JPS61117127A - Treatment of parent material comprising porous glass for optical fiber - Google Patents

Treatment of parent material comprising porous glass for optical fiber

Info

Publication number
JPS61117127A
JPS61117127A JP21457984A JP21457984A JPS61117127A JP S61117127 A JPS61117127 A JP S61117127A JP 21457984 A JP21457984 A JP 21457984A JP 21457984 A JP21457984 A JP 21457984A JP S61117127 A JPS61117127 A JP S61117127A
Authority
JP
Japan
Prior art keywords
porous glass
optical fiber
parent material
base material
geo2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21457984A
Other languages
Japanese (ja)
Inventor
Hideyo Kawazoe
川添 英世
Shinichi Yano
慎一 矢野
Makoto Furuguchi
古口 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP21457984A priority Critical patent/JPS61117127A/en
Publication of JPS61117127A publication Critical patent/JPS61117127A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain an almost completely vitrified glass from an SiO2-GeO2 porous parent material for optical fiber having at least one condition such as presence of fine glass particles of a specified particle size or presence of crystalline GeO2, etc., by treating the parent material in an oxygen free atmosphere. CONSTITUTION:A crystalline GeO2 type porous parent material for optical glass is prepd., which is regulated by at least one condition such as that where the diameter of the fine glass particles is >=0.2mum, or, crystalline GeO2 is present, or sintering of the fine glass particles is begun already. When the parent material is dehydrated or virified in an oxygenfree atmosphere, the material is vitrified almost completely. When such parent material is drawn, high quality optical fiber causing small transmission loss and absorption loss due to OH group and contg. no foams is obtd.

Description

【発明の詳細な説明】 T産業上の利用分野1 本発明は光ファイバ用の多孔質ガラス母材を脱水ならび
に透明ガラス化するための処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 1 The present invention relates to a processing method for dewatering and transparent vitrifying a porous glass preform for optical fibers.

「従 来 技 術1 光ファイバ用の多孔質ガラス母材を一般的なりAD法に
より作製するとき、既知の多重管構造か・らなる火炎バ
ーナが用いられる。
``Prior Art 1'' When producing a porous glass base material for optical fiber by the general AD method, a flame burner having a known multi-tube structure is used.

通常の火炎バーナによるVAD法では、多孔質ガラス母
材を構成しているガラス微粒子の合成速度が0.3g/
分程度、ガラス微粒子の直径が約0.2p−m以下であ
り、多孔質ガラス母材が例えばS i O2−Ge O
2系の場合でも結晶性GaO2はそれほど多くない。
In the VAD method using a normal flame burner, the synthesis rate of glass particles constituting the porous glass matrix is 0.3 g/
The diameter of the glass fine particles is about 0.2 p-m or less, and the porous glass matrix is, for example, SiO2-GeO
Even in the case of the 2-system, the amount of crystalline GaO2 is not so large.

したがって上記により得られる多孔質ガラス母材の場合
、その母材を有酸素の脱水ガス雰囲気中(SOCl2、
C12、温度1400℃)へ約200〜300mm/時
の速度で挿入して処理することにより、十分透明なガラ
スが得られる。
Therefore, in the case of the porous glass base material obtained as described above, the base material is placed in an oxic dehydration gas atmosphere (SOCl2,
C12, temperature 1400 DEG C.) at a speed of about 200 to 300 mm/hour, a sufficiently transparent glass is obtained.

ところが、ガラス微粒子の合成速度を高めるべく二重火
炎バーナによりVAD法を実施して多孔質ガラス母材を
作製する場合、ガラス微粒子の直径が約0.3〜0.4
ルーと大きくなる傾向を示し、しかも火炎温度が高いた
めガラス微粒子合成時の微粒子相互の焼結が認められ、
結晶性GeO2も大量に存在する。
However, when producing a porous glass base material by implementing the VAD method using a double flame burner in order to increase the synthesis rate of glass particles, the diameter of the glass particles is approximately 0.3 to 0.4.
In addition, due to the high flame temperature, sintering of the particles during glass particle synthesis was observed.
Crystalline GeO2 is also present in large quantities.

