JPH06219765A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPH06219765A
JPH06219765A JP2851293A JP2851293A JPH06219765A JP H06219765 A JPH06219765 A JP H06219765A JP 2851293 A JP2851293 A JP 2851293A JP 2851293 A JP2851293 A JP 2851293A JP H06219765 A JPH06219765 A JP H06219765A
Authority
JP
Japan
Prior art keywords
fluorine
silica glass
optical fiber
rod
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2851293A
Other languages
Japanese (ja)
Inventor
Katsuyuki Seto
克之 瀬戸
Kazuo Sanada
和夫 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2851293A priority Critical patent/JPH06219765A/en
Publication of JPH06219765A publication Critical patent/JPH06219765A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Abstract

PURPOSE:To produce low-loss optical fiber of a pure quartz core and a fluorine- doped quartz clad. CONSTITUTION:Pure quartz glass having a quartz glass part doped with fluorine on the surface is used as a rod for a core. A fine particle layer of pure quartz glass is deposited on the surface of the rod by outer deposition method. The fine particle layer of the glass is dehydrated and transparently vitrified in a fluorine-containing gas atmosphere to form a preform for optical fiber. The rod for a core is exposed to high temperature in piling the fine particle layer of the glass on the surface of the rod by outer deposition method. Since the quartz glass part doped with fluorine exists on the surface of the rod, water is made into HF and is vaporized even if water is attached to the outer peripheral face of the rod. Consequently, existence of water in the preform is suppressed and prepared optical fiber has low absorption loss by OH group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、純粋石英コア−フッ
素ドープ石英クラッド型の光ファイバ母材の製造方法に
関するもので、OH基による吸収損失の小さい光ファイ
バが得られる方法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a pure quartz core-fluorine-doped quartz clad type optical fiber preform, and provides a method for obtaining an optical fiber having a small absorption loss due to OH groups. is there.

【0002】[0002]

【従来の技術】光ファイバの低損失化を達成しようとす
る場合、コアに純粋石英ガラスを使用することがある。
その理由は、純粋石英ガラスがGeドープ石英ガラスと
比較するとレーリ散乱による損失が小さいことによる。
一般に、純粋石英コアファイバの製造方法は、先ず、純
粋石英ガラス棒を用意し、この周りにいわゆる外付け法
によって純粋石英からなるガラス微粒子を堆積させ、こ
のガラス微粒子を脱水し、その後フッ素含有ガス例えば
SiF4 の雰囲気で透明ガラス化させてフッ素がドープ
された石英クラッドを形成してコア−クラッド型の光フ
ァイバ母材とする方法である。
2. Description of the Related Art Pure silica glass is sometimes used for the core when attempting to achieve low loss of an optical fiber.
The reason is that pure quartz glass has a smaller loss due to Rayleigh scattering as compared with Ge-doped quartz glass.
Generally, a method of producing a pure quartz core fiber is to prepare a pure quartz glass rod, deposit glass fine particles made of pure quartz by a so-called external attachment method around the rod, dehydrate the glass fine particles, and then add a fluorine-containing gas. For example, it is a method of forming a core-clad type optical fiber preform by forming a vitrified quartz clad in a SiF 4 atmosphere to form a fluorine-doped quartz clad.

【0003】[0003]

【発明が解決しようとする課題】ところが、この方法は
コア材に直接クラッド材を外付けする方法であるため、
不純物が混入しやすく、とりわけコア材に付着した水が
残留してOH基となり、波長1.39μmにその吸収が
現れ損失が大きくなるということがあった。そこで、本
発明者等は種々検討した結果、コア材にフッ素が含まれ
ているものに同様にして外付け法によってクラッドとな
るフッ素ドープ石英クラッドを形成して光ファイバ母材
とし、この母材を溶融線引きして得たファイバはOH基
による吸収損失が小さいとの知見を得た。これは、フッ
素がドープされたコア材は高温にさらされたときに表面
からフッ素が飛散するめ、水分が存在しても反応してH
Fとなって飛ばされるからであると考えられる。
However, since this method is a method of directly attaching the clad material to the core material,
Impurities are likely to be mixed in, and in particular, water attached to the core material remains and becomes an OH group, and its absorption appears at a wavelength of 1.39 μm, resulting in a large loss. Therefore, as a result of various investigations by the present inventors, an optical fiber preform was formed by forming a fluorine-doped quartz clad to be a clad by an external attachment method in a similar manner to a core material containing fluorine. It was found that the fiber obtained by melting and drawing the fiber had a small absorption loss due to the OH group. This is because the fluorine-doped core material scatters fluorine from the surface when exposed to high temperature, and reacts even in the presence of water to generate H.
It is thought that it is because it becomes F and is skipped.

