JPH0524873A - Production of glass preform for optical fiber - Google Patents

Production of glass preform for optical fiber

Info

Publication number
JPH0524873A
JPH0524873A JP18458791A JP18458791A JPH0524873A JP H0524873 A JPH0524873 A JP H0524873A JP 18458791 A JP18458791 A JP 18458791A JP 18458791 A JP18458791 A JP 18458791A JP H0524873 A JPH0524873 A JP H0524873A
Authority
JP
Japan
Prior art keywords
core
glass
optical fiber
base material
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18458791A
Other languages
Japanese (ja)
Other versions
JP3106564B2 (en
Inventor
Yuichi Oga
裕一 大賀
Shinji Ishikawa
真二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18458791A priority Critical patent/JP3106564B2/en
Publication of JPH0524873A publication Critical patent/JPH0524873A/en
Application granted granted Critical
Publication of JP3106564B2 publication Critical patent/JP3106564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine

Abstract

PURPOSE:To reduce residual stress in core of optical fiber consisting of quartz glass and core in production of quartz-based optical fiber. CONSTITUTION:In producing a glass preform by dehydrating a porous preform consisting essentially of quartz and vitrifying transparently, the porous preform is heat-treated in an atmosphere comprising a halogen-containing gas in the dehydrating process and/or the transparently vitrifying to add 0.1-1wt.% halogen to quartz glass and the prepared glass preform is used as core of optical fiber to produce glass preform for optical fiber. Chlorine is preferable as the halogen. The core formed in this way has small residual stress and variability of specific refractive index difference, lambdac, MFD, etc., from set values is small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は石英系光ファイバ母材の
製造に関するものであり、特に純石英系ガラスをコアと
する光ファイバの製造に適用してコア内の残留応力を低
減して製造できる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a silica-based optical fiber preform, and in particular, it is applied to the production of an optical fiber having a core of pure silica glass to reduce the residual stress in the core. It's about how you can do it.

【0002】[0002]

【従来の技術】光ファイバ用母材を大量生産する一般的
な方法としてVAD(Vapor Phase Axial Deposition)
法が知られている。VAD法は、回転する出発部材例え
ばガラス棒の上に酸水素火炎中で生成したガラス微粒子
を堆積させて円柱状の多孔質母材を作り、この多孔質母
材を焼結して透明な光ファイバ用ガラス母材を製造する
方法である。VAD法において、多孔質母材を焼結し、
透明ガラス化するには、母材を不活性気体雰囲気中で1
600℃以上に加熱する必要がある。また水分の混入が
あると得られる光ファイバの通信波長域における損失特
性が損なわれるため、通常透明化前または透明化と同時
に多孔質母材を脱水することが行われる。脱水処理とし
て多孔質母材を塩素系ガスを添加した不活性ガス雰囲気
中で高温加熱処理する方法が知られている。
2. Description of the Related Art VAD (Vapor Phase Axial Deposition) is a general method for mass-producing optical fiber preforms.
The law is known. In the VAD method, glass particles produced in an oxyhydrogen flame are deposited on a rotating starting member such as a glass rod to form a columnar porous base material, and the porous base material is sintered to produce a transparent light. It is a method of manufacturing a glass preform for fibers. In the VAD method, the porous base material is sintered,
To make transparent glass, the base material should be 1 in an inert gas atmosphere.
It needs to be heated to 600 ° C or higher. In addition, since the loss characteristics in the communication wavelength range of the obtained optical fiber are impaired when water is mixed in, the porous base material is usually dehydrated before or at the same time as it is made transparent. As a dehydration treatment, there is known a method in which a porous base material is heated at a high temperature in an inert gas atmosphere to which a chlorine-based gas is added.

