JPH0369526A - Production of glass base material for optical fiber - Google Patents

Production of glass base material for optical fiber

Info

Publication number
JPH0369526A
JPH0369526A JP20276489A JP20276489A JPH0369526A JP H0369526 A JPH0369526 A JP H0369526A JP 20276489 A JP20276489 A JP 20276489A JP 20276489 A JP20276489 A JP 20276489A JP H0369526 A JPH0369526 A JP H0369526A
Authority
JP
Japan
Prior art keywords
heat treatment
fluorine
glass
gas
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20276489A
Other languages
Japanese (ja)
Inventor
Toshio Danzuka
彈塚 俊雄
Hiroshi Yokota
弘 横田
Masumi Ito
真澄 伊藤
Shinji Ishikawa
真二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20276489A priority Critical patent/JPH0369526A/en
Publication of JPH0369526A publication Critical patent/JPH0369526A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Abstract

PURPOSE:To uniformly add fluorine at the time of producing the glass base material for an optical fiber consisting of a pure-quartz core and a fluorine- added clad by preheating the gaseous atmosphere in the heat treatment for adding fluorine. CONSTITUTION:The SiO2 glass granular body 2 synthesized by a gas-phase reaction is subjected to the first heat treatment for dehydration and the second heat treatment for adding fluorine in a heating furnace (furnace core tube 1 and heating furnace heater 3), and then vitrified to produce the glass base material for the optical fiber. The following constitutions are added in this method. Namely, the gaseous atmosphere (e.g. He and fluorine-based gas) in the second heat treatment is preheated 4 on the upstream side of the heater 3. The preheating temp. of the gaseous atmosphere in the second heat treatment is preferably set at a temp. identical to or 200 deg.C lower than the second heat treatment temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ファイバ用ガラス母材の製造方法に関する
ものであり、詳しくはコアが純石英ガラス(Si 02
)からなり、クラッドがフッ素添加石英ガラス(F  
5i02と記載する場合もある)からなる光ファイバ用
ガラス母材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a glass base material for optical fibers, and more specifically, the present invention relates to a method for manufacturing a glass base material for optical fibers.
), and the cladding is fluorine-doped quartz glass (F
5i02)).

〔従来の技術〕[Conventional technology]

コアが純石英ガラスからなり、クラッドがフッ素添加石
英ガラスからなる、いわゆる純石英コア光ファイバは伝
送損失が低く、長距離通信用線路として注目されている
。  この純石英コア光ファイバに使用されるフッ素添
加石英ガラスは、通常、例えば特開昭62−27503
5号公報あるいは特開昭60−90842号公報に示さ
れるように、焼結炉内でフッ素添加を行なう。
A so-called pure silica core optical fiber, in which the core is made of pure silica glass and the cladding is made of fluorine-doped silica glass, has low transmission loss and is attracting attention as a line for long-distance communication. The fluorine-doped silica glass used for this pure silica core optical fiber is generally disclosed in Japanese Patent Application Laid-Open No. 62-27503, for example.
Fluorine addition is carried out in a sintering furnace as shown in Japanese Patent Application Laid-Open No. 60-90842.

すなわち、VAD法や外(=1け法などの気相反応によ
り合成されたSt Ozガラス粒子体を加熱炉内で脱水
処理し、その後、フッ素系ガス含有雰囲気下で、好まし
くは1000℃から1200℃の熱処理を行なうことに
より、フッ素添加し、その後、フッ素系ガス含有雰囲気
あるいは不活性ガス雰囲気において、加熱により透明ガ
ラス化して、フッ − 素添加石英ガラスを得る。
That is, StOz glass particles synthesized by a gas phase reaction such as the VAD method or the external method are dehydrated in a heating furnace, and then heated preferably from 1000°C to 1200°C in an atmosphere containing a fluorine gas. Fluorine is added by performing heat treatment at .degree. C., and then transparent glass is obtained by heating in a fluorine-based gas-containing atmosphere or an inert gas atmosphere.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、フッ素系ガス含有雰囲気下での高温熱処理による
フッ素添加方法では、5iChガラス粒子体の半径方向
及び長平方向に、フッ素添加量が変動するという問題が
あった。
Conventionally, the method of adding fluorine by high-temperature heat treatment in an atmosphere containing a fluorine-based gas has had a problem in that the amount of fluorine added varies in the radial direction and longitudinal direction of the 5iCh glass particles.

