace (electric furnace), and the atmosphere at this time is formed of an inert gas such as He, Ar, or N2 and a reducing agent SOCl2 or (COCl)2, and oxygen is not added.

このような熱処理雰囲気内で多孔質母材を処理するとき
、下記の式(3)または式(4)のごとき反応が起こり
、還元剤に曝されやすい母材外周部からドーパント(G
e02)が揮散していくとともにそのG e O2の抜
けた部分には、S io 2に対し5i−0−CIのよ
うな形でCIが付着していく。
When a porous base material is treated in such a heat treatment atmosphere, a reaction as shown in equation (3) or (4) below occurs, and the dopant (G
As e02) is volatilized, CI is attached to the part where G e O2 has escaped in the form of 5i-0-CI with respect to S io 2.

したがってこの処理母材には、クラッドとなる部分にC
Iが多く含まれる。
Therefore, this treated base material has C in the part that will become the cladding.
Contains a lot of I.

GeO+2SOCI  −GeC1↑ +2SO−−−
”(3)GeO+2(GeC12)→ GeCl4↑ 
+2002+2GO−−(4)つぎの処理工程では、上
記処理母材を、酸素を含む透明ガラス化雰囲気内(14
00〜1600℃)にて上記処理母材を透明ガラス化す
るが、この際の雰囲気は不活性ガスと適量の酸素とで形
成し、還元剤となるガスは含ませない。
GeO+2SOCI −GeC1↑ +2SO−−−
”(3) GeO+2 (GeC12) → GeCl4↑
+2002+2GO--(4) In the next treatment step, the treated base material is placed in a transparent vitrification atmosphere containing oxygen (14
The above-mentioned treated base material is made into transparent glass at a temperature of 00 to 1,600° C., and the atmosphere at this time is formed of an inert gas and an appropriate amount of oxygen, and does not contain any reducing agent gas.

この処理工程により、上記母材が透明ガラス化されるが
、その雰囲気に還元剤が含まれていないため、S io
 2を還元するような反応は起こらず、しかも当該雰囲
気が酸素雰囲気であるため、G e 02の揮散が抑制
されるとともにCIが離脱される。
Through this treatment step, the base material is made into transparent glass, but since the atmosphere does not contain a reducing agent, Sio
Since a reaction such as reducing 2 does not occur and the atmosphere is an oxygen atmosphere, volatilization of G e 02 is suppressed and CI is released.

なお、第二回目の処理工程における雰囲気中、すなわち
透明ガラス化の雰囲気中に酸素が含まれていないときで
も、CIの離脱が行なわれるが、この場合はGeの揮散
が生じるので、前述した1裾だれ」等が起きる。
Note that CI is removed even when oxygen is not included in the atmosphere in the second treatment step, that is, in the atmosphere for transparent vitrification, but in this case, Ge volatilization occurs, so "sagging" etc. occur.

かくて、本発明方法により透明ガラス化された母材は、
屈折率分布に不整のない、はぼ理想的な屈折率分布を呈
するようになる。
Thus, the base material transparently vitrified by the method of the present invention is
The refractive index distribution has no irregularities and exhibits an almost ideal refractive index distribution.

「実 施 例1 以下本発明方法の具体的実施例につき、図面を参照して
説明する。
``Example 1'' A specific example of the method of the present invention will be described below with reference to the drawings.

第1図において、10は所定の熱処理雰囲気を形成する
ための電気炉であり、この電気炉10は炉心管11とそ
の炉心管外周の電気ヒータ12とを備え。
In FIG. 1, 10 is an electric furnace for forming a predetermined heat treatment atmosphere, and this electric furnace 10 includes a furnace core tube 11 and an electric heater 12 on the outer periphery of the furnace core tube.

炉心管11にはその下部にガス人口13、その上部にガ
ス出口14がそれぞれ形成されている。
The core tube 11 has a gas port 13 formed in its lower part and a gas outlet 14 formed in its upper part.

本発明方法では、上記電気炉lOを用いて多孔質母材4
の各処理を行なう。
In the method of the present invention, the porous base material 4 is
Perform each process.