【0004】[0004]

【課題を解決するための手段】この発明は、以上の観点
からなされたもので、その特徴とする請求項1記載の発
明は、その表面にフッ素がドープされた石英ガラス部分
を含む純粋石英ガラスからなるコア用ロッドを用意し、
その周りに外付け法によりフッ素がドープされた石英ガ
ラスクラッド層とする光ファイバの製造方法にある。こ
こで、外付け法とはコア用ロッドの外周上にガラス層を
形成するという意味で、形成される石英ガラス層は火災
加水分解法によって一旦石英ガラス微粒子層を形成し、
これを透明ガラス化したものでも良いし、プラズマ法に
よって直接ガラス化されたものでも良い。また、フッ素
のドープ手段は石英ガラス微粒子から透明ガラスを得る
場合は例えばフッ素含有ガス雰囲気で石英ガラス微粒子
を透明ガラス化すれば良く、直接ガラス化の場合はプラ
ズマ炎中に石英ガラス生成原料ガスと酸素ガス及びフッ
素含有ガスを供給反応させれば良い。なお、純粋石英コ
アの表面に形成されたフッ素がドープされた部分は、フ
ッ素のドープ量を調整して最終的にクラッドのそれと一
致させるようにすることによりクラッドの一部とするこ
とができる。また、その表面にフッ素がドープされた部
分を有する純粋石英コアロッドは、いわゆるVAD法に
よって中心バーナとサイドバーナとを用い、中心バーナ
には例えばSiCl4 のみを供給し、サイドバーナには
SiCl4 とフッ素含有ガスとを供給することにより作
製することができる。
The present invention has been made from the above viewpoints, and the invention according to claim 1 is characterized in that the surface thereof is a pure silica glass containing a silica glass portion doped with fluorine. Prepare a core rod consisting of
It is a method of manufacturing an optical fiber having a quartz glass clad layer around which fluorine is doped by an external method. Here, the external attachment method means that a glass layer is formed on the outer periphery of the core rod, and the formed silica glass layer is formed by once forming a silica glass fine particle layer by a fire hydrolysis method,
It may be transparent vitrified, or may be vitrified directly by the plasma method. Further, the fluorine doping means, when obtaining transparent glass from quartz glass fine particles, for example, it is possible to make the vitreous silica fine particles transparent vitrification in a fluorine-containing gas atmosphere. The oxygen gas and the fluorine-containing gas may be supplied and reacted. Note that the fluorine-doped portion formed on the surface of the pure quartz core can be made a part of the clad by adjusting the doping amount of fluorine so as to finally match it with that of the clad. Further, pure silica core rod having a portion fluorine on its surface is doped, using a central burner and side burners by a so-called VAD method, the central burner supply only SiCl 4 for instance, the side burner with SiCl 4 It can be produced by supplying a fluorine-containing gas.

【0005】[0005]

【作用】純粋石英ガラスからなるコア用ロッドは、その
表面にフッ素を含んだ石英ガラス部分を備えているの
で、このロッドの上に外付け法によって純粋石英ガラス
微粒子層を堆積させる過程でロッドが高温にさらされて
も、ロッド外周面の水分はHFとなって飛散するため、
得られるファイバはOH基による吸収損失の少ないもの
となる。
[Function] Since the core rod made of pure silica glass has a silica glass portion containing fluorine on the surface thereof, the rod is formed in the process of depositing a pure silica glass fine particle layer on the rod by an external method. Even when exposed to high temperatures, water on the outer peripheral surface of the rod becomes HF and scatters.
The obtained fiber has a small absorption loss due to the OH group.

【0006】[0006]

