JPS62108744A - Transparent vitrification method of porous glass base material - Google Patents

Transparent vitrification method of porous glass base material

Info

Publication number
JPS62108744A
JPS62108744A JP24845485A JP24845485A JPS62108744A JP S62108744 A JPS62108744 A JP S62108744A JP 24845485 A JP24845485 A JP 24845485A JP 24845485 A JP24845485 A JP 24845485A JP S62108744 A JPS62108744 A JP S62108744A
Authority
JP
Japan
Prior art keywords
base material
fluorine
porous glass
glass base
transparent vitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24845485A
Other languages
Japanese (ja)
Inventor
Shinichi Yano
慎一 矢野
Katsumi Orimo
折茂 勝巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP24845485A priority Critical patent/JPS62108744A/en
Publication of JPS62108744A publication Critical patent/JPS62108744A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To change fluorine content in the radium direction of a porous glass base material and to easily change the distribution of refractive index by controlling the conc. of fluorine-contg. gas contained in the atmosphere in case of subjecting the porous glass base material to transparent vitrification in the fluorine-contg. gas atmosphere. CONSTITUTION:A porous glass base material 1 consisting of an accumulated material of a sooty fine glass grain is inserted to the inside of a reactor core pipe 5 and a fluorine-contg. gas (e.g. gaseous mixture of SF6, He and Cl2) is introduced into the inside of the pipe 5. The base material 1 is heated by an electric furnace 2 in the fluorine-contg. gas atmosphere and fluorine is doped to the inside of the base material 1 while subjecting it to transparent vitrification. On this occasion, fluorine content in a range over the radium direction of the base material 1 is changed by controlling the concn. of the fluorine contg. gas contained in the atmosphere and the distribution of refractive index in the radium direction of the base material 1 is changed. Thereby a glass base material consisting of a pure quartz core and a quarts cladding doped with fluorine can easily be prepared in a VAD process.

Description

【発明の詳細な説明】 l産業上の利用分野」 本発明は通信用、光学用のガラス母材を得る際に用いる
多孔質ガラス母材の透明ガラス化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a method for transparent vitrifying a porous glass preform used in obtaining a glass preform for communication and optical applications.

【従来の技術j 光フアイバ用、ロッドレンズ用など、通信、非通信分野
で用いられるガラス母材をVAD法、OVD法等により
作製するとき、火炎加水分解反応または熱酸化反応によ
り生成されたスート状ガラス微粒子を所望の形状に堆積
し、その堆積物たる多孔質ガラス母材を透明ガラス化す
る。
[Prior art j] When producing glass base materials used in communication and non-communication fields, such as for optical fibers and rod lenses, by VAD method, OVD method, etc., soot generated by flame hydrolysis reaction or thermal oxidation reaction. The microscopic glass particles are deposited in a desired shape, and the deposited porous glass base material is turned into transparent vitrification.

一般に、上記透明ガラス化はヘリウム、塩素ガス等が導
入された電気炉内に多孔質ガラス母材を入れて該母材を
熱処理することにより行なわれ、かかる熱処理により、
多孔質ガラス母材は脱水。
Generally, the above-mentioned transparent vitrification is performed by placing a porous glass base material in an electric furnace into which helium, chlorine gas, etc. are introduced and heat-treating the base material.
The porous glass matrix is dehydrated.

焼結の過程を経て透明ガラス化される。It becomes transparent glass through the sintering process.

こうして多孔質ガラス母材を透明ガラス化するとき、電
気炉内の所定雰囲気中に、六フッ化イオウ、フレオン(
フッ化炭化水素類の商品名)等のフッ素含有ガスを混入
し、その母材中にフッ素をドープすることが行なわれて
いる。
In this way, when a porous glass base material is made into transparent glass, sulfur hexafluoride, freon (
A method of doping fluorine into the base material is by mixing a fluorine-containing gas such as fluorinated hydrocarbon (trade name).

従来において、前記のごとく透明ガラス化時の母材中に
フッ素をドープしたとき、その母材の屈折率分布は第4
図のようになる。
Conventionally, when fluorine is doped into the base material for transparent vitrification as described above, the refractive index distribution of the base material is 4th.
It will look like the figure.

上記従来例におる母材中のフッ素ドープ量を示したのが
第5図であり、すなわち従来例の場合、母材中のフッ素
ドープ量がその半径方向に均一となっている。
FIG. 5 shows the amount of fluorine doped in the base material in the conventional example. That is, in the conventional example, the amount of fluorine doped in the base material is uniform in the radial direction.

