JPS63134530A - Production of halogen-containing glass - Google Patents

Production of halogen-containing glass

Info

Publication number
JPS63134530A
JPS63134530A JP28042386A JP28042386A JPS63134530A JP S63134530 A JPS63134530 A JP S63134530A JP 28042386 A JP28042386 A JP 28042386A JP 28042386 A JP28042386 A JP 28042386A JP S63134530 A JPS63134530 A JP S63134530A
Authority
JP
Japan
Prior art keywords
halogen
glass
preform
containing gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28042386A
Other languages
Japanese (ja)
Other versions
JPH0829956B2 (en
Inventor
Ryozo Yamauchi
良三 山内
Suehiro Miyamoto
宮本 末広
Katsuyuki Seto
克之 瀬戸
Kenji Nishide
西出 研二
Tomio Azebiru
富夫 畔蒜
Masahiro Horikoshi
雅博 堀越
Tetsuya Sakai
哲弥 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61280423A priority Critical patent/JPH0829956B2/en
Publication of JPS63134530A publication Critical patent/JPS63134530A/en
Publication of JPH0829956B2 publication Critical patent/JPH0829956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To make it possible to dope a halogen in glass uniformly, by heat- treating a porous glass preform until the preform becomes transparent glass while raising halogen concentration in a gas correspondingly to rise in the heat-treatment temperature. CONSTITUTION:A porous glass preform 2 produced by a conventional procedure is put in a furnace 4, which is made in a halogen-containing gas atmosphere by introducing the halogen-containing gas into the furnace and the porous glass preform is primarily heat-treated at about 800-900 deg.C. Then the temperature in the furnace 4 is heated to 1,400-1,500 deg.C to melt the porous glass preform 2 and the preform 2 is made into transparent glass. In the operation, halogen concentration in the halogen-containing gas in the furnace 4 is made higher than that at the primary heat treatment. The optimum value for the halogen concentration can be obtained by a preliminary experiment. A transparent glass preform 5 to become clad is obtained by the formation of transparent glass. The preform can be uniformly doped with the halogen by thus raising the halogen concentration in the atmosphere in accordance with the rise in the heating temperature and glass having uniform refractive index distribution can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、フッ素や塩素などのハロゲンを均一にドー
ピングすることのできるハロゲン含有ガラスの製造方法
に関し、特に光フアイバ製造のための母材として好適な
ハロゲン含有ガラスを得ることができるものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing halogen-containing glass that can be uniformly doped with halogens such as fluorine and chlorine, and particularly relates to a method for producing halogen-containing glass that can be uniformly doped with halogens such as fluorine and chlorine. A suitable halogen-containing glass can be obtained.

〔従来技術〕[Prior art]

光ファイバとして近時純粋シリカからなるコアとフッ素
をドープしたシリカからなるクラッドとを有するタイプ
のものが、低伝送損失、耐水素性。
Recently, optical fibers with a core made of pure silica and a cladding made of silica doped with fluorine have low transmission loss and are resistant to hydrogen.

耐放射線性などの点で優れており広く普及しつつある。It has excellent radiation resistance and is becoming widespread.

このタイプの光ファイバを製造する方法の1つに、コア
となる純粋シリカガラス製の棒状体の外周にクラッドと
なるシリカからなる多孔質ガラスプリフォームを外付は
法などによって形成し、これをCF4 、 SF6など
のフッ素含有ガス雰囲気中で800〜900℃で熱処理
し、フッ素をプリフォームガラス微粒子中にドープし、
さらに温度を1500℃程度にまで昇温しプリフォーム
を溶融し透明ガラス化してファイバ母材となし、次にこ
のファイバ母材を延伸、溶融紡糸して光ファイバとする
方法がある。
One method for manufacturing this type of optical fiber is to form a porous glass preform made of silica as a cladding around the outer periphery of a rod-shaped body made of pure silica glass as a core. Heat-treated at 800 to 900°C in a fluorine-containing gas atmosphere such as CF4 or SF6 to dope fluorine into preform glass particles,
There is a method in which the temperature is further increased to about 1500° C. to melt the preform and turn it into transparent glass to obtain a fiber preform, and then this fiber preform is drawn and melt-spun to form an optical fiber.

