JPS60231435A - Manufacture of preform rod - Google Patents

Manufacture of preform rod

Info

Publication number
JPS60231435A
JPS60231435A JP8586884A JP8586884A JPS60231435A JP S60231435 A JPS60231435 A JP S60231435A JP 8586884 A JP8586884 A JP 8586884A JP 8586884 A JP8586884 A JP 8586884A JP S60231435 A JPS60231435 A JP S60231435A
Authority
JP
Japan
Prior art keywords
rod
refractive index
preform
dopant
preform rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8586884A
Other languages
Japanese (ja)
Inventor
Isataka Gotou
後藤 勇隆
Toshio Iwamoto
岩本 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP8586884A priority Critical patent/JPS60231435A/en
Publication of JPS60231435A publication Critical patent/JPS60231435A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the titled rod having a large occupancy rate of the core part and a large refractive index difference by dissolving and sintering a preform rod material in a gaseous atmosphere contg. a low-refractive index dopant, and vitrifying the material. CONSTITUTION:Soot obtained by hydrolyzing a gaseous glass material in flames is blown against the peripheral surface of a core rod or the leading end of a target, and deposited to form a preform rod material. The rod maretrial is melted and sintered in a gaseous atmosphere contg. a low-refractive index, dopant, and vitrified. The evaporation of the low-refractive index dopant contained in the rod material is prevented by said method, and the preform rod having a large occupancy rate of the core part and refractive index difference can be obtained in a short time.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、プリフォームロッドの製造方法に関し、特に
ガラス化工程を改良したプリフォームロッドの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a preform rod, and particularly to a method for manufacturing a preform rod with an improved vitrification process.

(発明の技術的背景とその問題点) 従来、出発石英管の内壁周面にCVD法によりB2O3
やF等の低屈折率ドーパントを含むクラッド層を設ける
と共に該出発石英管内にコア棒を挿入し、これらを加熱
、軟化させつつコラプスしてプリフォームロッドを作成
する、ロッドインチューブ法(以下、RT法という)が
知られている。かかる方法によれば、コラプス時にクラ
ッド層から低屈折率ドーパントが蒸発するのを出発石英
管により防止することができるので、コア部とクラッド
層において屈折率差の大きい、即ち、開口数(NA)の
大きい光ファイバの製造が可能なブリ7オームロツドを
得ることができる。しかし、このように出発石英管を用
いる場合にはロッド外径に対するコア部枠が小さくなる
ので、コア部の占有率の小さなプリフォームロッドが得
られてしまう。そこで、最近では、RT法により得たプ
リフォームロッドをフッ酸水溶液に浸漬して出発石英管
を除去し、又は該ロッドの出発石英管を旋盤にて研磨し
、又は該ロッドを酸水素バーナーにて加熱して出発石英
管を気相状態で除去すること等が行われているが、いず
れも出発石英管の除去に少なくとも2日以−ヒの日数を
要してしまう欠点を有する。
(Technical background of the invention and its problems) Conventionally, B2O3 was applied to the inner wall of the starting quartz tube by CVD.
Rod-in-tube method (hereinafter referred to as "rod-in-tube method"), in which a cladding layer containing a low refractive index dopant such as or (referred to as the RT method) is known. According to this method, the starting quartz tube can prevent the low refractive index dopant from evaporating from the cladding layer during collapse. It is possible to obtain a 7-ohm rod capable of producing optical fibers with a large diameter. However, when the starting quartz tube is used in this way, the core frame becomes smaller relative to the outer diameter of the rod, resulting in a preformed rod with a smaller occupation rate of the core. Therefore, recently, the preform rod obtained by the RT method is immersed in a hydrofluoric acid aqueous solution to remove the starting quartz tube, or the starting quartz tube of the rod is polished with a lathe, or the rod is placed in an oxyhydrogen burner. The starting quartz tube is removed in a gaseous state by heating, but both methods have the disadvantage that it takes at least two or more days to remove the starting quartz tube.

