JPH0393641A - Production of glass preform for optical fiber - Google Patents

Production of glass preform for optical fiber

Info

Publication number
JPH0393641A
JPH0393641A JP23034989A JP23034989A JPH0393641A JP H0393641 A JPH0393641 A JP H0393641A JP 23034989 A JP23034989 A JP 23034989A JP 23034989 A JP23034989 A JP 23034989A JP H0393641 A JPH0393641 A JP H0393641A
Authority
JP
Japan
Prior art keywords
glass
fluorine
heat treatment
temperature
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23034989A
Other languages
Japanese (ja)
Inventor
Toshio Danzuka
彈塚 俊雄
Masumi Ito
真澄 伊藤
Shinji Ishikawa
真二 石川
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23034989A priority Critical patent/JPH0393641A/en
Publication of JPH0393641A publication Critical patent/JPH0393641A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce a glass preform homogeneously containing fluorine in both the radial and longitudinal directions thereof and used for producing an optical fiber by controlling the condition of a heat treatment on the heat treat ment for adding the fluorine to the SiO2 glass particle material synthesized by a gaseous phase reaction. CONSTITUTION:In a method for producing a glass preform for an optical fiber by subjecting a SiO2 glass particle material synthesized by a gaseous phase reaction to the first thermal treatment for dehydrating the material and to the second thermal treatment for adding fluorine to the material and subsequent ly converting the treated material into transparent glass, the second thermal treatment is performed by heating the SiO2 glass particle material at 1150 deg.C to 1300 deg.C for at least 20min in an atmosphere containing the fluorine gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバ用ガラス母材の製造方法に関し、詳
しくはコアが純石英(SiO*)、クラッドがフッ素添
加石英(F  Sing)からなる光ファイバ用ガラス
母材の製造に好適な製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a glass base material for optical fiber, and more specifically, the core is made of pure quartz (SiO*) and the cladding is made of fluorine-doped quartz (F Sing). The present invention relates to a manufacturing method suitable for manufacturing a glass preform for optical fibers.

〔従来の技術〕[Conventional technology]

コアが石英ガラスからなり、クラッドがフッ素添加石英
ガラスからなる、いわゆる純石英コア光ファイバは、伝
送損失が低く、長距離通信用線路として注目さている。
A so-called pure silica core optical fiber, in which the core is made of quartz glass and the cladding is made of fluorine-doped silica glass, has low transmission loss and is attracting attention as a line for long-distance communication.

この純石英コア光ファイバに使用されるフッ素添加石英
ガラスは、通常、特開昭62−275035、同60−
90842各号公報に示されるように、焼結炉内でフッ
素添加を行なう。すなわち、VAD法や外付け法などの
気相反応により合成されたSi Osガラス粒子体を加
熱炉内で脱水処理し、その後フッ素ガス雰囲気下で好ま
しくは1000℃〜1300℃の温度で熱処理を行なう
ことによりフッ素添加し、その後さらに焼結炉の温度を
上げ、フッ素雰囲気あるいは不活性ガス雰囲気において
透明ガラス化することにより、フッ素添加石英ガラスを
得る。
The fluorine-doped silica glass used for this pure silica core optical fiber is usually JP-A-62-275035 and JP-A-62-275035.
As shown in the 90842 publications, fluorine addition is carried out in a sintering furnace. That is, SiOs glass particles synthesized by a gas phase reaction such as the VAD method or the external deposition method are dehydrated in a heating furnace, and then heat treated in a fluorine gas atmosphere, preferably at a temperature of 1000° C. to 1300° C. In this way, fluorine is added, and then the temperature of the sintering furnace is further increased and transparent vitrification is performed in a fluorine atmosphere or an inert gas atmosphere to obtain fluorine-doped quartz glass.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、フッ素系ガス雰囲気下での高温熱処理によるフッ
素添加法では、st Osガラス粒子体の半径方向およ
び長手方向に、フッ素添加量が変動するという問題があ
った。
Conventionally, the fluorine addition method using high-temperature heat treatment in a fluorine gas atmosphere has had a problem in that the amount of fluorine added varies in the radial and longitudinal directions of the st Os glass particles.