【0003】[0003]

【発明が解決しようとする課題】ところで、近年特に光
ファイバの低損失化の観点から、コアに純粋石英ガラ
ス、クラッドにフッ素添加石英ガラスを用いたシングル
モードファイバが有望視されている。純粋石英をコアと
する光ファイバは、コアにGeO2 を添加しないことか
ら、散乱損失を低減できて、低損失化には極めて有利で
ある。ところが、純粋石英コア−フッ素添加石英クラッ
ドからなる光ファイバの場合、断面積の小さなコア部の
粘性がクラッド部より大きいため、線引時の張力の大部
分がコアにかかることになりる。その結果、ガラス固化
時にはコア部に引張応力が残り、種々の不具合が生じて
いた。つまり引張応力によりコア部の屈折率が低下(光
弾性効果)してコア−クラッド間の比屈折率差が低下す
る結果、プリフォームの段階で予想したλc (カットオ
フ波長)、MFD(モールドフィールド径)、λ0 (零
分散波長)にずれが生じるとともに、引張応力の残留は
製造条件(線引条件)にも強く依存するため、条件安定
化に非常に注意する必要があった。本発明は、以上のよ
うな純粋石英コア−フッ素添加クラッド構造のファイバ
の問題点を解決し、設計した構造の光ファイバ用母材を
製造できる方法を提供することを目的としてなされたも
のである。
By the way, in recent years, especially from the viewpoint of reducing the loss of an optical fiber, a single-mode fiber using pure silica glass for the core and fluorine-doped silica glass for the cladding is regarded as promising. The optical fiber having pure silica as a core does not have GeO 2 added to the core, so that scattering loss can be reduced, which is extremely advantageous for lowering the loss. However, in the case of an optical fiber composed of a pure quartz core and a fluorine-added quartz clad, since the viscosity of the core portion having a small cross-sectional area is larger than that of the clad portion, most of the tension during drawing is applied to the core. As a result, tensile stress remains in the core during glass solidification, causing various problems. That is, the tensile stress lowers the refractive index of the core part (photoelastic effect) and decreases the relative refractive index difference between the core and the clad. As a result, λc (cutoff wavelength) and MFD (mold field) predicted at the preform stage are obtained. Since the diameter) and λ 0 (zero dispersion wavelength) are deviated, and the residual tensile stress strongly depends on the manufacturing conditions (drawing conditions), it is necessary to pay attention to the stabilization of the conditions. The present invention has been made for the purpose of solving the above-mentioned problems of the fiber having the pure quartz core-fluorine-doped clad structure and providing a method capable of manufacturing an optical fiber preform having a designed structure. .

【0004】[0004]

【課題を解決するための手段】本発明者らは上述したと
ころに鑑み、コアとなる純粋石英ガラスの粘性を下げる
ことにより、クラッドとなるフッ素添加石英ガラスの粘
性との差を相対的に小さくし、これにより線引時のコア
への応力集中を緩和させようと考え、種々検討の結果、
純粋石英ガラス中に微量のハロゲンを含有させることで
問題が解決できることを見出し、本発明に到達した。す
なわち、上記問題を解決する本発明は、石英を主成分と
する多孔質母材を脱水処理および透明ガラス化してガラ
ス母材を得る方法において、該脱水処理工程および/又
は透明ガラス化工程においてハロゲン系ガスを含む雰囲
気中で加熱処理することにより石英ガラス中にハロゲン
を0.1〜1重量%含ませ、これにより得られたガラス
母材を光ファイバのコアとして用いることを特徴とす
る。本発明において石英ガラス中に含有させるハロゲン
としては、塩素が特に好ましい。
DISCLOSURE OF THE INVENTION In view of the above, the inventors of the present invention reduce the viscosity of pure quartz glass as a core so that the difference from the viscosity of fluorine-doped quartz glass as a clad becomes relatively small. However, we thought that this would alleviate the stress concentration on the core during drawing, and as a result of various studies,
The inventors have found that the problem can be solved by containing a slight amount of halogen in pure quartz glass, and have reached the present invention. That is, the present invention which solves the above-mentioned problem is a method for obtaining a glass base material by subjecting a porous base material containing quartz as a main component to a dehydration treatment and a transparent vitrification, wherein a halogen is used in the dehydration treatment step and / or the transparent vitrification step. It is characterized in that 0.1 to 1% by weight of halogen is contained in quartz glass by heat treatment in an atmosphere containing a system gas, and the glass preform thus obtained is used as a core of an optical fiber. Chlorine is particularly preferable as the halogen contained in the quartz glass in the present invention.