〔発明が解決しようとする問題〕[Problem that the invention seeks to solve]

しかしながら、この方法で得られたファイバ母材は、第
5図に示すようにそのクラッドとなるガラス部分の屈折
率分布が均一ではなく、このファイバ母材から例えば、
シングルモード形光フ?イバを製造した場合、クラッド
にも別のモードが導波されるなどの問題があった。すな
わち、クラッドとなるガラス中でのフッ素のドープmが
不均一となり、クラッドとなるプリフォームの外側のド
ープiが中心部に比べて少なくなる問題があった。
However, as shown in FIG. 5, the fiber preform obtained by this method does not have a uniform refractive index distribution in the glass portion that becomes the cladding.
Single mode optical filter? When a fiber was manufactured, there were problems such as other modes being guided in the cladding as well. That is, there is a problem in that the doping m of fluorine in the glass serving as the cladding becomes non-uniform, and the doping i on the outside of the preform serving as the cladding becomes smaller than in the center.

この不都合は、上記光ファイバの製造に限られるもので
はなく、多孔質ガラスプリフォームをハロゲン含有ガス
雰囲気中で加熱し、ハロゲンをガラス中に拡散してハロ
ゲンをドープし、ついで透明ガラス化する際に、一般的
に認められるものである。
This inconvenience is not limited to the production of the above-mentioned optical fibers, but also when a porous glass preform is heated in a halogen-containing gas atmosphere, halogen is doped by diffusing the halogen into the glass, and then the glass is made into transparent glass. It is generally recognized that

(問題点を解決するための手段) そこで、この発明では熱処理時の温度を昇温すると同時
にハロゲン含有ガス中のハロゲンドープを高めつつ、透
明ガラス化に至るまで熱処理することにより上記問題を
解決するようにした。
(Means for Solving the Problem) Therefore, in this invention, the above problem is solved by increasing the temperature during heat treatment and simultaneously increasing the halogen dope in the halogen-containing gas, and heat-treating until it becomes transparent vitrification. I did it like that.

(作用) 熱処理時の加熱温度の上昇に応じて雰囲気中のハロゲン
濃度を高くしているので、プリフォームの外側部分での
ハロゲンドープmの低下が防止され、ハロゲンを均一に
ドープすることが可能とな゛る。
(Function) Since the halogen concentration in the atmosphere increases as the heating temperature increases during heat treatment, a decrease in halogen dope m in the outer part of the preform is prevented, and halogen can be doped uniformly. It's going on.

〔実施例〕〔Example〕

以下、本発明の一例を、光フアイバ母材の製造に適用し
た具体例で説明する。
Hereinafter, one example of the present invention will be explained using a specific example applied to the production of an optical fiber base material.

まず、コアとなる丸棒状の棒状体を用意する。First, prepare a round rod-shaped body that will become the core.

この棒状体は、純粋シリカガラスあるいけゲルマニウム
等を微量にドープしたシリカガラスからなるものである
。この棒状体を第1図に示すように出発部411とし、
これの外周に外付は法によってガラススートをINし、
クラッドとなる多孔質ガラスプリフォーム2を形成する
。この多孔質ガラスプリフォーム2は、多重管バーナ3
に、水素。
This rod-shaped body is made of pure silica glass or silica glass doped with a small amount of germanium or the like. This rod-shaped body is used as a starting part 411 as shown in FIG.
On the outer periphery of this, the external glass suit is IN according to the law,
A porous glass preform 2 that will become a cladding is formed. This porous glass preform 2 is connected to a multi-tube burner 3.
In, hydrogen.