この多孔質母材4は、−例として第6図(B)の方法に
より作製したSin2−Gem2系からなるが、必要な
らば、G e 02以外ものものもドーパントとして含
んでいてよい。
This porous base material 4 is made of a Sin2-Gem2 system produced by the method shown in FIG. 6(B), for example, but may contain other dopants other than Ge 02 if necessary.

かかる多孔質母材4を電気炉IO内に入れて第一回目の
熱処理を行なうとき、炉心管11内にはそのガス入口1
3から前記不活性ガスと前記還元剤とが供給され、該炉
心管ll内が電気ヒータ12を介して1000〜130
0℃程度に保持される。
When the porous base material 4 is put into the electric furnace IO and subjected to the first heat treatment, the gas inlet 1 is inserted into the furnace core tube 11.
The inert gas and the reducing agent are supplied from
The temperature is maintained at around 0°C.

上記炉心管11内に多孔質母材4が挿入され、第一回目
の熱処理が実施されたとき、その炉心管ll内では前述
した式(3)または式(4)のごとき反応が起こる。
When the porous base material 4 is inserted into the furnace core tube 11 and the first heat treatment is performed, a reaction like the above-mentioned equation (3) or equation (4) occurs in the furnace core tube 11.

この際の処理では、前述したように還元剤に曝されやす
い母材外周部からドーパント(Ge02)が揮散してい
き、さらにそのG e 02の抜けた部分には、S +
 02に対し5i−0−CIのような形でatが付着し
ていくのであり、当該母材処理により、多孔質母材4は
第2図のごとき元素分布を呈する。
In this process, as mentioned above, the dopant (Ge02) is volatilized from the outer periphery of the base material, which is easily exposed to the reducing agent, and the part where the Ge02 is removed is S +
At is attached to 02 in a form such as 5i-0-CI, and due to the base material treatment, the porous base material 4 exhibits an element distribution as shown in FIG.

第二回目の熱処理は、−たんパージした後の前記電気炉
lO内、または別途に用意された電気炉10内にて実施
される。
The second heat treatment is carried out in the electric furnace 10 after the -tan purge or in the separately prepared electric furnace 10.

この際、炉心管ll内には前記不活性ガスと5〜30%
の酸素とが供給されるとともにその炉心v11内が14
00〜1800℃程度に保持され、しかる後、当該炉心
管11内に上記処理後の多孔質母材4が挿入される。
At this time, 5 to 30% of the inert gas and
of oxygen is supplied, and the inside of the core v11 is 14
The temperature is maintained at about 00 to 1800°C, and then the porous base material 4 subjected to the above treatment is inserted into the furnace core tube 11.

こうして炉心管ll内に挿入された多孔質母材4はG 
e O2の揮散を抑制されながら、しかもCIの離脱を
促進されながら透明ガラス化される。
The porous base material 4 inserted into the reactor core tube ll in this way is
e Transparent vitrification is achieved while suppressing the volatilization of O2 and promoting the separation of CI.

かくて所望の透明ガラス化母材が得られるのであり、該
透明ガラス化後の母材は、第3図のごとき元素分布を呈
する。
In this way, a desired transparent vitrified base material is obtained, and the base material after transparent vitrification exhibits an element distribution as shown in FIG.

つぎに、本発明方法に関する実験例について説明する。Next, experimental examples related to the method of the present invention will be explained.

以下に述べる実験例では、多重管構造とした第6図(B
) (7)反応バーナ1cへ5rCI4、GeCIa等
の気相原料を供給し、これら気相原料を火炎加水分解反
応させ、これにより生成したガラス微粒子を軸方向に堆
積させて多孔質母材を作製した。
In the experimental example described below, a multi-tube structure was used as shown in Figure 6 (B
) (7) Supply gaseous raw materials such as 5rCI4 and GeCIa to the reaction burner 1c, cause these gaseous raw materials to react with flame hydrolysis, and deposit the glass fine particles thus generated in the axial direction to create a porous base material. did.

この多孔質母材中のGe 02の分布は、Δ−1,0X
のCl型に相当する。
The distribution of Ge02 in this porous matrix is Δ-1,0X
It corresponds to the Cl type.