一方、コア棒の周面上に低屈折率ドーパントを含むスー
トを吹き付け、堆積させてクラッド層を形成する外付は
法や前記スートをターゲットの先端に吹き付け、堆積さ
せてターゲットの軸方向に多孔質プリフォームを成長さ
せる気相軸付は法においては、出発石英管を用いず、し
かもコア部枠とクラッド層の厚さとの比を任意に変える
ことができることから、コア占有率の大きな光ファイバ
の製造が可能なプリフォームロッドを短時間で作成する
ことができる。しかるに、これら両方法においては、ク
ラッド層若しくは多孔質プリフォームに多量の低屈折率
ドーパントを添加すると、熱膨張係数の差等によりプリ
フォームロッドに割れが生し易いことから、該ドーパン
トの添加量に限界があり、又プリフォームロッド材のガ
ラス化時やOH基除去時の加熱によりドーパントが蒸発
してしまう。従って、実際には屈折率差が0.006〜
0.0065程度のプリフォームロッドしか得られてい
ないのが現状である。
On the other hand, an external method is used in which a soot containing a low refractive index dopant is sprayed onto the circumferential surface of the core rod and deposited to form a cladding layer. The vapor-phase shafting method for growing a quality preform does not use a starting quartz tube, and the ratio of the thickness of the core frame to the cladding layer can be changed arbitrarily, making it possible to produce optical fibers with a large core occupancy. Preform rods that can be manufactured can be created in a short time. However, in both of these methods, if a large amount of low refractive index dopant is added to the cladding layer or porous preform, cracks tend to occur in the preform rod due to differences in thermal expansion coefficients, etc., so the amount of the dopant added is There is a limit to this, and the dopant evaporates due to heating when vitrifying the preform rod material or removing OH groups. Therefore, in reality, the refractive index difference is 0.006~
At present, only preform rods of about 0.0065 are available.

(発明の目的) 本発明の目的は、コア部の占有率及びコア部とクラ・ン
ド層との屈折率差が大きいプリフォームロッドを割れを
生じさせることなく製造することができる方法を提供す
ることにある。
(Objective of the Invention) The object of the present invention is to provide a method for manufacturing a preform rod having a large core portion occupancy and a large difference in refractive index between the core portion and the crimp layer without causing cracks. There is a particular thing.

(発明の概要) 本発明は、外付は法若しくは気相軸付は法により作成し
たプリフォームロッド材を、低屈折率ドーパントを含む
ガス雰囲気中で溶解、焼結し、これによりプリフォーム
ロッド材に低屈折率ドーパントを添加し若しくは該ドー
パントの蒸発を防止し若しくは該ドーパントをその蒸発
を防止しつつ更に添加してプリフォームロッド材をガラ
ス化することを特徴とする。
(Summary of the Invention) The present invention melts and sinters a preform rod material produced by an external method or a vapor phase shaft method in a gas atmosphere containing a low refractive index dopant, thereby producing a preform rod material. The preform rod material is vitrified by adding a low refractive index dopant to the material, by preventing the evaporation of the dopant, or by further adding the dopant while preventing its evaporation.

(発明の実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Embodiments of the Invention) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、外径1 ”2鵬■、長さ400mmのコア部とな
る石英製コア棒を用意し、このコア棒をガラス旋盤に固
定した。次いで、このコア棒を1分間に数十回転の速度
で回転すると共に四重管移動バナーの中心に、ガラス原
料ガスである5iC1* (四塩化ケイ素)ガスを90
 cc/minテ、BB r3ガスを40 cc/wi
nで送給し、又該移動バーナーの同心状の第2、第3及
び第4の各吹出口にそれぞれH2ガスを2000 cc
/win、 A rガスを1000cc/win、0□
ガスを3000 cc/+*inで送給し、該移動バー
ナーから加水分解反応により合成したB2O3の低屈折
率ドーパントを含む5i02スートを回転しているコア
棒に吹き付けた。そして、移動バーナーをコア棒の軸方
向に沿って2mm/winの速度で往復動させたところ
、外径が50ts、長さが400+amのプリフォーム
ロッド材が得られた。
First, a quartz core rod with an outer diameter of 1"2 and a length of 400 mm was prepared, and this core rod was fixed to a glass lathe. Next, this core rod was rotated at a speed of several tens of revolutions per minute. At the same time, 5iC1* (silicon tetrachloride) gas, which is a glass raw material gas, is injected into the center of the four-tube moving banner at 90%
cc/minte, 40 cc/wi BB r3 gas
n, and 2000 cc of H2 gas was supplied to each of the concentric second, third and fourth outlets of the moving burner.
/win, Ar gas 1000cc/win, 0□
Gas was supplied at 3000 cc/+*in, and 5i02 soot containing a low refractive index dopant of B2O3 synthesized by hydrolysis reaction was blown onto the rotating core rod from the moving burner. Then, when the moving burner was reciprocated along the axial direction of the core rod at a speed of 2 mm/win, a preform rod material with an outer diameter of 50 ts and a length of 400+ am was obtained.