こうした多孔質ガラス母材を前述した既成の条件で処理
しても満足な透明ガラス母材は得られない。
Even if such a porous glass base material is processed under the above-mentioned existing conditions, a satisfactory transparent glass base material cannot be obtained.

その理由の1つとして、有酸素のC12や5OC121
0□などの雰囲気中に多孔質ガラス母材を曝し、これを
脱水ならびに透明ガラス化するとき、下記式に示す可逆
反応の生じることがあげられる。
One of the reasons is that aerobic C12 and 5OC121
When a porous glass base material is exposed to an atmosphere such as 0□ and dehydrated and made into transparent glass, a reversible reaction shown by the following formula occurs.

GaC14+02.:GeO2+2CI2この可逆反応
により、揮発したG eCI aが酸化してG e O
2にもどるとか、ガラス微粒子の直径が大きい(比表面
積は小さい)ことにより、揮発すべきG e O2が残
存してしまう。
GaC14+02. :GeO2+2CI2 Through this reversible reaction, the volatilized G eCI a is oxidized to G e O
2 or because the diameter of the glass particles is large (specific surface area is small), G e O2 that should be volatilized remains.

他にも、高温のガラス微粒子合成時にその微粒子相互の
焼結が始まってしまい、多孔質ガラス母材の密度が高い
ものとなるため、その後の脱水ならびに透明ガラス化時
、G eCI aの揮発が阻害されて母材中にGeリッ
チな部分が生じるとか、結晶性GeO2が残存するとい
った事態が生じる。
In addition, during the synthesis of high-temperature glass particles, sintering of the particles begins and the density of the porous glass base material becomes high, resulting in less volatilization of G eCI a during subsequent dehydration and transparent vitrification. This may cause a situation where a Ge-rich portion is generated in the base material or crystalline GeO2 remains.

それゆえ、二重火炎バーナによるVAD法で作製した多
孔質ガラス母材の場合、既成の処理手段では乳白色にく
もった透明化の不十分なガラス母材しか得られず、かか
るガラス母材を光ファイバに加工したとしても、その光
ファイバの伝送ロスやOH基による吸収損失等が大きく
なり、ガラス延伸加工1.ガラスパイプのジャケット加
工など、必要な加工を施した際に発泡も生じる。
Therefore, in the case of a porous glass base material produced by the VAD method using a double flame burner, existing treatment methods can only yield a glass base material that is milky white and not sufficiently transparent. Even if it is processed into a fiber, the transmission loss of the optical fiber and absorption loss due to OH groups will be large, and glass drawing processing 1. Foaming also occurs when necessary processing is performed, such as jacketing glass pipes.

I発明が解決しようとする問題点」 本発明は上記の問題点に鑑み1粒径が大きいとか、結晶
性G eo 2が存在するとか、ガラス微粒子の焼結が
始まっているなど、既知の手段では処理が困難な光ファ
イバ用多孔質ガラス母材につき、これが満足に脱水なら
びに透明ガラス化できる処理方法を提供しようとするも
のである。
1. Problems to be Solved by the Invention" In view of the above-mentioned problems, the present invention solves the problems by solving known means such as the large particle size, the presence of crystalline Geo 2, and the beginning of sintering of glass particles. The present invention aims to provide a processing method that can satisfactorily dehydrate and transparentize a porous glass preform for optical fibers, which is difficult to process.

ず問題点を解決するための手段」 本発明方法は、ガラス微粒子の直径が0.24m以上、
結晶性G e 02が存在すること、ガラス微粒子の焼
結が始まっていること、これらの条件の1つ以上を有す
るS r 02−G e O2系の多孔質ガラス母材を
無酸素雰囲気中で脱水ならびに透明ガラス化することを
特徴としている。
The method of the present invention is applicable to glass fine particles having a diameter of 0.24 m or more,
The presence of crystalline G e 02, the beginning of sintering of glass particles, and the S r 02-G e O2-based porous glass base material having one or more of these conditions are heated in an oxygen-free atmosphere. It is characterized by dehydration and transparent vitrification.