【0005】[0005]

【作用】前記した純粋石英ガラスの粘性の影響を調べる
ためにハロゲンとしてはClを代表として用いて、石英
ガラス中のCl量をイオンクロマトグラフ法で分析し、
定量化するとともに、該石英母材をコアとして、シング
ルモードファイバを製造して、構造(λc,MFD),
残留応力及びファイバの屈折率分布からコアとクラッド
の比屈折率差を測定した。Cl量が多くなるにつれ、フ
ァイバ内の残留応力は小さくなり、その結果コアとクラ
ッドと比屈折率差はプリフォーム状態で測定した値に近
づくことが明らかとなった(図1及び図2)。また、フ
ァイバ構造(λc,MFD)もプリフォーム段階での予
測値にほぼ一致した(図3)。以上のことから、純石英
ガラス中のCl量を多くすることにより、石英ガラスの
粘性を下げることができるので、ファイバ構造がプリフ
ォーム段階での予測値からずれることはなくなり、また
線引条件に対する依存性も緩和されることから、純石英
コアシングルモードファイバを製造するのに非常に有効
に作用する。純石英ガラス中のCl量は、0.2重量%
〜1重量%であることが好ましい。0.1重量%未満で
はCl含有の効果が発現せずプリフォーム段階での予測
値から大きくずれるため好ましくない。また、ほぼ1重
量%の含有量でプリフォームの予測値とほぼ一致するの
でこれを越えての含有は不要である。なお、石英ガラス
の粘性を下げる作用を有する他のハロゲン元素の添加の
場合も同様であった。フッ素は屈折率を下げる作用も有
するので、フッ素を添加する場合にはコアへの添加量以
上にクラッドにフッ素を添加する必要がある。その他ヨ
ウ素(I)、臭素(Br)も有効であるが、脱水作用が
一番大きく、屈折率への影響がない点では塩素系ガスを
用いることが有利である。塩素系ガスとしては、例えば
Cl2 、CCl4 、SiCl4 、SOCl2 、SCl2
等を挙げることができる。ただし、例えば脱水処理だけ
塩素系ガスを用いて行い、透明化処理では他のハロゲン
系ガスを用いる、あるいは脱水処理は他のハロゲン系ガ
スを用いて透明化処理は塩素系ガスを用いることも可能
である。
In order to investigate the effect of the above-mentioned viscosity of pure quartz glass, Cl is used as a typical halogen, and the amount of Cl in the quartz glass is analyzed by ion chromatography.
In addition to quantifying, a single mode fiber was manufactured by using the quartz base material as a core to obtain a structure (λc, MFD),
The relative refractive index difference between the core and the clad was measured from the residual stress and the refractive index distribution of the fiber. It was revealed that the residual stress in the fiber became smaller as the amount of Cl increased, and as a result, the relative refractive index difference between the core and the clad approaches the value measured in the preformed state (FIGS. 1 and 2). Further, the fiber structure (λc, MFD) also almost matched the predicted value at the preform stage (FIG. 3). From the above, by increasing the amount of Cl in the pure silica glass, the viscosity of the silica glass can be lowered, so that the fiber structure does not deviate from the predicted value at the preform stage and the fiber drawing Since the dependence is relaxed, it works very effectively for manufacturing a pure silica core single mode fiber. The amount of Cl in pure quartz glass is 0.2% by weight
It is preferably ˜1% by weight. If it is less than 0.1% by weight, the effect of containing Cl does not appear and it greatly deviates from the predicted value at the preform stage, which is not preferable. Further, since the content of about 1% by weight substantially agrees with the predicted value of the preform, it is not necessary to exceed the content. The same was true for the case of adding another halogen element having the effect of lowering the viscosity of quartz glass. Since fluorine also has a function of lowering the refractive index, when fluorine is added, it is necessary to add more fluorine to the cladding than the amount added to the core. In addition, iodine (I) and bromine (Br) are also effective, but it is advantageous to use a chlorine-based gas in that it has the largest dehydration effect and does not affect the refractive index. Examples of chlorine-based gas include Cl 2 , CCl 4 , SiCl 4 , SOCl 2 , and SCl 2.
Etc. can be mentioned. However, for example, it is possible to use only chlorine-based gas for dehydration and use other halogen-based gas for clearing treatment, or use other halogen-based gas for dehydration and chlorine-based gas for clearing. Is.