上記の多孔質母材を処理するとき、30fL/winの
He、0.3 JJ/winの5OC12がそれぞれ供
給され、その内部温度が1250℃に設定された電気炉
内に、多孔質母材を3+sm/sinの降下速度で挿入
し、第一回目の処理を行なった。
When processing the above porous base material, the porous base material was placed in an electric furnace that was supplied with 30 fL/win of He and 0.3 JJ/win of 5OC12, and whose internal temperature was set at 1250°C. The first treatment was performed by inserting at a descending speed of 3+sm/sin.

つぎに上記処理後の母材を、下表に示す各雰囲気とした
電気炉内に入れ、第二回目の処理すなわち透明ガラス化
を行なった。
Next, the base material after the above treatment was placed in an electric furnace with each atmosphere shown in the table below, and a second treatment, that is, transparent vitrification was performed.

上記の実験例において、N001〜N003は母材を透
明ガラス化することができたが、N004の場合は02
過多のため、母材の脱泡が不完全であった。
In the above experimental example, N001 to N003 were able to make the base material transparent vitrified, but in the case of N004, 02
Due to excessive amount, defoaming of the base material was incomplete.

なお、参考のため、下表の条件で母材を透明ガラス化し
、合成りラッドを発生させたものも作製した。これを実
験例N005とする。
For reference, we also produced a sample in which the base material was made into transparent glass under the conditions shown in the table below, and synthetic rad was generated. This is designated as Experimental Example No. 005.

この実験例(NO,5)の場合、無酸素雰囲気での処理
であるため、第2図の元素分布に示すごと<Geの揮散
により合成りラッドが発生しているが、そのクラッドに
CIが多量に付着してしまう。
In the case of this experimental example (NO, 5), since the treatment was performed in an oxygen-free atmosphere, synthetic rad was generated due to the volatilization of Ge, as shown in the element distribution in Figure 2, but CI was present in the cladding. A large amount will adhere.

上記各実験例のうち、発泡により測定不能であるN08
4を除き、N091〜N003、およびN005の透明
ガラス化母材について、これらの屈折率分布をプリフォ
ームアナライザで測定した。
Among the above experimental examples, N08 cannot be measured due to foaming.
Except for No. 4, the refractive index distributions of the transparent vitrified base materials of N091 to N003 and N005 were measured using a preform analyzer.

その測定結果を示す第5図で明らかなように、所定の処
理で多量成りラッド部を形成した後、酸素を含む雰囲気
中で透明ガラス化したN002、N013の透明ガラス
化母材、すなわち本発明方法により処理された母材では
、そのクラッド部が石英ガラスと同じ屈折率をもつフラ
ットな屈折率となり、しかもコアに1裾だれ1がないほ
ぼ理想的な屈折率分布を呈しているのに対し、その透明
ガラス化を無酸素雰囲気中で実施したN001の実験例
(本発明外)では「裾だれjが生じており、さらにN0
05の実験例(本発明外)でもCIに起因したクラッド
部の異常高屈折率が生じている。
As is clear from FIG. 5 showing the measurement results, the transparent vitrified base materials of N002 and N013, which were made into transparent vitrification in an oxygen-containing atmosphere after forming a large amount of rad parts by a predetermined treatment, were used in the present invention. In the base material treated by this method, the cladding part has a flat refractive index that is the same as that of silica glass, and the core has an almost ideal refractive index distribution with no tail. In the experimental example of N001 (outside the present invention) in which the transparent vitrification was carried out in an oxygen-free atmosphere, ``sagging j'' had occurred, and further N0
Also in the experimental example No. 05 (outside the present invention), an abnormally high refractive index of the cladding portion due to CI occurs.

上記N092、N003の母材をコア直径50g層、外
径(クラッド直径)125ILmの光ファイバに紡糸し
てこれら光ファイバ各部の寸法を測定したところ、コア
、クラッドの境界がきわめて明瞭であり、各光ファイバ
とも伝送特性が良好であった。
When the base materials of N092 and N003 were spun into optical fibers with a core diameter of 50g and an outer diameter (cladding diameter) of 125ILm and the dimensions of each part of these optical fibers were measured, the boundaries between the core and cladding were extremely clear. Both optical fibers had good transmission characteristics.