特に、半径方向のフッ素添加においては、」−記Si 
Oxガラス粒子体の中心部へのフッ素添加が少なく、そ
の結果、中心で屈折率が高く、外周に向かって次第に屈
折率が低下するような、第6図に示す屈折率分布が形成
されやすいという問題があった。
In particular, in the case of radial fluoridation, Si
There is little fluorine added to the center of the Ox glass particles, and as a result, the refractive index distribution shown in Figure 6 is likely to be formed, where the refractive index is high at the center and gradually decreases toward the outer periphery. There was a problem.

不均一にフッ素添加されたガラス母相の場合、光ファイ
バとしたときの伝送特性が安定せず、製造上、品質保障
上大きな問題となる。
In the case of a glass matrix that is unevenly fluorinated, the transmission characteristics when used as an optical fiber are unstable, which poses a major problem in terms of manufacturing and quality assurance.

従来、この種の問題に対して、フッ素系ガスの含浸が不
十分であるとの立場から、フッ素系ガスの濃度を」二げ
たり、炉温を調整するなどの改善が行われてきたが、い
ずれの方法によるも、未だ十分な効果が得られていない
。純石英コア光ファイバの特性を安定させるためには、
フッ素を均一に添加する熱処理技術のさらなる開発が不
可欠である。
Conventionally, in response to this type of problem, improvements such as lowering the concentration of fluorine gas or adjusting the furnace temperature have been made from the standpoint that the impregnation of fluorine gas is insufficient. However, no sufficient effect has yet been obtained with either method. In order to stabilize the characteristics of pure silica core optical fiber,
Further development of heat treatment technology to uniformly add fluorine is essential.

本発明は、このような現状に鑑みてなされたもので、純
石英コア、フッ素添加クラッドの構造の光ファイバ用母
材において、フッ素を均一に添加できる光ファイバ用ガ
ラス母材の製造方法を提供することを目的としている。
The present invention has been made in view of the current situation, and provides a method for manufacturing an optical fiber glass base material that can uniformly add fluorine to an optical fiber base material having a structure of a pure quartz core and a fluorine-doped cladding. It is intended to.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するための本発明の構成は、気相反応
により合成したSi 02ガラス拉子体を加熱炉内で脱
水のための第1の熱処理及びフッ素添加のための第2の
熱処理を行い、その後透明ガラス化して光ファイバ用ガ
ラス母材を製造する方法において、上記第2の熱処理時
の雰囲気ガスを熱処理用ヒータよりも上流において予め
加熱しておくことを特徴とするものである。
The configuration of the present invention for solving the above problems is to perform a first heat treatment for dehydration and a second heat treatment for fluorine addition in a heating furnace on a Si02 glass sample body synthesized by a gas phase reaction. The method of manufacturing a glass preform for an optical fiber by performing transparent vitrification thereafter is characterized in that the atmospheric gas during the second heat treatment is preheated upstream of the heat treatment heater.

上記本発明において、第2の熱処理の雰囲気ガスを予め
加熱しておく温度が、」二記熱処理塩度と等しい又はそ
れよりも200℃低い温度範囲内に設定されていること
が特に好ましい。
In the present invention, it is particularly preferable that the temperature at which the atmospheric gas for the second heat treatment is preheated is set within a temperature range that is equal to or 200° C. lower than the salinity of the second heat treatment.