この際、透明ガラス化雰囲気中のフッ素含有ガス濃度は
1zあるいはそれ以上としている。
At this time, the fluorine-containing gas concentration in the transparent vitrification atmosphere is set to 1z or more.

母材中のフッ素ドープ量が均一となる理由は、電気炉内
に流すフッ素含有ガスを例えば六フッ化イオウとした場
合、第6図のごとく母材ガラスの屈折率が(SF )1
/4に比例するからである。
The reason why the amount of fluorine doped in the base material is uniform is that when the fluorine-containing gas flowing into the electric furnace is, for example, sulfur hexafluoride, the refractive index of the base glass is (SF ) 1 as shown in Figure 6.
This is because it is proportional to /4.

r発明が解決しようとする問題点j 上述したように、従来例では多孔質ガラス母材の透明ガ
ラス化時においてその母材中にフッ素をドープしている
が、これは母材半径方向にわたるフッ素ドープ量を均一
とするフッ素ドープ手段であり、したがって母材半径方
向の屈折率分布が変化するようなフッ素ドープには適さ
ず、例えば二乗屈折率分布をもつ光フアイバ母材などは
得られない。
rProblems to be solved by the invention j As mentioned above, in the conventional example, fluorine is doped into the porous glass base material when the base material is made into transparent vitrification, but this is because the fluorine is doped in the radial direction of the base material. This is a fluorine doping means that makes the doping amount uniform, so it is not suitable for fluorine doping in which the refractive index distribution in the radial direction of the base material changes, and it is not possible to obtain, for example, an optical fiber base material with a square refractive index distribution.

本発明は上記の問題点に鑑み、多孔質ガラス母材の透明
ガラス化と同期してその母材中にフッ素をドープする際
、母材半径方向のフッ素ドープ量を変化させることので
きる、換言すれば母材半径方向の屈折率分布を変化させ
ることのできる透明ガラス化方法を新規に提供しようと
するものである。
In view of the above problems, the present invention is capable of changing the amount of fluorine doped in the radial direction of the porous glass base material when doping fluorine into the base material in synchronization with the transparent vitrification of the porous glass base material. The present invention aims to provide a new transparent vitrification method that can change the refractive index distribution in the radial direction of the base material.

1問題点を解決するための手段1 本発明は、スート状ガラス微粒子の堆積物からなる多孔
質ガラス母材をフッ素含有ガス雰囲気中で熱処理するこ
とにより透明ガラス化しながらその母材中にフッ素をド
ープする多孔質ガラス母材の透明ガラス化方法において
、上記雰囲気中のフッ素含有ガス濃度を制御することに
より、上記母材の半径方向にわたるフッ素含有率を変化
させることを特徴としている。
Means for Solving Problem 1 The present invention heat-treats a porous glass base material made of deposits of soot-like glass particles in a fluorine-containing gas atmosphere to make it transparent, while adding fluorine to the base material. The method for transparent vitrification of a porous glass preform to be doped is characterized in that the fluorine content in the radial direction of the preform is changed by controlling the concentration of a fluorine-containing gas in the atmosphere.

「作用」 本発明方法において、多孔質ガラス母材をフッ素含有ガ
ス雰囲気中で透明ガラス化し、その透明ガラス化時の母
材中にフッ素をドープすることは従来例と同じであるが
、この際、フッ素含有ガス雰囲気中のツー、素含有ガス
濃度を制御するから、母材半径方向にわたるフッ素含有
量が変化し、該母材半径方向の屈折率分布も変化する。
"Function" In the method of the present invention, the porous glass base material is made into transparent vitrification in a fluorine-containing gas atmosphere, and fluorine is doped into the base material at the time of transparent vitrification, which is the same as in the conventional method. Since the concentration of the element-containing gas in the fluorine-containing gas atmosphere is controlled, the fluorine content in the radial direction of the base material changes, and the refractive index distribution in the radial direction of the base material also changes.

この際のフッ素含有ガス雰囲気中におけるフッ素含有ガ
ス濃度は、l$未満において制御するのがよく、当該ガ
ス濃度をこうした微小量にて制御することにより、例え
ば当該母材のフッ素含有量はその中心から外周に向かう
にしたがい多くなる。
At this time, the concentration of the fluorine-containing gas in the fluorine-containing gas atmosphere is preferably controlled to less than 1 $, and by controlling the gas concentration in such a minute amount, for example, the fluorine content of the base material can be The number increases as you move toward the outer periphery.