特に半径方向のフッ素添加においては、上記Sinsガ
ラス粒子体の中心部へのフッ素添加が少なく、その結果
、中心で屈折率が高く、外周に向かって次第に屈折率が
低下するような、第5図に示す屈折率分布が形威されや
すい、という問題があった。
In particular, when fluorine is added in the radial direction, the amount of fluorine added to the center of the Sins glass particles is small, and as a result, the refractive index is high at the center and gradually decreases toward the outer periphery, as shown in FIG. There was a problem in that the refractive index distribution shown in Fig. 1 was easily distorted.

また、母材の長手方向にも屈折率の変動が生ずる場合が
あり、原因をつかむことができなかった。
In addition, variations in the refractive index may also occur in the longitudinal direction of the base material, and the cause could not be ascertained.

不均一にフッ素を添加されたガラス母材は、光ファイバ
としたときの伝送特性が安定せず、製造上大きな問題と
なる。
A glass base material to which fluorine is added unevenly does not have stable transmission characteristics when used as an optical fiber, which poses a major problem in manufacturing.

従来、この種の問題に対して、フッ素系ガスのガラス粒
子体への含浸が不十分であるとの立場から雰囲気中のフ
ッ素濃度を上げたり、炉温を調整するなどの改善が行わ
れてきたが、どれも充分な効果が得られていない。純石
英コア光ファイバの特性を安定させるためには、フッ素
を均一に添加する熱処理技術の確立が不可欠である 本発明の目的は、上記の問題点を解消して、Si Os
ガラス粒子体中に半径方向にも長手方向にも均一にフッ
素を添加できる光ファイバ用ガラス母材の製造方法を撮
供することにある。
Conventionally, improvements to this type of problem have been made, such as increasing the fluorine concentration in the atmosphere or adjusting the furnace temperature, based on the belief that the impregnation of fluorine-based gas into the glass particles is insufficient. However, none of them have been sufficiently effective. In order to stabilize the characteristics of pure silica core optical fiber, it is essential to establish a heat treatment technique for uniformly adding fluorine.
An object of the present invention is to provide a method for manufacturing a glass preform for an optical fiber, in which fluorine can be uniformly added to glass particles both in the radial direction and in the longitudinal direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記問題点を解決するための本発明の構成は、気相反応
により合威したSi Osガラス粒子体を加熱炉内で、
脱水のための第1の熱処理およびフッ素添加のための第
2の熱処理を行い、その後透明ガラス化して光ファイバ
用ガラス母材を製造する方法において、上記第2の熱処
理においてSi Osガラス粒子体をフッ素系ガスを含
んだ雰囲気中で1150℃以上1300℃以下の温度で
少なくとも20分間以上加熱することを特徴とする。
In order to solve the above problems, the present invention has a structure in which SiOs glass particles combined by a gas phase reaction are heated in a heating furnace.
In a method for producing a glass base material for an optical fiber by performing a first heat treatment for dehydration and a second heat treatment for adding fluorine, and then converting it into transparent vitrification, SiOs glass particles are treated in the second heat treatment. It is characterized by heating at a temperature of 1150° C. to 1300° C. for at least 20 minutes in an atmosphere containing a fluorine-based gas.

加熱方式は、st O倉ガラス粒子体全体が同時に11
50℃〜1300℃の温度領域にさらされる、いわゆる
均熱炉の場合(第1図に構成を示す)には、Si O*
ガラス粒子体を20分間以上フッ素雰囲気下の上記温度
領域に曝すことが好ましい。
The heating method is to heat the entire st O glass particle body at the same time.
In the case of a so-called soaking furnace (the configuration of which is shown in Figure 1) that is exposed to a temperature range of 50°C to 1300°C, SiO*
It is preferable to expose the glass particles to the above temperature range in a fluorine atmosphere for 20 minutes or more.