〔作用〕[Effect]

本発明者らは、フッ素添加条件、あるいはSi O2ガ
ラス粒子体の性状について、詳細に調べた結果、5iO
pガラス粒子体中心部にフッ素が添加されにくい原因は
、特に、フッ素原料ガスの温度及び5i02ガラス粒子
体の温度が上がりにくいことにより、Si Oxガラス
粒粒子体中郡部温度が上がり難いことにあることを見出
した。
The present inventors investigated in detail the fluorine addition conditions or the properties of SiO2 glass particles, and found that 5iO
The reason why it is difficult to add fluorine to the center of the P glass particles is that the temperature of the central part of the SiOx glass particles is difficult to rise because the temperature of the fluorine raw material gas and the temperature of the 5i02 glass particles are difficult to rise. I discovered that.

St 02ガラス粒子体は、0. I〜Q、 5 /I
TI+の微細なガラス粒子が集合して形成されているも
のであり、空孔がかなりの割合で存在している。例えば
、カザ密度(空孔も含めた体積に帯する密度を表ず:g
/cm )が、0.3 g/carのものでは、ガラス
粒子と空孔の占める体積比は、およそ1:6.4となっ
ている。このため、Si Oxガラス粒子体の熱伝導率
は、空孔を満たすガスの熱伝導率で代表される。
The St 02 glass particle body is 0. I~Q, 5/I
It is formed by an aggregation of fine TI+ glass particles, and contains a considerable proportion of pores. For example, Kaza density (expressing the density banded in the volume including vacancies: g
/cm 2 ) is 0.3 g/car, the volume ratio occupied by glass particles and pores is approximately 1:6.4. Therefore, the thermal conductivity of the SiOx glass particles is represented by the thermal conductivity of the gas filling the pores.

ところがガスの熱伝導率は一般に固体より小さく、例え
ばガスとしては熱伝導率の良い陽でも、例えばガラスの
それに比ると、1ケタ小さな値でしかない。このことか
ら炉芯管に入れて炉芯管外部から加熱する場合、その外
周部にくらべSingガラス粒子体の内部は、加熱され
にくいことが推察される。すなわち、第5図に示すよう
な温度分布となりやすくなる。このため、Singガラ
ス粒子体中に浸透したフッ素系ガスが分解してFがガラ
スに添加される反応が進行せず、フッ素添加は中心部で
十分に進行しないものと考えられる。
However, the thermal conductivity of gases is generally lower than that of solids; for example, even if a gas has good thermal conductivity, its value is only an order of magnitude smaller than that of glass, for example. From this, it can be inferred that when the Sing glass particles are placed in a furnace core tube and heated from the outside of the furnace core tube, the inside of the Sing glass particle body is less likely to be heated than the outer peripheral portion thereof. In other words, a temperature distribution as shown in FIG. 5 is likely to occur. For this reason, it is thought that the reaction in which the fluorine-based gas that has permeated into the Sing glass particles is decomposed and F is added to the glass does not proceed, and fluorine addition does not proceed sufficiently in the center.

そこで、まず、ガラス粒子体中心部の温度を」二げるべ
く、炉温を上昇させてみた。しかし、フッ素含有雰囲気
下で炉温を上げると、比較的に温度が上がるガラス粒子
体外周部では、フッ素添加がより速く進行するため、フ
ッ素が添加されたことによるガラス粘度の低下により、
透明化が進行してしまう。ガラス粒子体の外周が透明化
するに伴い、フッ素系ガスは、この透明ガラス部で遮ら
れ、内部に浸透しなくなる。このため、内部のフッ素添
加が十分に進行せず、問題解決にはならなかった。
Therefore, we first tried increasing the furnace temperature in order to lower the temperature at the center of the glass particles. However, when the furnace temperature is raised in a fluorine-containing atmosphere, fluorine addition progresses more rapidly at the outer periphery of the glass particle body, where the temperature rises comparatively.
Transparency progresses. As the outer periphery of the glass particle body becomes transparent, the fluorine-based gas is blocked by the transparent glass portion and no longer permeates into the inside. For this reason, internal fluorine addition did not progress sufficiently, and the problem was not solved.