イ作用1 本発明方法において、S+02−GeO2系の多孔質ガ
ラス母材を無酸素雰囲気中で脱水ならびに透明ガラス化
するとき、下記式に示す不可逆的な反応が生じる。
Effect 1 In the method of the present invention, when the S+02-GeO2-based porous glass base material is dehydrated and made transparent vitrified in an oxygen-free atmosphere, an irreversible reaction shown by the following formula occurs.

GeO2+2SOC12−’GeCl4”2S02かか
る一方向の反応では、結晶性GeO2の揮発が進み、所
定の反応も促進され、透明ガラス化後の母材透明度も向
上するから、ガラス微粒子の直径が0.2ル腸以上であ
ったり、結晶性GeO2が存在していたり、あるいはガ
ラス微粒子の焼結が始まっている多孔質ガラス母材であ
っても問題なく処理できる。
GeO2+2SOC12-'GeCl4''2S02 In such a unidirectional reaction, the volatilization of crystalline GeO2 progresses, the specified reaction is also promoted, and the transparency of the base material after transparent vitrification is also improved. Even if the porous glass base material is larger than the pore size, contains crystalline GeO2, or has already started sintering of glass particles, it can be processed without problems.

この際、無酸素雰囲気中での多孔質ガラス母材移動速度
を低速とし、透明ガラス化温度を高温とするのがよく、
これによりガラス微粒子径が太きい場合における上記反
応がより十分となる。
At this time, it is preferable that the moving speed of the porous glass base material in an oxygen-free atmosphere be low and the transparent vitrification temperature be high.
This makes the above reaction more sufficient when the glass fine particles have a large diameter.

イ実 施 例」 以下本発明方法の実施例につき、図面を参照して説明す
る。
Embodiments Embodiments of the method of the present invention will be described below with reference to the drawings.

第1図において、lは電気ヒータ2と炉心管3とを備え
た既知の加熱炉であり、その炉心管3の下部、上部には
それぞれガス入口4、ガス出口5が設けられている。
In FIG. 1, 1 is a known heating furnace equipped with an electric heater 2 and a furnace tube 3, and a gas inlet 4 and a gas outlet 5 are provided at the lower and upper portions of the furnace tube 3, respectively.

8は前記二重火炎バーナによるVAD法を介して作製さ
れたS i0102−Ge系の多孔質ガラス母材であり
、この多孔質ガラス母材6は石英系支持棒7の下端に付
着している。
Reference numeral 8 denotes a Si0102-Ge-based porous glass base material produced through the VAD method using the double flame burner, and this porous glass base material 6 is attached to the lower end of the quartz-based support rod 7. .

第1図において多孔質ガラス母材6を処理するとき、加
熱炉1の炉心管3内には、Heによりバブリングされた
SOCI 4とHeとがガス入口4から供給され、これ
により炉心管3内が所定の無酸素雰囲気に保持される。
When processing the porous glass preform 6 in FIG. is maintained in a predetermined oxygen-free atmosphere.

上記無酸素雰囲気の炉心管3内に挿入された多孔質ガラ
ス母材6は、回転状態で電気炉1の加熱部(ヒータ2の
位置する部分)へと降下移動し、その下端より順次脱水
ならびに透明ガラス化される。
The porous glass base material 6 inserted into the furnace core tube 3 in the oxygen-free atmosphere is moved downward to the heating part of the electric furnace 1 (the part where the heater 2 is located) in a rotating state, and is sequentially dehydrated from its lower end. Transparent vitrification.