【0006】実際に、純石英ガラス中にハロゲンを0.
1重量%〜1重量%の範囲内で含有させるには、ハロゲ
ン化物の中から適当なものを選択し、ハロゲン化物とH
e 等の不活性ガスからなり常圧〜3kg/cm2 程度の
加圧の雰囲気下、温度1000℃〜1700℃の範囲で
加熱して多孔質母材と反応させ、透明ガラス化する。具
体的には、多孔質母材をハロゲン化物ガスを含む雰囲気
中で加熱処理するのは、a)多孔質母材の脱水処理工
程、b)多孔質母材の透明ガラス化処理工程、c)脱水
処理工程および透明ガラス化処理工程、のa)〜c)の
いずれで行ってもよく、特に好ましくはa)又はc)で
ある。添加量の制御は、ガス濃度、処理温度等の調整で
可能であるが、本発明者らの実験では調整の幅はせいぜ
い1.5倍程度までであった。むしろハロゲン化物ガス
の種類の選択の方が添加量の調整には有効であり、例え
ば塩素ガス使用では0.2〜0.4重量%であったの
が、SiCl4 ガスを使用すると0.5〜0.8重量%
となった。つまり、含有量は使用するガス種により大き
く変化させることが可能である。なお、本発明に用いる
多孔質母材としてはこの種の技術分野で公知の手段によ
り作成されたものを用いることができ、例えばVAD
法、OVD法等の気相合成による多孔質母材が挙げられ
るが、これに限定されるものではない。多孔質母材のカ
サ密度も特に限定されるところはないが、一般的には
0.2〜0.4g/cm3 程度である。また、上記説明
では純石英の多孔質体を示したが、石英を主成分とする
多孔質体であればよい。
[0006] Actually, halogen of 0.
In order to make the content within the range of 1% by weight to 1% by weight, an appropriate one is selected from the halides, and the halide and H
It is heated at a temperature in the range of 1000 ° C. to 1700 ° C. in an atmosphere of an inert gas such as e to a pressure of about 3 kg / cm 2 from normal pressure to react with the porous base material to form a transparent glass. Specifically, the heat treatment of the porous base material in an atmosphere containing a halide gas includes a) a dehydration processing step of the porous base material, b) a transparent vitrification processing step of the porous base material, and c). It may be carried out in any of a) to c) of the dehydration treatment step and the transparent vitrification treatment step, particularly preferably a) or c). The addition amount can be controlled by adjusting the gas concentration, the processing temperature, etc., but in the experiments conducted by the present inventors, the range of adjustment was at most about 1.5 times. Rather, selection of the type of halide gas is more effective in adjusting the amount of addition, for example, when chlorine gas was used, it was 0.2 to 0.4% by weight, but when SiCl 4 gas was used, it was 0.5. ~ 0.8% by weight
Became. That is, the content can be greatly changed depending on the gas species used. The porous base material used in the present invention may be one prepared by means known in the technical field of this kind, for example, VAD.
However, the present invention is not limited thereto. The bulk density of the porous base material is not particularly limited, but is generally about 0.2 to 0.4 g / cm 3 . Further, although a porous body made of pure quartz is shown in the above description, a porous body containing quartz as a main component may be used.

【0007】[0007]