これは上記ガス濃度をtX以上としている従来例にはみ
られない特異な現象である。
This is a unique phenomenon that is not observed in conventional examples in which the gas concentration is set to tX or more.

「実 施 例」 以下本発明方法の具体的実施例につき、図面を参照して
説明する。
“Examples” Specific examples of the method of the present invention will be described below with reference to the drawings.

第1図において、lは石英系の多孔質ガラス母材であり
、この多孔質ガラス母材1はVAD法、OVD法等にお
ける火炎加水分解反応、または熱酸化反応により生成さ
れたスート状のガラス微粒子が所望の形状に堆積されて
作製されたものである。
In FIG. 1, l is a quartz-based porous glass base material, and this porous glass base material 1 is a soot-like glass produced by a flame hydrolysis reaction or a thermal oxidation reaction in a VAD method, an OVD method, etc. It is made by depositing fine particles in a desired shape.

2は上記多孔質ガラス母材lを透明ガラス化するための
電気炉であり、この電気炉2は、下部にガス人口3、上
部にガス出口4を有する石英製の炉心管5と、その炉心
管5の外周に配置されたリング状のヒータBとからなる
Reference numeral 2 denotes an electric furnace for converting the porous glass base material 1 into transparent vitrification. It consists of a ring-shaped heater B placed around the outer periphery of the tube 5.

第1図の電気炉2を用いて多孔質ガラス母材1を透明ガ
ラス化するとき、炉心管5内にはそのガス人口3からH
e、 C12,SF6等が供給され、該炉心管5の内部
がヒータ8を介して加熱される。
When the porous glass base material 1 is made into transparent vitrification using the electric furnace 2 shown in FIG.
E, C12, SF6, etc. are supplied, and the inside of the furnace core tube 5 is heated via the heater 8.

多孔質ガラス母材lは、かかる炉心管5内へ回転状態で
挿入され、ここで脱水、焼結、透明ガラス化されるとと
もに、その母材中にフッ素がドープされる。
The porous glass base material 1 is inserted into the furnace core tube 5 in a rotating state, where it is dehydrated, sintered, and made into transparent vitrification, and the base material is doped with fluorine.

本発明方法のより具体的な実施例において、■AD法に
より作製したS r 02製多孔質ガラス母材1を回転
状態とし、これを120+s■/hの速度にて温度14
00℃とした電気炉2の炉心管5内に挿入した。
In a more specific embodiment of the method of the present invention, a porous glass base material 1 made of S r 02 produced by the AD method is rotated and rotated at a temperature of 14 at a speed of 120+s/h.
It was inserted into the furnace core tube 5 of the electric furnace 2 which was set at 00°C.

この際、炉心管5内には、Heを300cc/win 
、 O,。
At this time, 300cc/win of He was added to the core tube 5.
, O,.

を85cc/win、 SF6を2cc/winにてそ
れぞれ供給した。
and SF6 were supplied at 85 cc/win and 2 cc/win, respectively.

上記フッ素含有ガス中におけるSF8の濃度は、0.0
07%である。
The concentration of SF8 in the fluorine-containing gas is 0.0
07%.

かかる条件にて透明ガラス化された上記母材は第2図の
ごとき屈折率分布を有していた。
The base material made into transparent glass under these conditions had a refractive index distribution as shown in FIG.

これは母材中心部から母材外周部へ向かうにしたがいフ
ッ素のドープ量が高上しているためであり、フッ素ドー
プ量の多い部分はど屈折率が低下している。
This is because the amount of fluorine doped increases from the center of the base material to the outer periphery of the base material, and the refractive index decreases in areas where the amount of fluorine doped is large.

上記具体例において、フッ素含有ガス雰囲気中における
フッ素含有ガス濃度をより精密に制御することにより、
第3図(イ)(ロ)(ハ)のごとき屈折率分布をもつ透
明ガラス母材の得られることが判明した。
In the above specific example, by more precisely controlling the fluorine-containing gas concentration in the fluorine-containing gas atmosphere,
It has been found that a transparent glass base material having a refractive index distribution as shown in FIGS. 3(a), (b), and (c) can be obtained.

フッ素含有ガスとしては、既述のフレオンも用いること
ができる。
As the fluorine-containing gas, the already mentioned freon can also be used.

比較例として、炉心管5内にHeを300cc/■in
、SF6を300m1/min供給した以外は前記具体
例と同様にしてS i 02多孔質ガラス母材1透明ガ
ラス化した。
As a comparative example, 300 cc/inch of He was added in the core tube 5.
, S i 02 porous glass base material 1 was made into transparent vitrification in the same manner as in the above specific example except that SF6 was supplied at a rate of 300 ml/min.