多孔質ガラス母材Bが例えばSin2−Gem2(コア
部)と5i02(クラッド部)とからなるとき、上記の
ように透明ガラス化された後の当該母材が加熱延伸によ
り紡糸され、光ファイバとなる。
When the porous glass preform B is composed of, for example, Sin2-Gem2 (core part) and 5i02 (clad part), the preform after being made transparent as described above is spun by heating and drawing to form an optical fiber. Become.

多孔質ガラス母材Bが例えばSin2−Gem2(コア
部)のみからなるとき、上記透明ガラス化後の当該母材
外周に純石英製のガラスパイプがジャケットされ、これ
らが紡糸されて光ファイバとなる。
When the porous glass preform B consists of, for example, only Sin2-Gem2 (core part), a pure quartz glass pipe is jacketed around the outer periphery of the preform after the transparent vitrification, and these are spun to become an optical fiber. .

多孔質ガラス母材8はGeO□以外のものもドーパント
として含有していることがある。
The porous glass base material 8 may also contain other dopants than GeO□.

つぎに本発明の具体例とその比較例について説明する。Next, specific examples of the present invention and comparative examples thereof will be explained.

具体例 上述した多孔質ガラス母材8を脱水透明ガラス化すると
き、電気炉1の炉心管3内には、Heによりバブリング
した1文/分のSOC+ 、と30見/分のHeとを供
給してその炉心管3内を無酸素雰囲気とし、ヒータ2に
よる透明ガラス化温度を約1400℃とし、炉心管3内
における多孔質ガラス母材8の移動速度(降下速度)を
120■l/分として当該多孔質ガラス母材Bを処理し
た。
Specific Example: When dehydrating the porous glass base material 8 described above to make it transparent and vitrifying, the furnace core tube 3 of the electric furnace 1 is supplied with 1 min/min of SOC+ bubbled with He and 30 min/min of He. Then, the inside of the furnace core tube 3 was made into an oxygen-free atmosphere, the transparent vitrification temperature by the heater 2 was set to about 1400° C., and the moving speed (lowering speed) of the porous glass base material 8 inside the furnace core tube 3 was 120 l/min. The porous glass base material B was treated as follows.

つぎに透明ガラス化後の母材を加熱延伸により紡糸して
外径(直径)125 ルl、コア直径50IL+sの光
ファイバを得た。
Next, the base material after transparent vitrification was spun by heating and drawing to obtain an optical fiber having an outer diameter (diameter) of 125 l and a core diameter of 50 l+s.

この具体例での光ファイバは、第2図のごとく波長9.
854tmにおける伝送ロスが2.82dB八層、波長
1.30pmにおける伝送ロスが0.48dB/km 
、波長1.551Lmにおける伝送ロスが0.24dB
八■であり。
In this specific example, the optical fiber has a wavelength of 9.5 mm as shown in FIG.
Transmission loss at 854tm is 2.82dB 8 layers, transmission loss at wavelength 1.30pm is 0.48dB/km
, transmission loss at wavelength 1.551Lm is 0.24dB
Eight ■.

1.38ル鳳でのOH基による吸収損失が0.30dB
/に膳ときわめて良好な結果を示した。
Absorption loss due to OH group at 1.38 ru 0.30dB
/ showed very good results.

比較例 具体例と同様の多孔質ガラス母材を処理するとき、炉心
管3内に0.31分のCI2と30交/分のHsとを供
給してその炉心管3内を有酸素雰囲気とし、ヒータ2に
よる透明ガラス化温度を約131110℃とし、炉心管
3内における多孔質ガラス母材の移動速度(降下速度)
を240mm/分として当該多孔質ガラス母材を脱水な
らびに透明ガラス化し、透明ガラス化後の母材を加熱延
伸により紡糸して外径(直径) 125 IL厘、コア
直径50弘mの光ファイバを得た。
Comparative Example When processing the same porous glass base material as in the specific example, 0.31 min CI2 and 30 min Hs were supplied into the furnace tube 3 to create an oxic atmosphere inside the furnace tube 3 , the transparent vitrification temperature by the heater 2 is about 131110°C, and the moving speed (falling speed) of the porous glass base material in the furnace tube 3.
The porous glass preform was dehydrated and made into transparent vitrification at a speed of 240 mm/min, and the preform after transparent vitrification was heated and stretched to form an optical fiber with an outer diameter (diameter) of 125 IL and a core diameter of 50 Hm. Obtained.