【実施例】【Example】

実施例1 まず図5に示したようにVAD法によって垂直に支持さ
れた出発部材3の下端にバーナ2を対向させ、このバー
ナ2内にSiCl4 1400cc/分を供給し、またH
2 35リットル/分、O2 35リットル/分、Ar10
リットル/分を供給して、SiO2 ガラス微粒子(多孔
質母材)1を出発部材3の下端に堆積させた。得られた
多孔質母材は直径125mmφ、長さ500mmであっ
た。該多孔質母材を図6に示す炉心管5とヒータ4を有
する焼結炉内に挿入した。密閉系内に挿入された多孔質
母材1は1200℃に維持された炉内にHe10リット
ル/分、ハロゲン化物ガス(塩素系ガス)としてSiC
4 200cc/分を供給し、脱水処理した。引き続き
炉温を1600℃に昇温し、He10リットル/分、S
iCl4 200cc/分を供給してコア用透明ガラスロ
ッドを得た。この母材のCl量をイオンクロマトグラフ
法で分析したところ、0.8重量%であった。次にこの
コアロッドを直径5mmに延伸したのち、その周りに外
付け法によりSiO2 ガラス微粒子を140mm厚に堆
積させた。該母材を1350℃に維持された炉内に挿入
し、He 10リットル/分、SiF4 300cc/分を
供給して、フッ素添加した後、同雰囲気にて炉温を15
50℃に昇温して透明ガラス化した。こうして得られた
コア−クラッドを有する母材を外径125μmのファイ
バにし、特性を調べた。図4は得られたファイバの屈折
率分布を示す。
Example 1 First, as shown in FIG. 5, a burner 2 was made to face a lower end of a starting member 3 vertically supported by a VAD method, and 1400 cc / min of SiCl 4 was supplied into this burner 2, and H
2 35 l / min, O 2 35 l / min, Ar10
Lit / min was supplied to deposit the SiO 2 glass fine particles (porous base material) 1 on the lower end of the starting member 3. The obtained porous base material had a diameter of 125 mmφ and a length of 500 mm. The porous base material was inserted into a sintering furnace having a furnace core tube 5 and a heater 4 shown in FIG. The porous base material 1 inserted into the closed system was He 10 liters / minute in a furnace maintained at 1200 ° C., and SiC was used as a halide gas (chlorine gas).
It was dehydrated by supplying 200 cc / min of l 4 . Subsequently, the furnace temperature was raised to 1600 ° C., He 10 liter / min, S
A transparent glass rod for a core was obtained by supplying 200 cc / min of iCl 4 . When the amount of Cl in this base material was analyzed by ion chromatography, it was 0.8% by weight. Next, this core rod was stretched to have a diameter of 5 mm, and SiO 2 glass fine particles were deposited to a thickness of 140 mm around the core rod by an external attachment method. The base material was inserted into a furnace maintained at 1350 ° C., He (10 l / min) and SiF 4 ( 300 cc / min) were supplied, and fluorine was added.
The temperature was raised to 50 ° C. to make transparent glass. The preform having a core-clad thus obtained was made into a fiber having an outer diameter of 125 μm, and the characteristics were investigated. FIG. 4 shows the refractive index profile of the obtained fiber.

【0008】実施例2 実施例1と同様の方法にて、塩素系ガスとしてCl2
用い、純粋石英ガラスを作成した。脱水処理、透明化処
理の際の炉内雰囲気はHe 10リットル/分、Cl2
00cc/分である。この母材のCl量は0.3重量%
であった。次にこのコアロッドを直径5mmに延伸した
のち、その周りに外付け法によりSiO2 ガラス微粒子
を140mm厚に堆積させた。該母材を1350℃に維
持された炉内に挿入し、He 10リットル/分、SiF
4 300cc/分を供給して、フッ素添加した後、同雰
囲気にて炉温を1550℃に昇温して透明ガラス化し
た。こうして得られたコア−クラッドを有する母材を外
径125μmのファイバにし、特性を調べた。
Example 2 In the same manner as in Example 1, pure quartz glass was prepared using Cl 2 as a chlorine-based gas. The atmosphere in the furnace during the dehydration treatment and the clarification treatment was He 10 liter / min, Cl 2 2
It is 00 cc / min. The amount of Cl in this base material is 0.3% by weight
Met. Next, this core rod was stretched to have a diameter of 5 mm, and SiO 2 glass fine particles were deposited to a thickness of 140 mm around the core rod by an external attachment method. The base material was inserted into a furnace maintained at 1350 ° C., He 10 liter / min, SiF
After supplying 300 cc / min of 4 and adding fluorine, the furnace temperature was raised to 1550 ° C. in the same atmosphere to form a transparent glass. The preform having a core-clad thus obtained was made into a fiber having an outer diameter of 125 μm, and the characteristics were investigated.