この比較例でのフッ素含有ガス中におけるSF6の濃度
はl駕である。
In this comparative example, the concentration of SF6 in the fluorine-containing gas is 1 kg.

かかる比較例の場合、予測の通り、透明ガラス化後の母
材屈折率分布が前記第4図のようになった。
In the case of this comparative example, as expected, the refractive index distribution of the base material after transparent vitrification was as shown in FIG. 4 above.

「発明の効果J 以上説明した通り1本発明方法によるときは、多孔質ガ
ラス母材を透明ガラス化に際し、その雰囲気中のフッ素
含有ガス濃度を制御するから、当該母材の半径方向にわ
たるフッ素含有率を変化させることができ、その結果、
VAD法、OVD法等において困難視されていた純石英
コアとフッ素ドープト石英クラッドとによるガラス母材
が可能となり、該母材中の屈折率分布も矩形分布、二乗
分布、三角形分布など、任意に設定できる。
"Effects of the Invention J As explained above, 1. When the method of the present invention is used, the concentration of fluorine-containing gas in the atmosphere is controlled when a porous glass base material is made into transparent vitrification. The rate can be varied so that
A glass base material made of a pure quartz core and a fluorine-doped quartz cladding, which was considered difficult in the VAD method, OVD method, etc., has become possible, and the refractive index distribution in the base material can be arbitrarily changed to a rectangular distribution, square distribution, triangular distribution, etc. Can be set.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を略示した説明図、第2
図は本発明方法により透明ガラス化された母材の屈折率
分布図、第3図(イ)(ロ)(ハ)は本発明方法により
透明ガラス化された各種母材の屈折率分布図、第4図は
従来法により透明ガラス化された母材の屈折率分布図、
第5図は従来法により透明ガラス化された母材のフッ素
ドープ量を示した屈折率分布図、第6図は石英系ガラス
母材の屈折率差と六フッ化イオウ濠度との関係を示した
説明図である。 l ・・・多孔質ガラス母材 2 ・・・電気炉 5 ・・・電気炉の炉心管 6 ・・・電気炉のヒータ 代理人 弁理士  斎 藤 義 雄 第4図   第1閃 @b図
FIG. 1 is an explanatory diagram schematically showing an embodiment of the method of the present invention, and FIG.
The figure is a refractive index distribution diagram of a base material made transparent by the method of the present invention, and Figure 3 (a), (b), and (c) are refractive index distribution diagrams of various base materials made transparent by the method of the present invention. Figure 4 is a refractive index distribution diagram of the base material made into transparent glass by the conventional method.
Figure 5 is a refractive index distribution diagram showing the amount of fluorine doped in the base material made transparent by the conventional method, and Figure 6 is the relationship between the refractive index difference of the silica-based glass base material and the degree of sulfur hexafluoride moat. FIG. l ... Porous glass base material 2 ... Electric furnace 5 ... Electric furnace core tube 6 ... Electric furnace heater agent Patent attorney Yoshio Saito Figure 4 Figure 1 flash @ Figure b

Claims (2)

【特許請求の範囲】[Claims] (1)スート状ガラス微粒子の堆積物からなる多孔質ガ
ラス母材をフッ素含有ガス雰囲気中で熱処理することに
より透明ガラス化しながらその母材中にフッ素をドープ
する多孔質ガラス母材の透明ガラス化方法において、上
記雰囲気中のフッ素含有ガス濃度を制御することにより
、上記母材の半径方向にわたるフッ素含有率を変化させ
ることを特徴とする多孔質ガラス母材の透明ガラス化方
法。
(1) Transparent vitrification of a porous glass base material consisting of deposits of soot-like glass particles is made transparent by heat-treating it in a fluorine-containing gas atmosphere and doping fluorine into the base material. A method for transparent vitrification of a porous glass preform, characterized in that the fluorine content in the radial direction of the preform is varied by controlling the concentration of a fluorine-containing gas in the atmosphere.
(2)フッ素含有ガス雰囲気中のフッ素含有ガス濃度を
1%未満とする特許請求の範囲第1項記載の多孔質ガラ
ス母材の透明ガラス化方法。
(2) The method for transparent vitrification of a porous glass base material according to claim 1, wherein the fluorine-containing gas concentration in the fluorine-containing gas atmosphere is less than 1%.
JP24845485A 1985-11-06 1985-11-06 Transparent vitrification method of porous glass base material Pending JPS62108744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24845485A JPS62108744A (en) 1985-11-06 1985-11-06 Transparent vitrification method of porous glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24845485A JPS62108744A (en) 1985-11-06 1985-11-06 Transparent vitrification method of porous glass base material