この比較例での光ファイバは、第2図のごとく波長0.
85弘層における伝送ロスが3.21dB/km 、波
長1.30pmにおける伝送ロスが1.37dB/)o
w 、波長1.55pmにおける伝送ロスが1.08d
B/km、さらに1.39pmでのOH基による吸収損
失が2.30dB/kmであり、前記具体例の結果をか
なり下回った。
The optical fiber in this comparative example had a wavelength of 0.05 as shown in FIG.
The transmission loss in the 85 Hiro layer is 3.21 dB/km, and the transmission loss at a wavelength of 1.30 pm is 1.37 dB/)o
w, transmission loss at wavelength 1.55pm is 1.08d
B/km, and the absorption loss due to OH groups at 1.39 pm was 2.30 dB/km, which was considerably lower than the result of the specific example.

本発明方法で最も有効な条件は、脱水ならびに透明ガラ
ス化時の雰囲気を無酸素雰囲気とすることであり、つぎ
に有効な条件は、無酸素雰囲気中(炉心管3内)におけ
る多孔質ガラス母材6の移動速度(降下速度)であり、
そのつぎに有効な条件は、無酸素雰囲気中における多孔
質ガラス母材8の透明ガラス化温度である。
The most effective condition for the method of the present invention is to make the atmosphere during dehydration and transparent vitrification an oxygen-free atmosphere. The moving speed (descending speed) of the material 6,
The next most effective condition is the transparent vitrification temperature of the porous glass base material 8 in an oxygen-free atmosphere.

この際の母材移動速度は20Q+s+a/時以下が望ま
しく、透明ガラス化温度は1400℃以上が望ましい。
At this time, the base material movement speed is preferably 20Q+s+a/hour or less, and the transparent vitrification temperature is preferably 1400° C. or higher.

r発明の効果J 以上説明した通り1本発明方法にとるときは。rEffect of invention J As explained above, when using the method of the present invention.

所定の多孔質ガラス母材を無酸素雰囲気中で脱水ならび
に透明ガラス化するから、はぼ完全に透明ガラス化され
た光ファイバ用の母材が得られ、その透明ガラス化後の
母材を紡糸することにより、伝送ロス、OH基による吸
収損失等が小さい、しかも気泡のない高特性の光ファイ
バが得られる。
By dehydrating a predetermined porous glass base material in an oxygen-free atmosphere and turning it into transparent vitrification, a completely transparent glass base material for optical fibers can be obtained, and the transparent glass base material can be spun into yarn. By doing so, it is possible to obtain a high-performance optical fiber that has small transmission loss, absorption loss due to OH groups, etc., and is free from bubbles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の1実施例を略示した説明図、第2
図は光ファイバの伝送特性を示した説明図である。 1 ・・・電、実炉 2 mm1ヒータ 3−e赤炉心管(無酸素雰囲気) 6 @+Iψ多孔質ガラス母材
FIG. 1 is an explanatory diagram schematically showing one embodiment of the method of the present invention, and FIG.
The figure is an explanatory diagram showing the transmission characteristics of an optical fiber. 1... Electric, actual furnace 2 mm1 heater 3-e red furnace tube (oxygen-free atmosphere) 6 @+Iψ porous glass base material