また、加熱領域の狭い、いわゆるゾーン炉(第2図に構
成を示す)の場合には、上記温度領域に保たれるヒート
ゾーンを20分以上かけて移動するように熱処理するこ
とが特に好ましい。
Further, in the case of a so-called zone furnace (the configuration of which is shown in FIG. 2) having a narrow heating area, it is particularly preferable to carry out the heat treatment so that the heat zone, which is maintained in the above-mentioned temperature range, is moved over a period of 20 minutes or more.

〔作用〕[Effect]

本発明者らが、フッ素添加条件あるいはSi O*ガラ
ス粒子体の性状について詳細な検討を行った結果、フッ
素添加量が雰囲気中のフッ素濃度や加熱温度だけではな
く、ある特定の温度領域における弊処理時間に依存して
いるということが判明した。
As a result of a detailed study by the present inventors on the fluorine addition conditions and the properties of SiO* glass particles, we found that the amount of fluorine added depends not only on the fluorine concentration in the atmosphere and the heating temperature, but also on adverse effects in a certain temperature range. It turns out that it depends on the processing time.

すなわち、Si O霊ガラス粒子体の中心部にフッ素が
添加されにくいのは、Si O*ガラス粒子体中心部の
温度が上がりにくいことにあり、さらにこの原因として
、フッ素原料ガス及びSi Oxガラス粒子体の熱伝導
度が小さく温度が上がりにくいためであることを見出し
た。
In other words, the reason why it is difficult to add fluorine to the center of the SiO* glass particles is that the temperature at the center of the SiO* glass particles is difficult to rise. They discovered that this is because the body's thermal conductivity is low, making it difficult for the body to rise in temperature.

Si O*ガラス粒子体は0. 1〜0.5μの微細な
ガラス粒子が集合して形成されているものであり、空孔
がかなりの割合で存在している。例えば、カサ密度(空
孔も含めた体積に対する密度を表す;g/cd )が0
. 3 tealの場合には、ガラス粒子と空孔の占め
る体積比は、およそ1 : 6. 4となっている。
SiO*glass particle body is 0. It is formed by aggregation of fine glass particles of 1 to 0.5 microns, and contains a considerable proportion of pores. For example, the bulk density (expressing the density relative to the volume including holes; g/cd) is 0.
.. In the case of 3 teal, the volume ratio occupied by glass particles and pores is approximately 1:6. It is 4.

このため、ガラス粒子体の熱伝導率は雰囲気ガスのそれ
に依存しており、透明ガラス体に比べて、約1ケタ小さ
な熱伝導率となっている。
Therefore, the thermal conductivity of the glass particle body depends on that of the atmospheric gas, and is about one order of magnitude smaller than that of the transparent glass body.

このため、ガラス粒子体内は加熱されにくく、中心部の
フッ素添加が進行しにくいために屈折率分布がついてし
まうものと考えられる。
For this reason, it is thought that the inside of the glass particle is difficult to heat, and fluorine addition in the center is difficult to progress, resulting in a refractive index distribution.

一方、母村長手方向の屈折率分布の変動は、フッ素添加
の熱処理において、長手方向に温度分布がつき、充分温
度が上がらない部分があるために発生することがわかっ
た。すなわち、フッ素をSi O!ガラス粒子体に均一
に入れるためには、母材全体の加熱条件を均質にする必
要があり、この条件は、SiO*ガラス粒子体そのもの
が実質的に加熱される温度が1150℃以上1300℃
以下で、しかもこの温度に加熱される時間が20分以上
であることで満足できることが判明した。
On the other hand, it was found that fluctuations in the refractive index distribution in the longitudinal direction of the village were caused by the temperature distribution in the longitudinal direction during the heat treatment for fluorine addition, and that there were parts where the temperature did not rise sufficiently. That is, fluorine is converted into SiO! In order to uniformly fill the glass particles, it is necessary to make the heating conditions of the entire base material uniform, and this condition requires that the temperature at which the SiO* glass particles themselves are substantially heated is 1150°C or higher and 1300°C.
It has been found that it is satisfactory if the heating time is 20 minutes or more.