酸素*5LCI4ガス、アルゴンガス等を送り込み、火
炎中で5LOzの微粒子(スート)を生成せしめこれを
堆積して得られたもので、出発部材1のほぼ全長にわた
って均一な厚みに形成されている。
It is obtained by feeding oxygen*5LCI4 gas, argon gas, etc. to generate 5LOz fine particles (soot) in a flame and depositing them, and is formed to have a uniform thickness over almost the entire length of the starting member 1.

ついで、このものを第2図に示すように加熱炉4に収容
し、炉4内にハロゲン含有ガスを流してハロゲン含有ガ
ス雰囲気としたうえで、温度800〜900℃で第1次
の熱処理を行う。上記ハロゲン含有ガスとしては、CF
、 、 SF、 、  F2. SOC第2 、 C1
2,CCl2 F2 、  C3Filなどのハロゲン
化合物ガス単独あるいはこれらガスとAr、 Heなど
の不活性ガスとの混合ガスが用いられる。この熱処理に
よりハロゲン含有ガスが熱分解してハロゲンとなり、ガ
ラス微粒子内に拡散してゆき、ハロゲンがドーピングさ
れるとともにガラス微粒子に残留している水酸基がII
 F 、  HC1などのハロゲン化水素の形で除去さ
れ、いわゆる脱水処理される。
Next, this product was placed in a heating furnace 4 as shown in Fig. 2, a halogen-containing gas was flowed into the furnace 4 to create a halogen-containing gas atmosphere, and a first heat treatment was performed at a temperature of 800 to 900°C. conduct. The above halogen-containing gas is CF
, , SF, , F2. SOC 2nd, C1
2. A halogen compound gas such as CCl2 F2 or C3Fil alone or a mixture of these gases and an inert gas such as Ar or He may be used. Through this heat treatment, the halogen-containing gas is thermally decomposed into halogen, which diffuses into the glass particles, doping the halogen and converting the hydroxyl groups remaining in the glass particles into II.
It is removed in the form of hydrogen halides such as F and HC1 and subjected to a so-called dehydration treatment.

ついで、加熱炉4内の温度を多孔質ガラスプリフォーム
2が溶融する温度、1400〜1500℃にまで昇温し
、プリフォーム2を透明ガラス化する。この際も、加熱
炉4内をハロゲンガス雰囲気とするが、ハロゲン濃度を
先の第1次の熱処理の際のm度よりも高くする。すなわ
ち、第1次の熱処理時のハロゲン含有ガス中のハロゲン
濃度をAとし、透明ガラス化時のハロゲン含有ガス中の
ハロゲン濃度Bとすると、B>八とし、さらにB−1,
1〜2Aとする。、Bとへの比率は、ハロゲン含有ガス
の種類、ドーパントされるガラスの組成、熱処理温度等
によって異るが、はぼ前記範囲内の値とされ、予備実験
によって最適値を求めることができる。
Next, the temperature in the heating furnace 4 is raised to a temperature of 1,400 to 1,500° C. at which the porous glass preform 2 melts, and the preform 2 is made into transparent glass. At this time as well, the inside of the heating furnace 4 is made into a halogen gas atmosphere, but the halogen concentration is made higher than the m degree at the time of the first heat treatment. That is, if the halogen concentration in the halogen-containing gas during the first heat treatment is A, and the halogen concentration in the halogen-containing gas during transparent vitrification is B, B>8, and B-1,
1 to 2A. , B varies depending on the type of halogen-containing gas, the composition of the glass to be doped, the heat treatment temperature, etc., but it is generally set within the above range, and the optimum value can be determined through preliminary experiments.

この透明ガラス化により多孔質ガラスブリフォ。This transparent vitrification creates a porous glass brif.

−ム2は透明ガラス化されてクラッドとなる透明ガラス
母材5になり、コアとなる出発部材1とともにファイバ
母材6が得られる。
- The film 2 is transparently vitrified to become a transparent glass preform 5 which becomes a cladding, and a fiber preform 6 is obtained together with the starting member 1 which becomes a core.