Publications (1)

Publication Number Publication Date
JPS62108744A true JPS62108744A (en) 1987-05-20

Family

ID=17178371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24845485A Pending JPS62108744A (en) 1985-11-06 1985-11-06 Transparent vitrification method of porous glass base material

Country Status (1)

Country Link
JP (1) JPS62108744A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160839A (en) * 1987-12-18 1989-06-23 Nippon Telegr & Teleph Corp <Ntt> Production of preform for optical fiber
US5210816A (en) * 1991-06-24 1993-05-11 The Furukawa Electric Co., Ltd. Optical fiber and process of producing same
EP1120382A2 (en) * 2000-01-28 2001-08-01 Shin-Etsu Chemical Co., Ltd. Glass preform and optical fibre and method of manufacturing the preform
JP2012078804A (en) * 2010-09-06 2012-04-19 Shin Etsu Chem Co Ltd Optical fiber, optical fiber preform, and manufacturing method thereof
CN102807322A (en) * 2011-06-03 2012-12-05 信越化学工业株式会社 Manufacturing method of optical fiber base material possessing low refractive index portion distantly-positioned from core
CN105911619A (en) * 2016-06-07 2016-08-31 长飞光纤光缆股份有限公司 Gradient refractive index quartz glass lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160839A (en) * 1987-12-18 1989-06-23 Nippon Telegr & Teleph Corp <Ntt> Production of preform for optical fiber
US5210816A (en) * 1991-06-24 1993-05-11 The Furukawa Electric Co., Ltd. Optical fiber and process of producing same
EP1120382A2 (en) * 2000-01-28 2001-08-01 Shin-Etsu Chemical Co., Ltd. Glass preform and optical fibre and method of manufacturing the preform
EP1120382A3 (en) * 2000-01-28 2002-07-03 Shin-Etsu Chemical Co., Ltd. Glass preform and optical fibre and method of manufacturing the preform
JP2012078804A (en) * 2010-09-06 2012-04-19 Shin Etsu Chem Co Ltd Optical fiber, optical fiber preform, and manufacturing method thereof
CN102807322A (en) * 2011-06-03 2012-12-05 信越化学工业株式会社 Manufacturing method of optical fiber base material possessing low refractive index portion distantly-positioned from core
JP2012250887A (en) * 2011-06-03 2012-12-20 Shin-Etsu Chemical Co Ltd Method for manufacturing preform for optical fiber having low-refractive index part at position apart from core
CN102807322B (en) * 2011-06-03 2015-08-05 信越化学工业株式会社 There is in the position leaving fibre core the manufacture method of the fibre parent material in low-refraction portion
CN105911619A (en) * 2016-06-07 2016-08-31 长飞光纤光缆股份有限公司 Gradient refractive index quartz glass lens

Similar Documents

Publication Publication Date Title
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
JPS60257408A (en) Optical fiber and its production
JPH05351B2 (en)
JPS62108744A (en) Transparent vitrification method of porous glass base material
JPS57183331A (en) Manufacturing of transparent glass preform
JPS6131324A (en) Production of base material for optical fiber
JPS60264338A (en) Manufacture of optical fiber preform
JPS6081038A (en) Manufacture of optical glass fiber containing tio2
JPH0463365B2 (en)
JPS6144725A (en) Method of treating quartz porous glass layer
JPS60180928A (en) Production of quartz base material for optical fiber
JPS60231432A (en) Manufacture of quartz series optical fiber base material
JPS6140843A (en) Optical fiber
JPS61197438A (en) Method of converting porous parent material for optical fiber into clarified glass
JPH03115136A (en) Optical fiber preform and its production
JPS59137333A (en) Manufacture of base material for optical fiber
JPS60204634A (en) Production of base material for optical fiber and apparatus for producing same
JPH0791082B2 (en) Method and apparatus for manufacturing optical fiber preform
JPS62283838A (en) Production of optical fiber
JPH0412031A (en) Production of rare earth element-doped glass
JPS61117127A (en) Treatment of parent material comprising porous glass for optical fiber
JPS63236727A (en) Production of parent material for optical fibers
JPS63285128A (en) Production of optical fiber preform
JPH0416412B2 (en)
JPS60131841A (en) Manufacture of preform rod