【実施例1】コア用微粒子の作製にVAD法を採用し
た。具体的には、中心バーナを用いて垂直に支持された
出発部材の先端に純粋石英ガラス微粒子をロッド状に堆
積させつつ、サイドバーナを用いてその周りにフッ素ド
ープ石英ガラス微粒子を堆積させた。中心バーナにはS
iCl4 を0.1モル/分、H2 を4リットル/分、O
2 を2リットル/分供給し、サイドバーナにはSiCl
4 を0.1モル/分、SiF4 を0.05モル/分、H
2 を4リットル/分、O2 を2リットル/分供給した。
この後このコア用微粒子体をCl2 0.5%、He9
9.5%の雰囲気で脱水し、次いで透明ガラス化して長
さ200mm、外径30mmφの透明ガラスロッドとし
た。得られたコア用ロッドの純粋石英の部分は25mm
φ、その外側のフッ素がドープされた石英部分の厚さは
2.5mm、両者の比屈折率差は0.3%であった。こ
のロッドを10mmφに延伸して、その周囲に外付け法
によって純粋石英ガラス微粒子を堆積してその外径を7
0mmφとした。その際、バーナにはSiCl4 を0.
1モル/分、H2 を4リットル/分、O2 を2リットル
/分供給した。次いで、このガラス微粒子層をCl
2 0.5%、He99.5%の雰囲気で脱水し、引続い
てSiF4 0.3%、He99.6%の雰囲気で透明ガ
ラス化して35mmφの透明ガラスロッドとした。この
ロッドをさらに延伸して10mmφとし、再度その上に
上と同一条件の下で外付け法によりフッ素ドープ石英層
を形成し、同様に脱水、透明ガラス化して最終的に30
mmφ、長さ500mmの光ファイバ用母材とした。こ
の母材を一端から溶融線引きして外径が125μmのフ
ァイバに線引きし、その上にUV樹脂を被覆した。得ら
れた光ファイバの損失はOH基による吸収損失が現れる
波長1.39μmで1dB/kmであり、波長1.55
μmでは0.2dB/kmと低損失であった。因みに、
出発コア材にフッ素をドープしないものは、波長1.3
9μmにおける60dB/kmであり、波長1.55μ
mにおける損失は0.8dB/kmであった。
Example 1 The VAD method was adopted for the production of core fine particles. Specifically, pure silica glass fine particles were deposited in a rod shape on the tip of a starting member vertically supported by using a central burner, while fluorine-doped quartz glass fine particles were deposited around the fine particles by a side burner. S for the central burner
0.1 mol / min of iCl 4 , 4 liters / min of H 2 , O
2 is supplied at 2 liters / minute, and the side burner is SiCl
4 , 0.1 mol / min, SiF 4 0.05 mol / min, H
2 was supplied at 4 liters / minute, and O 2 was supplied at 2 liters / minute.
After that, the fine particles for the core were mixed with 0.5% Cl 2 and He 9
It was dehydrated in an atmosphere of 9.5% and then vitrified into a transparent glass rod having a length of 200 mm and an outer diameter of 30 mmφ. The pure quartz portion of the obtained core rod is 25 mm
The thickness of φ, the quartz portion outside which was doped with fluorine was 2.5 mm, and the relative refractive index difference between them was 0.3%. This rod is stretched to 10 mmφ, and pure silica glass fine particles are deposited around the rod by an external attachment method so that the outer diameter is 7
It was set to 0 mmφ. At that time, SiCl 4 was added to the burner in an amount of 0.
1 mol / minute, H 2 at 4 liters / minute, and O 2 at 2 liters / minute were supplied. Then, the glass fine particle layer is mixed with Cl
2 It was dehydrated in an atmosphere of 0.5% and He 99.5%, and subsequently it was transparent vitrified in an atmosphere of SiF 4 0.3% and He 99.6% to obtain a 35 mmφ transparent glass rod. This rod was further stretched to 10 mmφ, and a fluorine-doped quartz layer was again formed thereon by the external attachment method under the same conditions as above, and dehydration and transparent vitrification were carried out in the same manner to finally obtain 30
A base material for an optical fiber having a diameter of mmφ and a length of 500 mm was used. The base material was melt-drawn from one end to a fiber having an outer diameter of 125 μm, which was coated with UV resin. The loss of the obtained optical fiber is 1 dB / km at the wavelength of 1.39 μm where the absorption loss due to the OH group appears, and the wavelength is 1.55.
In μm, it was a low loss of 0.2 dB / km. By the way,
If the starting core material is not doped with fluorine, the wavelength is 1.3.
60 dB / km at 9 μm, wavelength 1.55 μm
The loss at m was 0.8 dB / km.

【0007】[0007]