1150℃より低い温度ではフッ素添加反応が十分進行
せず、1 300℃より高い温度では、ガラスの粘性が
下がり、透明ガラス化が開始するため、逆にフッ素添加
が阻害されることになる。
At temperatures lower than 1,150°C, the fluorine addition reaction does not proceed sufficiently, and at temperatures higher than 1,300°C, the viscosity of the glass decreases and transparent vitrification begins, which on the contrary inhibits fluorine addition.

また一方、処理時間は反応に必要な時間であり、長くな
ってもフッ素が添加されすぎるという問題は発生しなか
った。
On the other hand, the treatment time is the time necessary for the reaction, and even if it was longer, the problem of excessive addition of fluorine did not occur.

次に実施例に基づき本発明の構成を説明する。Next, the configuration of the present invention will be explained based on examples.

第1図は加熱ゾーンの長い、いわゆる均熱炉を示してい
る。第1図においてlはヒータ、2は熱処理用炉芯管、
3はSiftガラス粒子体を表す。この均熱炉で設定温
度1250℃に保った場合の温度分布を第2図に示す。
FIG. 1 shows a so-called soaking furnace with a long heating zone. In Fig. 1, l is a heater, 2 is a heat treatment furnace core tube,
3 represents a Sift glass particle body. Figure 2 shows the temperature distribution when the set temperature was maintained at 1250°C in this soaking furnace.

この場合に設定温度のl250℃となっているのは炉の
長平方向全長800mのうち中心部分約400mのみで
あり、1150℃以上となるヒートゾーンは約700o
nである。このことから、単に炉の設定温度を1150
℃とか1200℃にしてみても、この設定温度でsi 
Osガラス粒子体の全長が設定温度で加熱されているわ
けではないことが理解できる。従って、加熱炉内でSi
 O*ガラス体の全長が同時に1150℃〜1300℃
の温度領域内に20分間以上保持できるように加熱する
ことより、母材全域にわたるフッ素の均一添加が可能と
なる。
In this case, the set temperature of 1250°C is only in the central part of the 800m total length of the furnace, and the heat zone where the temperature is 1150°C or higher is about 700°C.
It is n. From this, simply set the furnace temperature to 1150.
Even if you try setting it to ℃ or 1200℃, the si
It can be seen that the entire length of the Os glass particles is not heated at the set temperature. Therefore, Si
O*The total length of the glass body is 1150℃~1300℃ at the same time
By heating the base material so that it can be maintained within the temperature range for 20 minutes or more, it becomes possible to uniformly add fluorine over the entire base material.

一方、第3図は加熱ゾーンの短い、いわゆるゾーン炉を
示している。図中、1〜3の意味するところは第1図の
場合と同様である。この場合の温度分布を第4図に示す
。このゾーン炉の場合、1150℃以上となる領域は2
00mとなるため、母材を20分以上この領域内に保た
めには、10騙/分以下のトラバース速度で移動しつつ
熱処理を行えばよいことになる。
On the other hand, FIG. 3 shows a so-called zone furnace with a short heating zone. In the figure, the meanings of 1 to 3 are the same as in the case of FIG. The temperature distribution in this case is shown in FIG. In the case of this zone furnace, the area where the temperature is 1150℃ or higher is 2
00 m, so in order to keep the base material within this region for 20 minutes or more, it is sufficient to perform the heat treatment while moving at a traverse speed of 10 m/min or less.