また、外周が透明化しない温度で止めたとじても、炉芯
管にガラス粒子体を入れ炉芯管外部の加熱ヒータで加熱
する方法では、やはり中心と外周の温度差は存在する以
上、フッ素添加量に差がついてしまう。すなわち、 フ
ッ素添加を均一に行なうためには、フッ素系ガス存在下
でガラス粒子体内部の温度が比較的均一になっているこ
とが必要である。
Furthermore, even if the temperature is stopped at a temperature at which the outer periphery does not become transparent, in the method of placing glass particles in the furnace core tube and heating it with a heater outside the furnace core tube, there is still a temperature difference between the center and the outer periphery, so fluorine There will be a difference in the amount added. That is, in order to uniformly add fluorine, it is necessary that the temperature inside the glass particles be relatively uniform in the presence of a fluorine-based gas.

ここで本発明者等は、St Oxガラス粒子体のような
、空孔の占める割合の多い多孔質体の場合の温度を決定
する要因としては、雰囲気ガスにより伝達する熱量が支
配的と考え、フッ素系ガスを含有する雰囲気ガスの温度
について考察と実験を繰り返し、本発明の予め加熱し雰
囲気ガスを熱処理用ヒータ上流に導入する方法が、多孔
質体であるSi Oxガラス粒子体の内部まで十分均一
に加熱できる手段であることを見出したのである。
Here, the present inventors believe that the amount of heat transferred by the atmospheric gas is the dominant factor that determines the temperature in the case of a porous body with a large proportion of pores, such as St Ox glass particles, After repeated consideration and experiments regarding the temperature of the atmospheric gas containing fluorine-based gas, we found that the method of the present invention, in which the atmospheric gas is preheated and introduced upstream of the heat treatment heater, was able to reach the inside of the SiOx glass particles, which is a porous body, sufficiently. They discovered that it is a means of heating evenly.

本発明の構成を第1図に示す。雰囲気ガスのコントロー
ルのため、密閉容器(炉芯管)■内に、ガラス粒子体2
を挿入し、電気ヒータ3にて熱処理を行なう。このとき
、炉芯管l内には、雰囲気ガス田及びフッ素原料ガスが
導入されるが、これらのガスは、少なくとも1種又はす
べてが炉芯管1、に導入する前の加熱器4により高温に
加熱される。加熱されたガスは、炉芯管l内に設置され
たガラス粒子体2を通過し、炉芯管1」二部より排気さ
れる。このときガスはガラス粒子体2の空孔を通って、
ガラス粒子体2の内部を加熱する。このためにガラス粒
子体を均一に加熱することができる。したがって、ガラ
ス粒子体内にフッ素を均一に添加することが容易となる
The configuration of the present invention is shown in FIG. In order to control the atmospheric gas, glass particles 2 are placed in a closed container (furnace core tube).
is inserted, and heat treatment is performed using the electric heater 3. At this time, an atmospheric gas field and a fluorine raw material gas are introduced into the furnace core tube 1, but at least one or all of these gases are heated to a high temperature by the heater 4 before being introduced into the furnace core tube 1. is heated to. The heated gas passes through the glass particle body 2 installed in the furnace core tube 1, and is exhausted from the second part of the furnace core tube 1''. At this time, the gas passes through the pores of the glass particle body 2,
The inside of the glass particle body 2 is heated. For this reason, the glass particles can be heated uniformly. Therefore, it becomes easy to uniformly add fluorine into the glass particles.

ガラス粒子体2内の均一加熱のためには、フッ素添加の
ための第2の熱処理時のヒータ設定値に対して、0℃〜
200℃低い温度範囲内にガス温度を調整することが望
ましい。具体的にはフッ素添加のための第2の熱処理温
度を1)00℃〜1350℃程度に設定し、ガス温度を
これより0℃〜200℃低温度の範囲内に調整する等で
ある。
In order to uniformly heat the inside of the glass particle body 2, the heater setting value during the second heat treatment for fluorine addition must be set at 0°C to
It is desirable to adjust the gas temperature to within a 200°C lower temperature range. Specifically, the second heat treatment temperature for fluorine addition is set at 1) approximately 00°C to 1350°C, and the gas temperature is adjusted within a range of 0°C to 200°C lower than this.