このファイバ母材6を適当な径となるように、加熱延伸
したのら、必要に応じてこのファイバ母材6に対して上
記多孔質プリフォーム形成、第1次の熱処理、透明ガラ
ス化の各処理を施し、クラッドとなる透明ガラス母材5
を厚肉化したのち、溶融紡糸すればステップインデック
ス型マルヂモード形光ファイバもしくはシングルモード
形光ファイバが得られる。
After heating and stretching the fiber base material 6 to an appropriate diameter, the fiber base material 6 is subjected to the above-mentioned porous preform formation, first heat treatment, and transparent vitrification as necessary. Transparent glass base material 5 that undergoes treatment and becomes cladding
After thickening the fiber, a step-index multi-mode optical fiber or a single-mode optical fiber can be obtained by melt-spinning.

このようなファイバ母材6の製造にあっては、透明ガラ
ス化処理後のクラッドとなる透明ガラス母材5中のハロ
ゲンのドープ量が均一となる。第1次の熱処理と次の透
明ガラス化との際に、従来法のように同一のハロゲン濃
度で熱処理した場合、より高温の熱処理となる透明ガラ
ス化時において、第1次の熱処理においてガラスプリフ
ォームの微粒子ガラス中に一旦拡散したハロゲンが高温
加熱によって再びガラスから放出され、透明ガラス母0
5の外側部分のハロゲンドープ量が低下する。
In manufacturing such a fiber preform 6, the amount of halogen doped in the transparent glass preform 5, which becomes the cladding after transparent vitrification treatment, becomes uniform. When the first heat treatment and the subsequent transparent vitrification are heat treated with the same halogen concentration as in the conventional method, when the transparent vitrification is performed at a higher temperature, the glass plate in the first heat treatment The halogen that has once diffused into the particulate glass of the renovation is released from the glass again by high temperature heating, and the transparent glass matrix becomes 0.
The amount of halogen doped in the outer portion of No. 5 is reduced.

これは、溶融ガラス中に溶解するハロゲン濃度がガラス
の温度に逆比例し、温度が高くなるにしたがい、ハロゲ
ンの溶融ガラスへの溶解性が低下するためである。よっ
て、高温の透明ガラス化処理において雰囲気中のハロゲ
ン濃度を高めてハロゲンの溶融ガラスへの溶解性を高め
てやれば、外側部分のハロゲンの逆拡散が防止され、均
一なドープが可能となるのである。
This is because the concentration of halogen dissolved in molten glass is inversely proportional to the temperature of the glass, and as the temperature increases, the solubility of halogen in molten glass decreases. Therefore, if the halogen concentration in the atmosphere is increased during the high-temperature transparent vitrification process to increase the solubility of the halogen into the molten glass, back diffusion of the halogen in the outer portion will be prevented and uniform doping will be possible. be.

〔実験例〕[Experiment example]

Geを1.5重量%ドーピングしたシリカガラスからな
る直径12ag+の丸棒をコアとなる出発部材とし、こ
の出発部材の外周に外付は法によりシリカガラスからな
るスートを堆積し、クラッドとなる多孔質ガラスプリフ
ォームを外径120gmとなるように形成した。ついで
、このものを加熱炉内に収め、ヘリウム90体積%、C
F410体積%の混合ガスを517分の流mで流しつつ
温度850℃で熱処理した。ついで炉内温度を1500
℃に昇温するとともにヘリウム85体積%、CF415
体積%の混合ガスを5J/分の流かで流しつつ多孔質ガ
ラスプリフォームを透明ガラス化して透明ガラス母材と
なしてファイバ母材を得た。このファイバ母材の外径は
42mであった。このファイバ母材のフッ素のドープ分
布状態を屈折率分布で評価したところ、第3図に示すよ
うな結果を示し、フッ素のドープが均一に行われている
ことがわかった。
A round rod with a diameter of 12ag+ made of silica glass doped with 1.5% by weight of Ge is used as the core starting member, and a soot made of silica glass is deposited on the outer periphery of this starting member by a method to form a porous cladding. A quality glass preform was formed to have an outer diameter of 120 gm. Next, this material was placed in a heating furnace, and 90% by volume helium and C
Heat treatment was performed at a temperature of 850° C. while flowing a mixed gas of 10% by volume of F4 at a flow rate of 517 min. Then, increase the temperature inside the furnace to 1500.
As the temperature rises to ℃, 85% by volume of helium, CF415
A fiber preform was obtained by converting the porous glass preform into transparent vitrification while flowing a mixed gas of % by volume at a flow rate of 5 J/min to obtain a transparent glass preform. The outer diameter of this fiber preform was 42 m. When the fluorine doping distribution state of this fiber base material was evaluated using the refractive index distribution, the results shown in FIG. 3 were obtained, indicating that fluorine doping was uniformly performed.