以上説明した本発明の熱処理により、フッ素の均一に添
加された母材を得ることができる。
By the heat treatment of the present invention explained above, a base material to which fluorine is uniformly added can be obtained.

〔実施例〕〔Example〕

比較例l vAD法により合成した、外径140−φ、長さ700
mのSi Osガラス粒子体を第1図の均熱炉にて熱処
理した。このときの温度分布とSinsガラス粒子体の
位置を第6図に示す。設定温度1200℃に対して、1
150℃以上に加熱されるSinsガラス粒子体の長さ
は約500■lであった。熱処理条件を表1に示す。
Comparative Example 1 Synthesized by vAD method, outer diameter 140-φ, length 700
The SiOs glass particle body of m was heat-treated in the soaking furnace shown in FIG. The temperature distribution and the position of the Sins glass particles at this time are shown in FIG. 1 for set temperature 1200℃
The length of the Sins glass particles heated above 150° C. was about 500 μl. The heat treatment conditions are shown in Table 1.

透明化した後、ガラス中の屈折率分布を長手方向に測定
したところ、第7図のように処理温度の低かった両端部
で、フッ素の添加量の少ない部分が生じていることがわ
かった。
After the glass was made transparent, the refractive index distribution in the glass was measured in the longitudinal direction, and as shown in FIG. 7, it was found that there were areas with a small amount of fluorine added at both ends where the processing temperature was low.

実施例l 比較例と同様の長さ700wj!のSi Osガラス粒
子体を用い、同一の均熱炉にて、第2熱処理の炉温設定
温度を1250℃に上げて、炉内の1150℃以上に加
熱できる領域の長さを約700m+として熱処理を行っ
た。この他の条件は表1と同一とした。
Example 1 Same length as the comparative example, 700 wj! In the same soaking furnace, heat treatment was performed using the same soaking furnace, raising the furnace temperature setting for the second heat treatment to 1250 °C, and setting the length of the area in the furnace that can be heated to 1150 °C or higher to be approximately 700 m+. I did it. Other conditions were the same as in Table 1.

この結果、屈折率の変化は長手方向になく、均質なフッ
素添加ガラスが得られていた。また、半径方向の屈折率
プロファイルは第8図に示すように、比較的均一なもの
であった。
As a result, there was no change in refractive index in the longitudinal direction, and a homogeneous fluorine-doped glass was obtained. Furthermore, the refractive index profile in the radial direction was relatively uniform, as shown in FIG.

比較例2〜4 実施例lにおいて、第2熱処理の時間を短く、15分間
、10分間としてみた(比較例2および3)。得られた
母材の屈折率分布を第9図、第lO図に示す。両図から
判るように、20分よりも短時間になると中心部と外周
の屈折率差は大きくなり、均質なフッ素添加ガラスが得
られない。
Comparative Examples 2 to 4 In Example 1, the second heat treatment time was shortened to 15 minutes and 10 minutes (Comparative Examples 2 and 3). The refractive index distribution of the obtained base material is shown in FIG. 9 and FIG. As can be seen from both figures, when the heating time is shorter than 20 minutes, the difference in refractive index between the center and the outer periphery increases, making it impossible to obtain homogeneous fluorine-doped glass.

また、実施例1において、第2熱処理温度を1350℃
に設定し、炉内の中心部分はl350℃、両端部分が1
300℃となるようにしたところ、第11図に示すよう
な不均一な屈折率分布が得られた(比較例4)。
In addition, in Example 1, the second heat treatment temperature was 1350°C.
The temperature in the center of the furnace is 1350℃, and the temperature at both ends is 1350℃.
When the temperature was adjusted to 300° C., a nonuniform refractive index distribution as shown in FIG. 11 was obtained (Comparative Example 4).