上述した本発明方法の技術は単一モード光ファイバを得
る際の母材の透明ガラス化手段として、低ロス、分散制
御、力7トオフ波長などの精度向上にも有効である。
The technique of the method of the present invention described above is effective as a means for transparent vitrification of a base material when obtaining a single mode optical fiber, and is also effective in improving accuracy such as low loss, dispersion control, and power 7 to-off wavelength.

「発明の効果」 以上説明した通り、本発明方法によるときは、多孔質母
材の透明ガラス化に際し、上記多孔質母材中のドーパン
トを還元揮散させるガスを含み、その多孔質母材を完全
収縮させない温度の熱処理雰囲気内にて当該多孔質母材
を処理し、その後、還元剤は含まず、酸素を含む透明ガ
ラス化雰囲気内にて上記処理母材を透明ガラス化するか
ら、コア部、クラッド部の屈折率分布が適性な、しかも
これら各部の寸法精度の良好な透明ガラス化母材が得ら
れる。
"Effects of the Invention" As explained above, when the method of the present invention is used to make a porous base material transparent, it contains a gas that reduces and volatilizes the dopant in the porous base material, and the porous base material is completely destroyed. The porous base material is treated in a heat treatment atmosphere at a temperature that does not cause shrinkage, and then the treated base material is transparently vitrified in a transparent vitrification atmosphere that does not contain a reducing agent but contains oxygen. A transparent vitrified base material having an appropriate refractive index distribution in the cladding portion and good dimensional accuracy in each of these portions can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を略示した説明図、第2
図は本発明方法において第一回目の熱処理が施された母
材の元素分布図、第3図は本発明方法において第二回目
の熱処理(透明ガラス化処理)が施された母材の元素分
布図、第4図は本発明方法と比較すべき参考例における
母材の元素分布図、第5図は本発明方法の各種実験例に
おける透明ガラス化母材の屈折率分布図、第6図(A)
 (B)は多孔質母材の製造例を略示した説明図、第7
図は理想的な透明ガラス化母材の屈折率分布図、第8図
(A)(B−1)CB−2)は従来法により透明ガラス
化された母材の屈折率分布図である。 4@・・多孔質母材 lO・・拳電気炉 11・・・電気炉の炉心管(熱処理雰囲気)12・・Φ
電気炉のヒータ 代理人 弁理士 斎 藤 義 雄 第1図    第2図 第4図
FIG. 1 is an explanatory diagram schematically showing an embodiment of the method of the present invention, and FIG.
The figure is an elemental distribution diagram of the base material subjected to the first heat treatment in the method of the present invention, and Figure 3 is the element distribution of the base material subjected to the second heat treatment (transparent vitrification treatment) in the method of the present invention. Figure 4 is an elemental distribution diagram of the base material in a reference example to be compared with the method of the present invention, Figure 5 is a refractive index distribution diagram of the transparent vitrified base material in various experimental examples of the method of the present invention, and Figure 6 ( A)
(B) is an explanatory diagram schematically showing an example of manufacturing a porous base material, No. 7
The figure is a refractive index distribution diagram of an ideal transparent vitrified base material, and FIGS. 8(A), (B-1, and CB-2) are refractive index distribution diagrams of a base material that has been transparently vitrified by a conventional method. 4@... Porous base material lO... Fist electric furnace 11... Electric furnace core tube (heat treatment atmosphere) 12... Φ
Electric Furnace Heater Agent Patent Attorney Yoshio Saito Figure 1 Figure 2 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス微粒子の堆積物からなるドープト石英系の
光ファイバ用多孔質母材を高温の雰囲気中で熱処理して
その多孔質母材を透明ガラス化する方法において、上記
多孔質母材中のドーパントを還元揮散させるガスを含み
、その多孔質母材を完全収縮させない温度の熱処理雰囲
気内にて当該多孔質母材を処理し、その後、還元剤は含
まず、酸素を含む透明ガラス化雰囲気内にて上記処理母
材を透明ガラス化することを特徴とする光ファイバ用多
孔質母材の透明ガラス化方法。
(1) In a method in which a doped quartz-based porous base material for an optical fiber consisting of deposits of glass particles is heat-treated in a high-temperature atmosphere to make the porous base material transparent vitrification, The porous base material is treated in a heat treatment atmosphere containing a gas that reduces and volatilizes the dopant and at a temperature that does not completely shrink the porous base material, and then in a transparent vitrification atmosphere that does not contain a reducing agent but contains oxygen. A method for transparently vitrifying a porous preform for an optical fiber, the method comprising: converting the treated preform into transparent vitrification.
(2)先行する熱処理雰囲気は、ドーパントを還元揮散
させるガスとしてSOCl_2あるいは(COCl)_
2を含み、酸素を含んでいない特許請求の範囲第1項記
載の光ファイバ用多孔質母材の透明ガラス化方法。
(2) The preceding heat treatment atmosphere uses SOCl_2 or (COCl)_ as a gas to reduce and volatilize the dopant.
2. A method for transparent vitrification of a porous preform for an optical fiber according to claim 1, which contains no oxygen.
(3)後行する透明ガラス化雰囲気は、約5%以上〜5
0%未満の酸素を含み、その残部が不活性ガスとなって
いる特許請求の範囲第1項記載の光ファイバ用多孔質母
材の透明ガラス化方法。
(3) The subsequent transparent vitrification atmosphere is about 5% or more
2. The method for transparent vitrification of a porous preform for an optical fiber according to claim 1, wherein the preform contains less than 0% oxygen and the remainder is an inert gas.
JP3809985A 1985-02-27 1985-02-27 Method of converting porous parent material for optical fiber into clarified glass Pending JPS61197438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3809985A JPS61197438A (en) 1985-02-27 1985-02-27 Method of converting porous parent material for optical fiber into clarified glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3809985A JPS61197438A (en) 1985-02-27 1985-02-27 Method of converting porous parent material for optical fiber into clarified glass