なお、ガス全体の温度が高い方が有利なので、フッ素系
ガス及び不活性ガス等のフッ素系ガス以外のガスの両方
が加熱されているほうが有利であるので、本発明の実施
例では両方を加熱する方法を示した。
In addition, since it is advantageous that the temperature of the entire gas is high, it is advantageous that both the fluorine-based gas and the gas other than the fluorine-based gas such as an inert gas are heated, so in the embodiment of the present invention, both are heated. I showed you how to do it.

また、本発明において第2の熱処理の雰囲気ガス加熱は
、第2図のように、炉芯管lの下部に電気ヒータ5を設
置して、加熱用ヒータ(熱処理用ヒータ)3よりは上流
の炉芯管内部で予熱を行うことでも、同様の効果を期待
できる。
In addition, in the present invention, atmospheric gas heating in the second heat treatment is performed by installing an electric heater 5 at the lower part of the furnace core tube l, as shown in FIG. A similar effect can be expected by performing preheating inside the furnace core tube.

本発明に係る第2の熱処理に用いるフッ素添加のための
雰囲気ガスとしては、例えばIし、N7等の不活性ガス
及びフッ素系ガス例えばSi F4、S F a等を用
いることができる。
As the atmospheric gas for adding fluorine used in the second heat treatment according to the present invention, for example, an inert gas such as I, N7, etc., and a fluorine-based gas such as Si F4, S Fa, etc. can be used.

本発明に係る第1の熱処理に用いる脱水のための雰囲気
ガスとしては、例えばC7!2、CCl4等の脱水剤ガ
スと、例えば1ら、N3等の不活性ガスからなるガスを
挙げることができる。
Examples of the atmospheric gas for dehydration used in the first heat treatment according to the present invention include a gas consisting of a dehydrating agent gas such as C7!2, CCl4, and an inert gas such as 1, N3, etc. .

また、この時のSi Ch粒子体のカザ密度はO1)〜
0、5 glcxdl度が好ましい。
In addition, the Kaza density of the Si Ch particles at this time is O1) ~
0.5 glcxdl degrees is preferred.

さらにまた、フッ素添加はSi Ox粒子体内にその他
のドーパント、例えばGe Ot 、 Bz Os、P
2O3などが含まれているのでも、同様の効果を得るこ
とができる。
Furthermore, fluorine doping can introduce other dopants within the SiOx particles, such as GeOt, BzOs, P
A similar effect can be obtained even if 2O3 or the like is included.

〔実施例〕〔Example〕

比較例1 VAD法により合成した、外径140mm、長さ500
 mmのSi Oxガラス粒子体を、第1図に示すリン
グ状電気ヒータ3を持つ加熱炉にて、熱処理を行った。
Comparative Example 1 Synthesized by VAD method, outer diameter 140 mm, length 500 mm
A SiOx glass particle body of mm was heat-treated in a heating furnace equipped with a ring-shaped electric heater 3 shown in FIG.

雰囲気ガス加熱用ヒータ4は使用せず、雰囲気ガスは室
温に保たれた状態で、炉芯管1内に導入された。この状
態で、Si 02ガラス粒子体をリング状ヒータ3中に
トラバースすることにより熱処理を行った。熱処理は、
表1に示ず3ステツプに分けて行い、それぞれ第1ステ
ップ:5iOtガラス粒子体の脱水、不純物除去処理、
第2ステップ:フッ素添加処理、第3ステップ;透明化
処理である。
The atmosphere gas heating heater 4 was not used, and the atmosphere gas was introduced into the furnace core tube 1 while being kept at room temperature. In this state, the Si 02 glass particles were traversed into the ring-shaped heater 3 to perform heat treatment. Heat treatment is
The process is divided into three steps (not shown in Table 1), and the first step is: dehydration of 5iOt glass particles, impurity removal treatment,
2nd step: fluorine addition treatment; 3rd step: transparentization treatment.

透明化した後、得られたガラス中の屈折率分布を測定し
たところ、第4図に示すように、中心と外周で0.08
%の屈折率差を生じてしまっていた。
After making the glass transparent, the refractive index distribution in the obtained glass was measured, and as shown in Figure 4, it was 0.08 at the center and outer periphery.
% difference in refractive index.