実施例2 VAD法により合威した、外径140mφ、長さ700
mのSiftガラス粒子体を第3図のゾーン炉にて熱処
理をして、フッ素添加ガラスを製造した。炉温の設定は
1250℃とし、このときの炉内温度分布は第4図の如
くであった。II50℃以上の200閣の領域をlO■
/分でトラバースして、フッ素添加のための熱処理を行
った。このときの条件を表2に示す。トラバースはsi
 Osガラス粒子体全体がヒータ内を均一に通過するよ
うに行った。この結果、第8図と同様の良好な屈折率分
布が得られた。また、長手方向にも均一であった。
Example 2 Approved by VAD method, outer diameter 140mφ, length 700
A fluorine-containing glass was produced by heat-treating the Sift glass particles of 50 m in size in the zone furnace shown in FIG. The furnace temperature was set at 1250° C., and the temperature distribution inside the furnace at this time was as shown in FIG. II 200 areas with temperatures over 50℃
A heat treatment for fluorine addition was performed by traversing at a speed of 1/min. Table 2 shows the conditions at this time. Traverse is si
This was done so that the entire Os glass particles uniformly passed through the heater. As a result, a good refractive index distribution similar to that shown in FIG. 8 was obtained. It was also uniform in the longitudinal direction.

比較例5 比較のために、実施例2において第2熱処理のトラバー
ス速度を15■/分として、1150’C以上に加熱さ
れる時間を20分未満とし、その他の条件は実施例2と
同様にしててフッ素添加を行い、屈折率分布を評価した
ところ、第12図のような半径方向に不均一な屈折率分
布となった。
Comparative Example 5 For comparison, the traverse speed of the second heat treatment in Example 2 was 15 cm/min, the time to be heated to 1150'C or higher was less than 20 minutes, and the other conditions were the same as in Example 2. When fluorine was added and the refractive index distribution was evaluated, the refractive index distribution was non-uniform in the radial direction as shown in FIG.

以上の実施例及び比較例の結果から、Si O*ガラス
粒子体の全長をフッ素雰囲気中で実質的に1150〜1
300℃の温度で20分間以上に加熱できるように、炉
の構造と炉中での加熱条件を設定することが均一なフッ
素添加を可能とすることが理解できる。
From the results of the above examples and comparative examples, it is clear that the total length of the SiO* glass particles is substantially 1150 to 1 in a fluorine atmosphere.
It can be understood that uniform fluorine addition is possible by setting the furnace structure and heating conditions in the furnace so that heating can be performed at a temperature of 300° C. for 20 minutes or more.

本発明はガラス出発ロッドの外周に気相法により81 
0gガラス粒子体を付着堆積させた複合体についても同
様の効果を期待することができる。
In the present invention, the outer periphery of the glass starting rod is coated with 81
A similar effect can be expected for a composite in which 0 g of glass particles are adhered and deposited.

また、フッ素系ガスは本発明ではSi F.を使用した
例を挙げて説明したが、CF4、SF4などでも本発明
の効果は変わらない。
In the present invention, the fluorine-based gas is SiF. Although the explanation has been given with reference to an example using CF4, SF4, etc., the effects of the present invention are the same.

また、Si O*ガラス粒子体としては、通常添加剤を
ドープされないものを用いる場合が多いが、Ge O*
、hos、B * Osなどがドープされていても、特
に効果は変わるところはない。
In addition, SiO* glass particles that are not doped with additives are often used, but GeO*
, hos, B*Os, etc., there is no particular change in the effect.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、Si Oxガラス粒子体を115
0℃以上、1300℃以下の温度に20分間以上に保持
するように熱処理条件を設定することにより、フッ素添
加反応が均一に進み、屈折率の均一なフッ素添加ガラス
を得ることができる。
As explained above, SiOx glass particles are 115
By setting the heat treatment conditions such that the temperature is maintained at a temperature of 0° C. or more and 1300° C. or less for 20 minutes or more, the fluorine addition reaction proceeds uniformly, and a fluorine-doped glass with a uniform refractive index can be obtained.