【発明の効果】この発明方法による光ファイバの製造方
法は、コア用ロッドとしてその表面にフッ素がドープさ
れた石英ガラス部分を有する純粋石英ガラスからなるも
のであるので、その上に外付け法によってクラッドとな
るガラス微粒子層を堆積させる際にロッドが高温にさら
されても、ロッド表面の水分はHFとなって飛散し、以
ってファイバ内に残存することがないのでOH基による
吸収損失の小さなファイバが得られる。
The method for producing an optical fiber according to the method of the present invention comprises a pure silica glass having a silica glass portion doped with fluorine on the surface thereof as a core rod, and therefore it is formed by an external attachment method. Even when the rod is exposed to a high temperature when depositing the glass fine particle layer to be the cladding, the water on the surface of the rod scatters as HF and does not remain in the fiber. A small fiber is obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 その表面にフッ素がドープされた石英ガ
ラス部分を含む純粋石英ガラスからなるコア用ロッドを
用意し、その周りに外付け法によりフッ素がドープされ
た石英ガラスクラッド層を形成することを特徴とする光
ファイバ母材の製造方法。
1. A core rod made of pure silica glass including a silica glass portion doped with fluorine on its surface is prepared, and a silica glass clad layer doped with fluorine is formed around the core rod by an external attachment method. And a method for manufacturing an optical fiber preform.
【請求項2】 その表面にフッ素がドープされた石英ガ
ラス部分を含む純粋石英ガラスからなるコア用ロッドを
用意し、その周りに外付け法により純粋石英ガラス微粒
子を層状に堆積させ、この純粋石英ガラス微粒子層を脱
水し、その後この純粋石英ガラス微粒子層をフッ素含有
ガス雰囲気で透明ガラス化させてフッ素がドープされた
ラッド層とすることを特徴とする光ファイバ母材の製造
方法。
2. A core rod made of pure silica glass containing a silica glass portion doped with fluorine on its surface is prepared, and pure silica glass fine particles are deposited around the core rod by an external attachment method. A method for producing an optical fiber preform, wherein the glass fine particle layer is dehydrated, and then this pure silica glass fine particle layer is made into a transparent vitrification in a fluorine-containing gas atmosphere to form a fluorine-doped Rad layer.
【請求項3】 コア用ロッド表面のフッ素がドープされ
た石英ガラス部分がクラッドの一部を形成することを特
徴とする請求項1記載の光ファイバ母材の製造方法。
3. The method for producing an optical fiber preform according to claim 1, wherein the silica glass portion doped with fluorine on the surface of the core rod forms a part of the clad.
【請求項4】 VAD法によって、垂直に支持された出
発部材の先端にコアとなる純粋石英ガラス微粒子をロッ
ド状に堆積させつつ、その周りにフッ素がドープされた
石英ガラス微粒子を層状に堆積させて光ファイバ用ガラ
ス微粒子体となし、このガラス粒子体を脱水、透明ガラ
ス化することにより、その表面にフッ素がドープされた
石英ガラス部分を含む純粋石英ガラスからなるコア用ロ
ッドとすることを特徴とする請求項2記載の光ファイバ
母材の製造方法。
4. A VAD method is used to deposit pure silica glass particles as a core on the tip of a vertically supported starting member in a rod shape, while depositing fluorine-doped silica glass particles in a layer form around the rod. The optical fiber glass fine particles are formed into a core rod made of pure silica glass containing a silica glass portion doped with fluorine on the surface by dehydration and transparent vitrification. The method for producing an optical fiber preform according to claim 2.
JP2851293A 1993-01-26 1993-01-26 Production of preform for optical fiber Pending JPH06219765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2851293A JPH06219765A (en) 1993-01-26 1993-01-26 Production of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2851293A JPH06219765A (en) 1993-01-26 1993-01-26 Production of preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH06219765A true JPH06219765A (en) 1994-08-09

Family

ID=12250740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2851293A Pending JPH06219765A (en) 1993-01-26 1993-01-26 Production of preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH06219765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083354A2 (en) * 2004-11-18 2006-08-10 Nextrom Holding, S.A. Low-water optical fiber preform and process for making it
US9006765B2 (en) 2003-05-13 2015-04-14 Bridelux, Inc. Multi-chip LED diode apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006765B2 (en) 2003-05-13 2015-04-14 Bridelux, Inc. Multi-chip LED diode apparatus
WO2006083354A2 (en) * 2004-11-18 2006-08-10 Nextrom Holding, S.A. Low-water optical fiber preform and process for making it
WO2006083354A3 (en) * 2004-11-18 2006-11-30 Nextrom Holding Sa Low-water optical fiber preform and process for making it

Similar Documents

Publication Publication Date Title
US4675040A (en) Method for producing glass preform for single mode optical fiber
AU649845B2 (en) Method for producing glass preform for optical fiber
JP2959877B2 (en) Optical fiber manufacturing method
JPH0314789B2 (en)
KR100345358B1 (en) Quartz glass tube for optical fiber preform and manufacturing method therefor
JP3106564B2 (en) Manufacturing method of optical fiber and silica-based optical fiber
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JPH06219765A (en) Production of preform for optical fiber
KR20030003018A (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPS63123829A (en) Production of preform for optical fiber
JP3174682B2 (en) Method for producing glass preform for optical fiber
JPH06321553A (en) Production of fluorine-doped quartz glass
JPH0324420B2 (en)
JPS593944B2 (en) Optical fiber manufacturing method
JPH0129220Y2 (en)
JPS62162639A (en) Production of preform for w-type single mode optical fiber
JPH0769667A (en) Optical amplification type fiber and production thereof
JPH05124831A (en) Production of optical fiber
JPH01270533A (en) Production of optical fiber
JPH068185B2 (en) Manufacturing method of optical fiber preform
JPS60231435A (en) Manufacture of preform rod
JPS59137333A (en) Manufacture of base material for optical fiber
JPS6086044A (en) Manufacture of preform for light-transmission glass
JPH06122527A (en) Production of optical fiber preform