0 実施例1 比較例と同様の5i(hガラス粒子体を用い、表1に示
ず3ステツプ熱処理を行った。雰囲気ガスは、第2ステ
ツプにおいて、第1図に示す雰囲気ガス加熱ヒータ4に
より1200℃に加熱して、炉芯管内に導入した。この
結果、得られた本発明によるガラスでは、第3図に示す
ように、はぼ均一な屈折率分布を得ることができた。中
心と外周の屈折率差は、約0.005%と小さく、非常
に均一性の良いものであった。
0 Example 1 Using the same 5i (h) glass particles as in the comparative example, a three-step heat treatment not shown in Table 1 was performed.Atmosphere gas was heated in the second step by the atmosphere gas heating heater 4 shown in FIG. It was heated to 1200°C and introduced into the furnace core tube.As a result, the obtained glass according to the present invention was able to obtain a fairly uniform refractive index distribution as shown in Fig. 3. The refractive index difference around the outer periphery was as small as about 0.005%, and the uniformity was very good.

以」二の比較例、実施例では、ゾーン炉を用いてSi 
Oxガラス粒子体を炉中トラバースさせて加熱する方法
を例示して説明したが、本発明の方法は均熱炉を用いる
場合でも勿論有効であり、この場合トラバースして加熱
する方法、炉中の定位置に設置して加熱する方法のどち
らでもよい。
In the following Comparative Examples and Examples, Si
Although the method of heating the Ox glass particles by traversing them in the furnace has been described as an example, the method of the present invention is of course effective even when using a soaking furnace. Either method of installing it in a fixed position and heating it may be used.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように、本発明では雰囲気ガスを予め加
熱して炉芯管内に導入することにより、slo、ガラス
粒子体の中心部の温度を上げることができるため、均一
なフッ素添加量を持つ透明ガラス体を得ることができる
。フッ素添加量の均一なガラス体は、純石英コアファイ
バの中間製品として好適に用いられ、特性の安定した純
石英コアファイバを得ることができる。
As explained below, in the present invention, by preheating the atmospheric gas and introducing it into the furnace core tube, it is possible to raise the temperature of the slo, the center of the glass particles, so that a uniform amount of fluorine can be added. A transparent glass body can be obtained. A glass body with a uniform amount of fluorine added can be suitably used as an intermediate product for pure silica core fiber, and it is possible to obtain a pure quartz core fiber with stable characteristics.

本発明は、ガラス出発ロットの外周に気相法によりSi
 Oxガラス粒子体をイ」着堆積させた複合体について
も、同様の効果を期待することができる。
In the present invention, Si is applied to the outer periphery of a glass starting lot by a vapor phase method.
A similar effect can be expected from a composite in which Ox glass particles are deposited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を説明する概略図、第2図は
本発明の別の実施態様を説明する概略図、第3図は本発
明の実施例1で製造したガラス体中の屈折率分布を示す
図、第4図は比較例1で製造したガラス体中の屈折率分
布を示す図、第5図は従来法においてSi Ot粒子体
内部にできる温度分布を示す図、第6図はフッ素添加が
均一にできなかった場合き代表的な屈折率分布を示す図
である。 図中、1は炉芯管、2はSi Ch粒子体、3は加熱炉
ヒータ、4及び5は雰囲気ガス加熱用ヒータを示す。 象 四口
FIG. 1 is a schematic diagram explaining an embodiment of the present invention, FIG. 2 is a schematic diagram explaining another embodiment of the present invention, and FIG. 3 is a refraction diagram in a glass body manufactured in Example 1 of the present invention. Figure 4 is a diagram showing the refractive index distribution in the glass body produced in Comparative Example 1. Figure 5 is a diagram showing the temperature distribution created inside the SiOt particle body in the conventional method. Figure 6 is a diagram showing a typical refractive index distribution when fluorine addition cannot be uniformly performed. In the figure, 1 is a furnace core tube, 2 is a Si Ch particle body, 3 is a heating furnace heater, and 4 and 5 are heaters for heating atmospheric gas. elephant four mouths