次に、この得られたプリフォームロッド材lを、第1図
に示すように、加熱炉2内に配置し、その上端を支持棒
3の下端に同軸的に取付け、この支持棒3を回転しつつ
2 am/winの速度で下動させ、プリフォームロッ
ド材lの周面をカーボンヒータ4により1600℃の温
度にて溶解、焼結し、ガラス化した。そして、このガラ
ス化時に、加熱炉2内にその下部の導入口2Aから、H
eガス、C2Feガス、02ガス及びBBr3ガスをそ
れぞれ導入した0本実施例では、Heガスを1oll/
min、C2F5ガスを21 /win、02ガスを7
00cc/win、 B B r3ガスを15cc/w
inの流量でそれぞれ導入した。
Next, the obtained preform rod material l is placed in a heating furnace 2, as shown in FIG. At the same time, the preform rod material 1 was moved downward at a speed of 2 am/win, and the circumferential surface of the preform rod material 1 was melted and sintered at a temperature of 1600° C. by a carbon heater 4 to vitrify it. During this vitrification, H
In this example, in which e gas, C2Fe gas, 02 gas, and BBr3 gas were respectively introduced, He gas was introduced at 1 oll/
min, C2F5 gas 21/win, 02 gas 7
00cc/win, B B r3 gas 15cc/w
Each was introduced at a flow rate of in.

このように、F及びBの低屈折率ドーパントを含むガス
雰囲気中でプリフォームロッド材lをガラス化して外径
が16mm、長さが400mmの透明なプリフォームロ
ッドを作成した後、このプリフォームロッドの屈折率分
布を調べたところ、第2図に示すように、石英製コア棒
から成るコア部の屈折率は、屈折率が1.457のマッ
チングオイルに対して+o、oot、フッ素及びボロン
を含むクラッド層の屈折率は−0,009であった。こ
の結果、本発明に係るプリフォームロッドは屈折率差が
0.01であることが判った。これは、低屈折率ドーパ
ン)B、Fを流しつつプリフォームロッド材をガラス化
したので、このガラス化時のロッド材からのボロンの蒸
発を防止できたこと及び該ロッド材に更にB及びFが添
加されたことによると考えられる。また、この得られた
プリフォームロッドは低屈折率ドーパントを多量に含む
にもかかわらず割れが生じなかった。これはガラス化時
の軟化状態のロッド材にF及びBを添加したことによる
と考えられる。
In this way, after vitrifying the preform rod material l in a gas atmosphere containing low refractive index dopants F and B to create a transparent preform rod with an outer diameter of 16 mm and a length of 400 mm, this preform When the refractive index distribution of the rod was investigated, as shown in Figure 2, the refractive index of the core made of quartz core rod was +o, oot, fluorine, and boron compared to the matching oil with a refractive index of 1.457. The refractive index of the cladding layer containing the above was -0,009. As a result, it was found that the preform rod according to the present invention had a refractive index difference of 0.01. This is because the preform rod material was vitrified while flowing the low refractive index dopanes B and F, which prevented the evaporation of boron from the rod material during vitrification, and also because the rod material was further filled with B and F. This is thought to be due to the addition of Further, the obtained preform rod did not crack even though it contained a large amount of low refractive index dopant. This is thought to be due to the addition of F and B to the rod material in a softened state during vitrification.