フッ素添加量の均一なガラス体は純石英コア光ファイバ
の中間製品として好適に用いられ、特性の安定した光フ
ァイバを得ることができる。
A glass body with a uniform amount of fluorine added is suitably used as an intermediate product for pure silica core optical fiber, and it is possible to obtain an optical fiber with stable characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る均熱炉の構成を示す概略図、第2
図は均熱炉の温度分布図、第3図は本発明に係るゾーン
炉の構戒を示す概略図、第4図はゾーン炉内の温度分布
図、第5図は半径方向に不均一にフッ素添加された場合
の屈折率分布図、第6図は比較例に用いた炉内温度分布
とst Osガラス粒子体の位置を表す図、第7図は比
較例の場合の長手方向温度分布図、第8図は実施例工に
よる半径方向屈折率分布図、第9図は実施例1の比較と
して保持時間を15分間とした場合(比較例2)の屈折
率分布図、第lO図は実施例lの比較として保持時間を
lO分間とした場合(比較例3)の屈折率分布図、第1
1図は実施例lの比較として設定温度を1350℃とし
た場合(比較例4)の屈折率分布図、第12図は実施例
2の比較としてトラバース速度を15閣/分とした場合
(比較例5)の屈折率分布図である。 図中、1はヒータ、2は熱処理用炉芯管、3はSI0m
ガラス粒子体を示す。
FIG. 1 is a schematic diagram showing the configuration of a soaking furnace according to the present invention, and FIG.
The figure is a temperature distribution diagram of the soaking furnace, Figure 3 is a schematic diagram showing the structure of the zone furnace according to the present invention, Figure 4 is a temperature distribution diagram inside the zone furnace, and Figure 5 is a diagram showing the temperature distribution in the radial direction. A refractive index distribution diagram when fluorine is added. Figure 6 is a diagram showing the temperature distribution in the furnace and the position of the st Os glass particles used in a comparative example. Figure 7 is a longitudinal temperature distribution diagram in the comparative example. , FIG. 8 is a radial refractive index distribution diagram based on the working example, FIG. 9 is a refractive index distribution diagram when the holding time is 15 minutes as a comparison with Example 1 (comparative example 2), and FIG. As a comparison with Example 1, the refractive index distribution diagram when the holding time is 10 minutes (Comparative Example 3), 1st
Figure 1 is a refractive index distribution diagram when the set temperature is 1350°C (Comparative Example 4) as a comparison with Example 1, and Figure 12 is a refractive index distribution diagram when the traverse speed is 15 km/min (Comparative Example 4) as a comparison with Example 2. It is a refractive index distribution map of Example 5). In the figure, 1 is the heater, 2 is the furnace core tube for heat treatment, and 3 is SI0m
A glass particle body is shown.

Claims (3)