【0009】比較例1 実施例1と同様の方法にて、塩素系ガスとしてCCl4
を用い、純粋石英ガラスを作成した。脱水処理、透明化
の際の炉内雰囲気は、He 10リットル/分、CCl4
20cc/分、O2 60cc/分である。この母材のC
l量は0.05重量%であった。次にこのコアロッドを
直径5mmに延伸したのち、その周りに外付け法により
SiO2 ガラス微粒子を140mm厚に堆積させた。該
母材を1350℃に維持された炉内に挿入し、He 10
リットル/分、SiF4 300cc/分を供給して、フ
ッ素添加した後、同雰囲気にて炉温を1550℃に昇温
して透明ガラス化した。こうして得られたコア−クラッ
ドを有する母材を外径125μmのファイバにし、特性
を調べた。
Comparative Example 1 In the same manner as in Example 1, CCl 4 was used as a chlorine-based gas.
Was used to prepare pure quartz glass. The atmosphere in the furnace at the time of dehydration treatment and clarification is He 10 liter / min, CCl 4
20 cc / min and O 2 60 cc / min. C of this base material
The amount was 0.05% by weight. Next, this core rod was stretched to have a diameter of 5 mm, and SiO 2 glass fine particles were deposited to a thickness of 140 mm around the core rod by an external attachment method. The base material was inserted into a furnace maintained at 1350 ° C., and He 10
L / min and SiF 4 300 cc / min were supplied and fluorine was added, and then the furnace temperature was raised to 1550 ° C. in the same atmosphere to obtain transparent vitrification. The preform having a core-clad thus obtained was made into a fiber having an outer diameter of 125 μm, and the characteristics were investigated.

【0010】実施例1,2と比較例1から作製されたフ
ァイバ特性の比較 以上のようにして得たCl量の異なる3本のファイバに
ついて、各々残留応力、比屈折率差、ファイバ構造(λ
c,MFD)を調べた結果を、図1〜図3に比較して示
す。図1から判るように、純粋石英ガラス中のCl量が
多いほど、線引後の残留応力が小さくなる。即ち、Cl
量が多い母材ほど石英ガラスの粘度が小さくなると推定
される。ファイバ内残留応力が少なくなった結果、図2
に示すように、コア−クラッドの比屈折率差は、Cl量
が多いほど高くなっていて、プリフォームでの測定値に
近い。図3はCl量の異なる各々のファイバのλc,M
FD測定結果を示したものである。図3から明らかなよ
うに、Cl量が多いファイバほど、比屈折率差はプリフ
ォームの段階での測定値に近いことから、λc,MFD
は予測値に近く、変動幅が小さい。
Comparison of Fiber Properties Produced from Examples 1 and 2 and Comparative Example 1 The residual stress, relative refractive index difference and fiber structure (λ
c, MFD) is shown in comparison with FIGS. 1 to 3. As can be seen from FIG. 1, the larger the amount of Cl in pure quartz glass, the smaller the residual stress after drawing. That is, Cl
It is estimated that the larger the amount of base material, the smaller the viscosity of the quartz glass. As a result of less residual stress in the fiber, Fig. 2
As shown in (1), the relative refractive index difference between the core and the clad increases as the amount of Cl increases, and is close to the measured value of the preform. Figure 3 shows the λc, M of each fiber with different Cl content.
It shows the FD measurement result. As is clear from FIG. 3, the higher the Cl content, the closer the relative refractive index difference is to the measured value at the preform stage. Therefore, λc, MFD
Is close to the predicted value and the fluctuation range is small.

【0011】[0011]

【発明の効果】以上示したように、本発明によれば純粋
石英ガラス中のハロゲン量、特にはCl量を多くするこ
とにより純石英コアシングルモードファイバのコア部の
粘性をさげることができ、その結果、線引時に生じる残
留応力を低減することができる。従って、線引後のコア
−クラッド比屈折率差はプリフォーム段階での実測値と
ほぼ一致し、λc,MFD特性も予測値とほぼ一致させ
ることが可能となり、極めて効果的である。
As described above, according to the present invention, it is possible to reduce the viscosity of the core portion of a pure silica core single mode fiber by increasing the amount of halogen in pure silica glass, especially Cl. As a result, residual stress generated during drawing can be reduced. Therefore, the core-clad relative refractive index difference after drawing is almost the same as the actually measured value at the preform stage, and the λc and MFD characteristics can be almost the same as the predicted value, which is extremely effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】純粋石英ガラス化中のCl量と、ファイバの残
留応力との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the amount of Cl during vitrification of pure quartz and the residual stress of the fiber.