上記実施例では外付は法により作成したプリフォームロ
ッド材に本発明方法を適用した例を示したが、気相軸付
は法により作成したプリフォームロッド材(多孔質プリ
フォーム)にも本発明方法を適用することができる。
In the above example, an example was shown in which the method of the present invention was applied to a preform rod material made by an external method. The invented method can be applied.

また、低屈折率ドーパントを含まないクラッド層を有す
るプリフォームロッド材を作成し、該ロッド材に本発明
方法を適用してガラス化工程で低屈折率ドーパントをロ
ッド材に添加するようにしてもよい。
Alternatively, a preform rod material having a cladding layer that does not contain a low refractive index dopant may be created, and the method of the present invention may be applied to the rod material to add a low refractive index dopant to the rod material during the vitrification process. good.

(発明の効果) 本発明によれば、低屈折率ドーパントを含むガス雰囲気
中で外付は法若しくは気相軸付は法にて作成したプリ7
オームロツド材をガラス化することで、該ガラス化工程
でプリフォームロッド材中に含まれている低屈折率ドー
パントが蒸発するのを有効に防止し、更には低屈折率ド
ーパントを新たにロッド材中に添加することができる。
(Effects of the Invention) According to the present invention, the pre-7 is manufactured by the method for external mounting or the method for vapor phase mounting in a gas atmosphere containing a low refractive index dopant.
By vitrifying the ohmrod material, it is possible to effectively prevent the low refractive index dopant contained in the preform rod material from evaporating during the vitrification process, and furthermore, the low refractive index dopant can be newly added to the rod material. can be added to.

従って、短時間でコア部の占有率及び屈折率差の大きい
プリフォームロッドが得られるので、該プリフォームロ
ッドを用いることにより開口数及びコア占有率の大きい
光ファイバを製造することができる。よって、該光ファ
イバを素線ファイバとする明るさの優れたイメージガイ
ドやバンドルファイバを提供することが可能である。ま
た、特に純石英コア棒を用いて外付は法により作成した
プリフォームロッド材に本発明方法により多量のドーパ
ントを含ませる場合にはコア占有率及び開口数の大きい
純石英コア光ファイバを短時間で製造することができる
ので、該純石英コア光ファイバを耐放射線光ファイバや
紫外線光ファイバとして安価に提供することもできる。
Therefore, a preform rod with a large core portion occupancy and a large refractive index difference can be obtained in a short time, and by using the preform rod, an optical fiber with a large numerical aperture and a large core occupancy can be manufactured. Therefore, it is possible to provide an image guide or bundle fiber with excellent brightness using the optical fiber as a bare fiber. In addition, in particular, when a large amount of dopant is included in a preform rod material made by the external method using a pure quartz core rod by the method of the present invention, a pure silica core optical fiber with a large core occupation rate and numerical aperture may be shortened. Since it can be manufactured in a short time, the pure silica core optical fiber can be provided at low cost as a radiation-resistant optical fiber or an ultraviolet optical fiber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法のガラス化工程を説明するための概
略図、第2図は本発明方法により得たプリフォームロッ
ドの屈折率分布図である。 1−−−−−−−−−プリフォームロッド材、2−−−
−−−−−一加熱炉、 3−−−−−−−−一支持棒。 4−−−−−−−m−カーボンヒータ。 第1図
FIG. 1 is a schematic diagram for explaining the vitrification step of the method of the present invention, and FIG. 2 is a refractive index distribution diagram of a preform rod obtained by the method of the present invention. 1--------- Preform rod material, 2---
-------1 heating furnace, 3----------1 supporting rod. 4-------m-Carbon heater. Figure 1

Claims (1)