Claims (2)

【特許請求の範囲】[Claims] (1)気相反応により合成したSiO_2ガラス粒子体
を加熱炉内で脱水のための第1の熱処理及びフッ素添加
のための第2の熱処理を行い、その後透明ガラス化して
光ファイバ用ガラス母材を製造する方法において、上記
第2の熱処理時の雰囲気ガスを熱処理用ヒータよりも上
流において予め加熱しておくことを特徴とする光ファイ
バ用ガラス母材の製造方法。
(1) SiO_2 glass particles synthesized by gas phase reaction are subjected to a first heat treatment for dehydration and a second heat treatment for fluorine addition in a heating furnace, and then made into transparent glass to form a glass base material for optical fibers. A method for manufacturing a glass preform for an optical fiber, characterized in that the atmospheric gas during the second heat treatment is preheated upstream of the heat treatment heater.
(2)上記第2の熱処理時の雰囲気ガスを予め加熱して
おく温度が、上記の第2の熱処理温度と等しい又はそれ
よりも200℃低い温度範囲内に設定されていることを
特徴とする請求項(1)に記載の光ファイバ用ガラス母
材の製造方法。
(2) The temperature at which the atmospheric gas is preheated during the second heat treatment is set within a temperature range that is equal to or 200°C lower than the second heat treatment temperature. The method for manufacturing a glass preform for optical fiber according to claim (1).
JP20276489A 1989-08-07 1989-08-07 Production of glass base material for optical fiber Pending JPH0369526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20276489A JPH0369526A (en) 1989-08-07 1989-08-07 Production of glass base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20276489A JPH0369526A (en) 1989-08-07 1989-08-07 Production of glass base material for optical fiber

Publications (1)

Publication Number Publication Date
JPH0369526A true JPH0369526A (en) 1991-03-25

Family

ID=16462782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20276489A Pending JPH0369526A (en) 1989-08-07 1989-08-07 Production of glass base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH0369526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049018A (en) * 2001-12-13 2003-06-25 엘지전선 주식회사 Chemical Preheating Method for Increasing Usable Length of Preform and Apparatus therefor
US11713272B2 (en) 2019-03-05 2023-08-01 Corning Incorporated System and methods for processing an optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049018A (en) * 2001-12-13 2003-06-25 엘지전선 주식회사 Chemical Preheating Method for Increasing Usable Length of Preform and Apparatus therefor
US11713272B2 (en) 2019-03-05 2023-08-01 Corning Incorporated System and methods for processing an optical fiber preform

Similar Documents

Publication Publication Date Title
US4165223A (en) Method of making dry optical waveguides
EP0473104A1 (en) Method for manufacturing a silica glass base material
JP3845906B2 (en) Method for producing synthetic silica glass
JPH05351B2 (en)
JPH05350B2 (en)
JPS62275035A (en) Production of base material for optical fiber
JPH0369526A (en) Production of glass base material for optical fiber
JPS63201025A (en) Production of high-purity transparent glass
JPS60260436A (en) Manufacture of glass base material for optical fiber
CN1022681C (en) Method for mfg. fiber preform for single-mode fibers
JPH06263468A (en) Production of glass base material
JPS60251142A (en) Manufacture of base material for optical fiber
JPH0426523A (en) Production of optical fiber
JP2000063147A (en) Optical fiber preform and its production
JP3439258B2 (en) Method for producing glass preform for optical fiber
JPS6183639A (en) Production of quartz pipe of high purity
JPS63315531A (en) Production of optical fiber preform
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPH03242340A (en) Preparation of glass preform for optical fiber
JPH0469569B2 (en)
JPH03115136A (en) Optical fiber preform and its production
JPS63307134A (en) Production of optical fiber preform
JPH0393641A (en) Production of glass preform for optical fiber
JP4048753B2 (en) Manufacturing method of glass preform for optical fiber
JPS63134530A (en) Production of halogen-containing glass