このファイバ母材上にさらに同様にしてシリカガラスか
らなる多孔質ガラスプリフォームを堆積し、同条件の熱
処理、透明ガラス化を行い、クラッドとなる透明ガラス
母材の厚化を行ったのら、延′伸、溶融紡糸を行って、
コア径10μ卯、クラツド径125μmのシングルモー
ド形光ファイバを得た。このファイバの屈折率分布は第
4図に示すように良好であり、コアクラッド間の屈折率
差は0.4%以下であり、伝送損失は0.19dB/触
であった。
A porous glass preform made of silica glass was further deposited on this fiber base material in the same manner, heat treated under the same conditions, and made into transparent glass to thicken the transparent glass base material that would become the cladding. After stretching and melt spinning,
A single mode optical fiber with a core diameter of 10 μm and a cladding diameter of 125 μm was obtained. The refractive index distribution of this fiber was good as shown in FIG. 4, the refractive index difference between the core and cladding was 0.4% or less, and the transmission loss was 0.19 dB/touch.

一方、透明ガラス化時においても、ヘリウム90体積%
、CF410体積%の混合ガスを流して処理したファイ
バ母材の屈折率は第5図に示した通りであり、これより
同様にして得られたシングルモード形ファイバの屈折率
分布は第6図に示した通りであった。
On the other hand, even at the time of transparent vitrification, helium 90% by volume
The refractive index of the fiber base material treated by flowing a mixed gas of 10% by volume of CF4 is as shown in Figure 5, and the refractive index distribution of the single mode fiber obtained in the same manner is shown in Figure 6. It was as shown.

このように、フッ素を多孔質ガラスプリフォームにドー
ピングする場合には、透明ガラス化時のフッ素濃度を第
1次の熱処理時のフッ素濃度の1゜5倍とすることによ
って均一にドーピングすることができた。これに対して
、同一フッ素濃度で処理すると、第5図に示すような分
布となり、フッ素のドープによる屈折率の低下率が透明
ガラス母材4の中心付近で0.4%1表面付近で0.3
6%となっている。ところで、ガラス中へのフッ素のド
ープ沿は気相のフッ素濃度の4乗倍に比例すると言われ
ていることから、屈折率の低下率の比をガラス中のフッ
素ドープ聞の比に相当するとみなせば、 (0,4/ 0.36 )’ = 1.114 = 1
゜52となって、フッ素濃度を1.5倍すれば均一ドー
プが可能であることが予測される。
In this way, when doping a porous glass preform with fluorine, uniform doping can be achieved by setting the fluorine concentration during transparent vitrification to 1.5 times the fluorine concentration during the first heat treatment. did it. On the other hand, when treated with the same fluorine concentration, the distribution becomes as shown in FIG. .3
It is 6%. By the way, it is said that the rate of fluorine doping in glass is proportional to the fourth power of the fluorine concentration in the gas phase, so the ratio of the rate of decrease in refractive index can be considered to correspond to the ratio of fluorine doping in glass. For example, (0,4/ 0.36)' = 1.114 = 1
52, and it is predicted that uniform doping will be possible if the fluorine concentration is multiplied by 1.5.