【特許請求の範囲】 1、ガラス原料ガスを火炎中で加水分解して成るスート
をコア棒の周面若しくはターゲットの先端に吹き付け、
堆積させて作成したプリ7オームロツド材を、溶解、焼
結して透明なガラス体のプリフォームロッドを作成する
工程を含むブリ7オームロツトの製造方法であって、前
記プリフォームロッド材を、低屈折率ドーパントを含む
ガス雰囲気中で溶解、焼結してガラス化することを特徴
とするプリフォームロッドの製造方法。 2111記プリフオームロツド材を、前記ガラス原料ガ
スに低屈折率ドーパントを添加して作成し、該添加した
低屈折率ドーパントを含むガス雰囲気中で溶解、焼結す
ることを特徴とする特許請求の範囲第1項に記載のプリ
フォームロッドの製造方法。
[Claims] 1. Spraying soot formed by hydrolyzing frit gas in a flame onto the peripheral surface of the core rod or the tip of the target,
A method for manufacturing a 7-ohm rod comprising the step of melting and sintering a pre-7 ohm rod material made by depositing to create a preform rod of a transparent glass body, the preform rod material having a low refractive index. A method for manufacturing a preform rod, which comprises melting and sintering the rod in a gas atmosphere containing a dopant, and vitrifying the rod. A patent claim characterized in that the preform rod material described in No. 2111 is created by adding a low refractive index dopant to the glass raw material gas, and is melted and sintered in a gas atmosphere containing the added low refractive index dopant. A method for manufacturing a preform rod according to item 1.
JP8586884A 1984-04-27 1984-04-27 Manufacture of preform rod Pending JPS60231435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8586884A JPS60231435A (en) 1984-04-27 1984-04-27 Manufacture of preform rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8586884A JPS60231435A (en) 1984-04-27 1984-04-27 Manufacture of preform rod

Publications (1)

Publication Number Publication Date
JPS60231435A true JPS60231435A (en) 1985-11-18

Family

ID=13870870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8586884A Pending JPS60231435A (en) 1984-04-27 1984-04-27 Manufacture of preform rod

Country Status (1)

Country Link
JP (1) JPS60231435A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547335A2 (en) * 1991-12-16 1993-06-23 Corning Incorporated Method of making fluorine/boron doped silica tubes
EP0561371A2 (en) * 1992-03-17 1993-09-22 Sumitomo Electric Industries, Limited Method and apparatus for producing glass thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547335A2 (en) * 1991-12-16 1993-06-23 Corning Incorporated Method of making fluorine/boron doped silica tubes
EP0561371A2 (en) * 1992-03-17 1993-09-22 Sumitomo Electric Industries, Limited Method and apparatus for producing glass thin film
EP0561371A3 (en) * 1992-03-17 1994-09-14 Sumitomo Electric Industries Method and apparatus for producing glass thin film
US5503650A (en) * 1992-03-17 1996-04-02 Sumitomo Electric Industries, Ltd. Method for producing a glass thin film with controlloing an oxide vapor of an additive
US5660611A (en) * 1992-03-17 1997-08-26 Sumitomo Electric Industries, Ltd. Method for producing glass thin film

Similar Documents

Publication Publication Date Title
US7469559B2 (en) Method for making low loss optical fiber
AU649845B2 (en) Method for producing glass preform for optical fiber
JP2004530621A (en) Method for producing optical waveguide article having high fluorine content region
EP0176263B1 (en) Optical fiber
CA1263807A (en) Optical waveguide manufacture
US20030101772A1 (en) Manufacturing method for optical fiber preform
US20020073740A1 (en) Fluorine doping a soot preform
JPS61191543A (en) Quartz base optical fiber
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
JPS60231435A (en) Manufacture of preform rod
JPH0236535B2 (en)
CN113461322A (en) Optical fiber and method for manufacturing optical fiber preform
JPH0281004A (en) Optical fiber and its production
WO2002049977A9 (en) Method of doping an optical fiber preform with fluorine
JP4565221B2 (en) Optical fiber preform
JPH0463365B2 (en)
JP2613119B2 (en) Method for producing rare earth element doped DSC type optical fiber preform
JPS63147840A (en) Production of quartz glass material
KR101211309B1 (en) Base material for optical fiber and method for production thereof and method for production of optical fiber
JPH0327491B2 (en)
JPH0460930B2 (en)
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JP2635563B2 (en) Manufacturing method of glass material for optical transmission body
JPS5924097B2 (en) Glass body manufacturing method
JPS5950037A (en) Production of base material for optical fiber