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス微粒子の直径が0.2μm以上、結晶性G
eO_2が存在すること、ガラス微粒子の焼結が始まっ
ていること、これらの条件の1つ以上を有するSiO_
2−GeO_2系の多孔質ガラス母材を、無酸素雰囲気
中で脱水ならびに透明ガラス化することを特徴とする光
ファイバ用多孔質ガラス母材の処理方法。
(1) Glass particles have a diameter of 0.2 μm or more, crystalline G
The presence of eO_2, the beginning of sintering of glass particles, and SiO_2 having one or more of these conditions.
A method for processing a porous glass preform for optical fibers, which comprises dehydrating and transparent vitrifying a 2-GeO_2-based porous glass preform in an oxygen-free atmosphere.
(2)無酸素雰囲気中への多孔質ガラス母材移動速度を
200mm/時以下とする特許請求の範囲第1項記載の
光ファイバ用多孔質ガラス母材の処理方法。
(2) The method for processing a porous glass preform for an optical fiber according to claim 1, wherein the moving speed of the porous glass preform into an oxygen-free atmosphere is 200 mm/hour or less.
(3)透明ガラス化温度を1400℃以上とする特許請
求の範囲第1項記載の光ファイバ用多孔質ガラス母材の
処理方法。
(3) The method for processing a porous glass preform for optical fiber according to claim 1, wherein the transparent vitrification temperature is 1400° C. or higher.
JP21457984A 1984-10-13 1984-10-13 Treatment of parent material comprising porous glass for optical fiber Pending JPS61117127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21457984A JPS61117127A (en) 1984-10-13 1984-10-13 Treatment of parent material comprising porous glass for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21457984A JPS61117127A (en) 1984-10-13 1984-10-13 Treatment of parent material comprising porous glass for optical fiber

Publications (1)

Publication Number Publication Date
JPS61117127A true JPS61117127A (en) 1986-06-04

Family

ID=16658049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21457984A Pending JPS61117127A (en) 1984-10-13 1984-10-13 Treatment of parent material comprising porous glass for optical fiber

Country Status (1)

Country Link
JP (1) JPS61117127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520140A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Reduction of fiber optic cane / preform deformation during consolidation
CN107151094A (en) * 2016-03-03 2017-09-12 信越化学工业株式会社 Annealing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176134A (en) * 1982-03-23 1983-10-15 Furukawa Electric Co Ltd:The Preparation of parent material for rod lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176134A (en) * 1982-03-23 1983-10-15 Furukawa Electric Co Ltd:The Preparation of parent material for rod lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520140A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Reduction of fiber optic cane / preform deformation during consolidation
CN107151094A (en) * 2016-03-03 2017-09-12 信越化学工业株式会社 Annealing device
CN107151094B (en) * 2016-03-03 2021-06-01 信越化学工业株式会社 Heat treatment apparatus

Similar Documents

Publication Publication Date Title
US4082420A (en) An optical transmission fiber containing fluorine
JPS61247633A (en) Production of glass base material for optical fiber
JPS61155225A (en) Manufacture of optical wave guide tube
JPS60257408A (en) Optical fiber and its production
US4165152A (en) Process for producing optical transmission fiber
EP0164103B1 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS61117127A (en) Treatment of parent material comprising porous glass for optical fiber
JP2612871B2 (en) Method of manufacturing graded-in-desk type optical fiber preform
JPH06263468A (en) Production of glass base material
JPS63315530A (en) Production of optical fiber preform
JPS62108744A (en) Transparent vitrification method of porous glass base material
JP2565712B2 (en) Optical fiber manufacturing method
JPS60251142A (en) Manufacture of base material for optical fiber
JPH0551542B2 (en)
JPS632900B2 (en)
JPS6183639A (en) Production of quartz pipe of high purity
JPH01111747A (en) Production of optical fiber preform
JPS63285128A (en) Production of optical fiber preform
JP4071348B2 (en) Optical fiber preform dehydration method
JP2540056B2 (en) Method for manufacturing fluorine-containing clad optical fiber foam
JPH0881233A (en) Production of preform material for optical fiber
JPS60145927A (en) Production of base material for optical fiber
JPH0791082B2 (en) Method and apparatus for manufacturing optical fiber preform
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JP3439258B2 (en) Method for producing glass preform for optical fiber