【図2】純粋石英ガラス化中のCl量と、ファイバのコ
ア−クラッド間比屈折率差との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the amount of Cl during the vitrification of pure silica and the relative refractive index difference between the core and the clad of the fiber.

【図3】純粋石英ガラス化中のCl量と、ファイバのλ
c,MFDとの関係を示す図である。
FIG. 3: Cl content in pure silica vitrification and λ of fiber
It is a figure which shows the relationship with c and MFD.

【図4】純石英コア−フッ素添加石英クラッドファイバ
の屈折率分布を示す図である。
FIG. 4 is a diagram showing a refractive index distribution of a pure quartz core-fluorine-doped quartz clad fiber.

【図5】ガラス微粒子体の作成方法を示す概略図であ
る。
FIG. 5 is a schematic view showing a method for producing glass fine particles.

【図6】多孔質母材の焼結工程を示す概略図である。FIG. 6 is a schematic view showing a step of sintering a porous base material.

【符号の説明】[Explanation of symbols]

1 ガラス微粒子体(多孔質母材) 2 バーナ 3 出発部材 4 ヒータ 5 炉心管 1 Glass fine particles (porous matrix) 2 burners 3 Starting material 4 heater 5 core tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石英を主成分とする多孔質母材を脱水処
理および透明ガラス化してガラス母材を得る方法におい
て、該脱水処理工程および/又は透明ガラス化工程にお
いてハロゲン系ガスを含む雰囲気中で加熱処理すること
により石英ガラス中にハロゲンを0.1〜1重量%含ま
せ、これにより得られたガラス母材を光ファイバのコア
として用いることを特徴とする光ファイバ用ガラス母材
の製造方法。
1. A method for obtaining a glass base material by subjecting a porous base material containing quartz as a main component to dehydration treatment and transparent vitrification, in an atmosphere containing a halogen-based gas in the dehydration treatment step and / or the transparent vitrification step. Production of a glass base material for optical fiber, characterized in that the glass base material obtained by containing 0.1 to 1% by weight of halogen in the quartz glass by heat treatment is used as a core of the optical fiber. Method.
【請求項2】 上記ハロゲンが塩素であることを特徴と
する請求項1記載の光ファイバ用ガラス母材の製造方
法。
2. The method for producing a glass preform for an optical fiber according to claim 1, wherein the halogen is chlorine.
JP18458791A 1991-07-24 1991-07-24 Manufacturing method of optical fiber and silica-based optical fiber Expired - Lifetime JP3106564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18458791A JP3106564B2 (en) 1991-07-24 1991-07-24 Manufacturing method of optical fiber and silica-based optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18458791A JP3106564B2 (en) 1991-07-24 1991-07-24 Manufacturing method of optical fiber and silica-based optical fiber

Publications (2)

Publication Number Publication Date
JPH0524873A true JPH0524873A (en) 1993-02-02
JP3106564B2 JP3106564B2 (en) 2000-11-06

Family

ID=16155819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18458791A Expired - Lifetime JP3106564B2 (en) 1991-07-24 1991-07-24 Manufacturing method of optical fiber and silica-based optical fiber

Country Status (1)

Country Link
JP (1) JP3106564B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343175B1 (en) 1999-01-18 2002-01-29 Sumitomo Electric Industries, Ltd. Optical fiber with core containing chlorine and cladding containing fluorine and a method of manufacturing the same
EP1405830A1 (en) * 2001-06-13 2004-04-07 Sumitomo Electric Industries, Ltd. Glass base material and method of manufacturing glass base material
US6748767B2 (en) 1998-07-02 2004-06-15 Lucent Technologies Inc. Drawing an optical fiber from a sol-gel preform treated with a non-oxygenated sulfur halide
JP2010506496A (en) * 2006-10-05 2010-02-25 デラウェア ステイト ユニバーシティ ファウンデーション,インコーポレイティド Fiber optic acoustic detector
WO2016007806A1 (en) * 2014-07-10 2016-01-14 Corning Incorporated High chlorine content low attenuation optical fiber
US9851499B2 (en) 2015-06-30 2017-12-26 Corning Incorporated Optical fiber with large effective area and low bending loss
WO2018181047A1 (en) * 2017-03-27 2018-10-04 古河電気工業株式会社 Optical fiber and manufacturing method for optical fiber