Publications (1)

Publication Number Publication Date
JPS61197438A true JPS61197438A (en) 1986-09-01

Family

ID=12516025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3809985A Pending JPS61197438A (en) 1985-02-27 1985-02-27 Method of converting porous parent material for optical fiber into clarified glass

Country Status (1)

Country Link
JP (1) JPS61197438A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083982A (en) * 2011-10-05 2013-05-09 Sumitomo Electric Ind Ltd Multimode optical fiber
CN103135164A (en) * 2011-11-23 2013-06-05 住友电气工业株式会社 Multi-mode optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083982A (en) * 2011-10-05 2013-05-09 Sumitomo Electric Ind Ltd Multimode optical fiber
CN103135164A (en) * 2011-11-23 2013-06-05 住友电气工业株式会社 Multi-mode optical fiber
JP2013109350A (en) * 2011-11-23 2013-06-06 Sumitomo Electric Ind Ltd Multimode optical fiber

Similar Documents

Publication Publication Date Title
CA1120727A (en) Method of producing glass optical filaments
US4772302A (en) Optical waveguide manufacture
JPH0854528A (en) Production of optical waveguide
JPH0526731B2 (en)
JPS61197438A (en) Method of converting porous parent material for optical fiber into clarified glass
JPS599491B2 (en) Method for manufacturing base material for optical fiber
CN1022681C (en) Method for mfg. fiber preform for single-mode fibers
JPH0551542B2 (en)
JPS63248733A (en) Production of single-mode optical fiber base material
JPH01275442A (en) Production of optical fiber preform
JPS61158303A (en) Formation of quartz optical waveguide
JPS63230533A (en) Production of optical fiber preform
JPS632900B2 (en)
JPS6136130A (en) Manufacture of preform for polarization-keeping optical fiber
JPH0329732B2 (en)
JPS6140843A (en) Optical fiber
KR850001877B1 (en) Method for making optical fiber
JP2540056B2 (en) Method for manufacturing fluorine-containing clad optical fiber foam
JPS62283838A (en) Production of optical fiber
JPS63315531A (en) Production of optical fiber preform
JPH0791082B2 (en) Method and apparatus for manufacturing optical fiber preform
JPS63134530A (en) Production of halogen-containing glass
JPS60215536A (en) Treatment of porous quartz glass preform
JPH03183632A (en) Production of glass preform for optical fiber
JPH04292433A (en) Production of optical fiber preform