〔他の実施例〕[Other Examples]

VAD法によって、出発部材の先端に5LO2からなる
スートを堆積してゆき、丸棒状の多孔質ガラスプリフォ
ームを得る。このプリフォームを加熱炉内に収容し、H
e98%と5OCjz2%との混合ガスを流しつつ85
0℃で熱処理し、さらに1500℃で透明ガラス化する
と、第7図に示すJ:うな屈折率分布を有するガラス母
材が得られる。一般に、シリカガラスに塩素をドープす
ると、屈折率が上昇するが、やはりガラス母材表面付近
では塩素のドープ吊が低下し、屈折率の上界率が低下し
ている。
By the VAD method, soot consisting of 5LO2 is deposited on the tip of the starting member to obtain a round bar-shaped porous glass preform. This preform is placed in a heating furnace, and H
85 while flowing a mixed gas of e98% and 5OCjz2%
When heat treated at 0° C. and further transparent vitrified at 1500° C., a glass base material having a J: curved refractive index distribution shown in FIG. 7 is obtained. Generally, when silica glass is doped with chlorine, the refractive index increases, but the doping level of chlorine also decreases near the surface of the glass base material, resulting in a decrease in the upper bound of the refractive index.

このため、透明ガラス化時の上記混合ガス中の5OCj
zの濃度を第1次の熱処理時の濃度の1.5倍(lIe
、97%、 5OC1z 3%)にすることにより、塩
素を母材に均一にドープさせることができ、第8図に示
すような表面部での塩素ドープ最の低下防止が可能であ
る。この場合の塩素濃度の倍率は、先のフッ素のドーピ
ングと同様の手法によって予測することができる。
For this reason, 5OCj in the above mixed gas during transparent vitrification
The concentration of z was 1.5 times the concentration during the first heat treatment (lIe
. The magnification of the chlorine concentration in this case can be predicted by the same method as for fluorine doping.

(発明の効果〕 以上説明したように、この発明のハロゲン含有ガラスの
製造法は、多孔質ガラスプリフォームをハロゲン含有ガ
ス雰囲気中で熱処理する際に、熱処理温度の上昇に対応
してハロゲン含有ガス中のハロゲン濃度を高めつつ透明
ガラス化に至るまで熱処理するものであるので、ハロゲ
ンをガラス中に均一にドープすることができ、均一な屈
折率分布を持つガラスを製造することができる。
(Effects of the Invention) As explained above, in the method for producing halogen-containing glass of the present invention, when a porous glass preform is heat-treated in a halogen-containing gas atmosphere, the halogen-containing glass is Since the heat treatment is performed until the glass becomes transparent while increasing the halogen concentration in the glass, halogen can be uniformly doped into the glass, and glass with a uniform refractive index distribution can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の製造法の一例を工程順
に示す説同図、第3図は実験例で彎られたフッ素ドープ
ファイバ母材の屈折率分布を示す図、第4図は実験例で
得られたフッ素ドープファイバ母材からのシングルモー
ド形光ファイバの屈折率分布を示す図、第5図は従来法
によって得られたフッ素ドープファイバ母材の屈折率分
布を示す図、第6図は従来法によって得られたフッ素ド
ープファイバ母材からのシングルモード形光ファイバの
屈折率分布を示す図、第7図は従来法によって得られた
塩素ドープファイバ母材の屈折率分布を示す図、第8図
は本発明の他の実施例で得られた塩素ドープファイバ母
材の屈折率分布を示す図である。 2・・・多孔質ガラスプリフォーム、4・・・加熱炉。
Figures 1 and 2 are illustrative diagrams showing an example of the manufacturing method of the present invention in the order of steps, Figure 3 is a diagram showing the refractive index distribution of the fluorine-doped fiber base material obtained in the experimental example, and Figure 4 is Figure 5 is a diagram showing the refractive index distribution of a single-mode optical fiber made from a fluorine-doped fiber base material obtained in an experimental example. Figure 6 shows the refractive index distribution of a single mode optical fiber made from a fluorine-doped fiber preform obtained by the conventional method, and Fig. 7 shows the refractive index distribution of a chlorine-doped fiber preform obtained by the conventional method. 8 are diagrams showing the refractive index distribution of a chlorine-doped fiber base material obtained in another example of the present invention. 2... Porous glass preform, 4... Heating furnace.