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748767B2 (en) 1998-07-02 2004-06-15 Lucent Technologies Inc. Drawing an optical fiber from a sol-gel preform treated with a non-oxygenated sulfur halide
US6343175B1 (en) 1999-01-18 2002-01-29 Sumitomo Electric Industries, Ltd. Optical fiber with core containing chlorine and cladding containing fluorine and a method of manufacturing the same
US6449415B1 (en) 1999-01-18 2002-09-10 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the same
EP1405830A1 (en) * 2001-06-13 2004-04-07 Sumitomo Electric Industries, Ltd. Glass base material and method of manufacturing glass base material
EP1405830A4 (en) * 2001-06-13 2011-06-08 Sumitomo Electric Industries Glass base material and method of manufacturing glass base material
JP2010506496A (en) * 2006-10-05 2010-02-25 デラウェア ステイト ユニバーシティ ファウンデーション,インコーポレイティド Fiber optic acoustic detector
CN107076921A (en) * 2014-07-10 2017-08-18 康宁股份有限公司 The low attenuation optical fiber of high chlorinity
US9618692B2 (en) 2014-07-10 2017-04-11 Corning Incorporated High chlorine content low attenuation optical fiber
WO2016007806A1 (en) * 2014-07-10 2016-01-14 Corning Incorporated High chlorine content low attenuation optical fiber
CN107076921B (en) * 2014-07-10 2019-09-03 康宁股份有限公司 The low attenuation optical fiber of high chlorinity
US10429579B2 (en) 2014-07-10 2019-10-01 Corning Incorporated High chlorine content low attenuation optical fiber
US9851499B2 (en) 2015-06-30 2017-12-26 Corning Incorporated Optical fiber with large effective area and low bending loss
WO2018181047A1 (en) * 2017-03-27 2018-10-04 古河電気工業株式会社 Optical fiber and manufacturing method for optical fiber
JP2018163296A (en) * 2017-03-27 2018-10-18 古河電気工業株式会社 Optical fiber and method of manufacturing optical fiber
CN110462474A (en) * 2017-03-27 2019-11-15 古河电气工业株式会社 The manufacturing method of optical fiber and optical fiber
US11079537B2 (en) 2017-03-27 2021-08-03 Furukawa Electric Co., Ltd. Optical fiber and manufacturing method of optical fiber

Also Published As

Publication number Publication date
JP3106564B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
EP1663890B1 (en) Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
JP2959877B2 (en) Optical fiber manufacturing method
US4846867A (en) Method for producing glass preform for optical fiber
JPS6113203A (en) Single mode optical fiber
JPH11209141A (en) Production of segment core optical waveguide preform
US4812153A (en) Method of making a glass body having a graded refractive index profile
US4830463A (en) Article comprising silica-based glass containing aluminum and phorphorus
US4664690A (en) Method for producing glass preform for optical fiber
JP3106564B2 (en) Manufacturing method of optical fiber and silica-based optical fiber
EP0164127B1 (en) Method for producing glass preform for optical fibers
CN106604899B (en) Optical fiber preform, optical fiber and method for manufacturing optical fiber
US7021083B2 (en) Manufacture of high purity glass tubes
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
WO2001072648A1 (en) Substrate tube and process for producing a preform for an optical fiber
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
JP3174682B2 (en) Method for producing glass preform for optical fiber
JPH05286735A (en) Production of dispersion-shift optical fiber
KR20050118564A (en) Manufacturing method for single mode optical fiber having low oh attenuation at 1383nm wavelength
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JP3439258B2 (en) Method for producing glass preform for optical fiber
JPH06219765A (en) Production of preform for optical fiber
JPH02201403A (en) Optical fiber and production of base material thereof as well as production of optical fiber
JPH01270533A (en) Production of optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

EXPY Cancellation because of completion of term