【特許請求の範囲】[Claims] (1)気相反応により合成したSiO_2ガラス粒子体
を加熱炉内で、脱水のための第1の熱処理およびフッ素
添加のための第2の熱処理を行い、その後透明ガラス化
して光ファイバ用ガラス母材を製造する方法において、
上記第2の熱処理においてSiO_2ガラス粒子体をフ
ッ素系ガスを含んだ雰囲気中で1150℃以上1300
℃以下の温度で少なくとも20分間以上加熱することを
特徴とする光ファイバ用ガラス母材の製造方法。
(1) SiO_2 glass particles synthesized by gas phase reaction are subjected to a first heat treatment for dehydration and a second heat treatment for fluorine addition in a heating furnace, and then made into transparent glass to form a glass matrix for optical fibers. In a method of manufacturing a material,
In the second heat treatment, the SiO_2 glass particles are heated at 1150°C or higher and 1300°C in an atmosphere containing fluorine gas.
1. A method for producing a glass preform for optical fibers, which comprises heating at a temperature of .degree. C. or lower for at least 20 minutes.
(2)上記第2の熱処理において、1150℃以上13
00℃以下の温度領域にSiO_2ガラス粒子体全体を
同時に保管しうる構造の加熱炉を使用することを特徴と
する請求項(1)に記載の光ファイバ用ガラス母材の製
造方法。
(2) In the second heat treatment, 1150°C or higher 13
2. The method for producing a glass preform for optical fiber according to claim 1, characterized in that a heating furnace having a structure capable of simultaneously storing the entire SiO_2 glass particle body in a temperature range of 00° C. or lower is used.
(3)上記第2の熱処理において、SiO_2ガラス粒
子体の各部分が加熱炉内の1150℃以上 1300℃以下の温度領域に20分以上さらされるよう
に移動しつつ熱処理を行なうことを特徴とする請求項(
1)に記載の光ファイバ用ガラス母材の製造方法。
(3) In the second heat treatment, the heat treatment is performed while moving so that each part of the SiO_2 glass particles is exposed to a temperature range of 1150°C to 1300°C in the heating furnace for 20 minutes or more. Claims (
1) The method for producing a glass preform for optical fiber according to item 1).
JP23034989A 1989-09-07 1989-09-07 Production of glass preform for optical fiber Pending JPH0393641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23034989A JPH0393641A (en) 1989-09-07 1989-09-07 Production of glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23034989A JPH0393641A (en) 1989-09-07 1989-09-07 Production of glass preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH0393641A true JPH0393641A (en) 1991-04-18

Family

ID=16906462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23034989A Pending JPH0393641A (en) 1989-09-07 1989-09-07 Production of glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH0393641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656057A (en) * 1995-05-19 1997-08-12 Corning Incorporated Method for drying and sintering an optical fiber preform
US6438999B1 (en) * 1997-07-15 2002-08-27 Corning Incorporated Decreased H2 sensitivity in optical fiber
JP2005144177A (en) * 2003-11-12 2005-06-09 Automation Conveyors Ltd Footwear

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656057A (en) * 1995-05-19 1997-08-12 Corning Incorporated Method for drying and sintering an optical fiber preform
US6438999B1 (en) * 1997-07-15 2002-08-27 Corning Incorporated Decreased H2 sensitivity in optical fiber
US6687444B2 (en) 1997-07-15 2004-02-03 Corning Incorporated Decreased H2 sensitivity in optical fiber
JP2005144177A (en) * 2003-11-12 2005-06-09 Automation Conveyors Ltd Footwear

Similar Documents

Publication Publication Date Title
JP2959877B2 (en) Optical fiber manufacturing method
JPH11513141A (en) Optical waveguide fiber containing titania and germania
JPS5844619B2 (en) Manufacturing method of optical fiber base material
KR890003707B1 (en) A preparation method of low-damage optical-fiber
JPH0393641A (en) Production of glass preform for optical fiber
JP2813752B2 (en) Manufacturing method of optical waveguide preform
JPH0225847B2 (en)
JPH0281004A (en) Optical fiber and its production
JPH01286932A (en) Production of optical fiber preform
JPH03242340A (en) Preparation of glass preform for optical fiber
JP2002047013A (en) Method of manufacturing glass article
JP3439258B2 (en) Method for producing glass preform for optical fiber
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPH0559052B2 (en)
JPH04243931A (en) Production of optical fiber preform
JP4403623B2 (en) Optical fiber preform manufacturing method
JPS6238291B2 (en)
JP2000159531A (en) Production of optical fiber preform
JPS632900B2 (en)
JPS62292647A (en) Production of decentralized-shift single-mode optical fiber
JPS6256093B2 (en)
JP2004307281A (en) Method of manufacturing fluorine added quartz glass article
JPH0369526A (en) Production of glass base material for optical fiber
JPH01242432A (en) Production of base material for optical fiber
JPS6054936A (en) Manufacture of preform rod