Claims (1)

【特許請求の範囲】 多孔質ガラスプリフォームをハロゲン含有ガス雰囲気中
で熱処理する際に、 熱処理温度の上昇に対応してハロゲン含有ガス中のハロ
ゲン濃度を高めつつ透明ガラス化に至るまで熱処理する
ことを特徴とするハロゲン含有ガラスの製造法。
[Claims] When heat-treating a porous glass preform in a halogen-containing gas atmosphere, the heat treatment is performed while increasing the halogen concentration in the halogen-containing gas in response to an increase in heat treatment temperature until it becomes transparent vitrified. A method for producing halogen-containing glass characterized by:
JP61280423A 1986-11-25 1986-11-25 Method for producing halogen-containing glass Expired - Lifetime JPH0829956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280423A JPH0829956B2 (en) 1986-11-25 1986-11-25 Method for producing halogen-containing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280423A JPH0829956B2 (en) 1986-11-25 1986-11-25 Method for producing halogen-containing glass

Publications (2)

Publication Number Publication Date
JPS63134530A true JPS63134530A (en) 1988-06-07
JPH0829956B2 JPH0829956B2 (en) 1996-03-27

Family

ID=17624839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280423A Expired - Lifetime JPH0829956B2 (en) 1986-11-25 1986-11-25 Method for producing halogen-containing glass

Country Status (1)

Country Link
JP (1) JPH0829956B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405830A1 (en) * 2001-06-13 2004-04-07 Sumitomo Electric Industries, Ltd. Glass base material and method of manufacturing glass base material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231432A (en) * 1984-04-27 1985-11-18 Furukawa Electric Co Ltd:The Manufacture of quartz series optical fiber base material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231432A (en) * 1984-04-27 1985-11-18 Furukawa Electric Co Ltd:The Manufacture of quartz series optical fiber base material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405830A1 (en) * 2001-06-13 2004-04-07 Sumitomo Electric Industries, Ltd. Glass base material and method of manufacturing glass base material
EP1405830A4 (en) * 2001-06-13 2011-06-08 Sumitomo Electric Industries Glass base material and method of manufacturing glass base material

Also Published As

Publication number Publication date
JPH0829956B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
JP2959877B2 (en) Optical fiber manufacturing method
US4643751A (en) Method for manufacturing optical waveguide
JPS60257408A (en) Optical fiber and its production
JPH04270132A (en) Production of glass matrix for optical fiber
JPH05350B2 (en)
JPS62275035A (en) Production of base material for optical fiber
JPS63134530A (en) Production of halogen-containing glass
JPS599491B2 (en) Method for manufacturing base material for optical fiber
JPH0524873A (en) Production of glass preform for optical fiber
US4875918A (en) Method of manufacturing fiber preform for single-mode fibers
JPS6131324A (en) Production of base material for optical fiber
JPS60251142A (en) Manufacture of base material for optical fiber
JPS60263103A (en) Base material for optical fiber and its production
JPH01286932A (en) Production of optical fiber preform
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
JP3439258B2 (en) Method for producing glass preform for optical fiber
JP2645710B2 (en) Preform for optical fiber and method of manufacturing the same
JPS63307136A (en) Production of optical fiber preform
JPH0948630A (en) Production of preform for optical fiber
JPS61197438A (en) Method of converting porous parent material for optical fiber into clarified glass
JPS60145927A (en) Production of base material for optical fiber
JPS61117127A (en) Treatment of parent material comprising porous glass for optical fiber
JPH0369526A (en) Production of glass base material for optical fiber
JPS63315531A (en) Production of optical fiber preform