JPH03183632A - Production of glass preform for optical fiber - Google Patents

Production of glass preform for optical fiber

Info

Publication number
JPH03183632A
JPH03183632A JP32262489A JP32262489A JPH03183632A JP H03183632 A JPH03183632 A JP H03183632A JP 32262489 A JP32262489 A JP 32262489A JP 32262489 A JP32262489 A JP 32262489A JP H03183632 A JPH03183632 A JP H03183632A
Authority
JP
Japan
Prior art keywords
fluorine
atmosphere
glass
particle body
glass particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32262489A
Other languages
Japanese (ja)
Inventor
Shinji Ishikawa
真二 石川
Hiroo Kanamori
弘雄 金森
Toshio Danzuka
彈塚 俊雄
Yuichi Oga
裕一 大賀
Ichiro Tsuchiya
一郎 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32262489A priority Critical patent/JPH03183632A/en
Publication of JPH03183632A publication Critical patent/JPH03183632A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To minimize the contamination from a furnace core tube and to obtain the glass preform for optical fibers added uniformly with fluorine by heat treating an SiO2 glass particle body in specific two stages in a gaseous fluorine- contg. atmosphere, then vitrifying the body to transparent glass in an inert gaseous atmosphere. CONSTITUTION:The SiO2 glass particle body synthesized by a flame hydrolysis method is put into the furnace core tube and is dehydrated by a heating treatment in the gaseous chlorine system. The body is then subjected to the heating treatment in the atmosphere contg. the fluorine-based gas (e.g.; SiF4) to add fluorine to the SiO2 glass particle body. The furnace temp. is then set at the temp. from the same temp. as the fluorine addition temp. up to 1400 deg.C and the SiO2 glass particle body is subjected to the 2nd heating treatment in the fluorine-based gas-contg. atmosphere to shrink the SiO2 glass particle body to the extent of preventing the evaporation of fluorine in the outer peripheral part of the SiO2 glass particle body. The particle body is then vitrified to the transparent glass in the inert gaseous atmosphere, by which the glass preform for the optical fibers added with fluorine is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ファイバ用ガラス母材、特に、コアが純石
英(SjOt)、クラッドが弗素添加石英(F  5h
ot)の光ファイバ用ガラス母材の製造方法に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a glass base material for optical fibers, in particular, a core made of pure quartz (SjOt) and a cladding made of fluorinated quartz (F5h).
The present invention relates to a method for manufacturing a glass preform for optical fibers.

〔従来の技術〕[Conventional technology]

コアが純石英(Sj Ot )ガラスからなり、クラッ
ドが屈折率を下げるためにFをドープした弗素添加石英
ガラスからなる、いわゆる純石英コア光ファイバは、伝
送損失が低く、長距離通信用線路として注目されている
So-called pure silica core optical fiber, in which the core is made of pure silica (Sj Ot) glass and the cladding is made of fluorine-doped silica glass doped with F to lower the refractive index, has low transmission loss and is suitable for long-distance communication lines. Attention has been paid.

この純石英コア光ファイバに使用されるクラツド材の弗
素添加石英ガラスは、焼結炉内で弗素添加を行なうのが
普通である。
The fluorine-doped silica glass used as the cladding material for this pure silica core optical fiber is normally doped with fluorine in a sintering furnace.

その方法を2.3挙げると、特開昭60−90842号
公報に記載された方法は、石英ガラス粒子集合体を脱水
し、不純物除去のためにα化合物含有雰囲気中にて第1
熱処理を行い、次に、弗素ないし弗素化合物を含むガス
雰囲気中で第2熱処理を行い、最後に、透明ガラス化の
ための第3の熱処理を行なう方法であり、特開昭62−
275035号公報に記載された方法は、石英ガラス粒
子積層体が多孔質の状態にある温度で弗素を含浸させ、
その後、弗素化合物ガスを含む雰囲気の高温炉の中で透
明化する方法である。また、このとき使用する弗素化合
物としては、気密を保つため使用される石英、SIC等
との反応を起こさない5iF4を用いるのが望ましい。
To list 2.3 of the methods, the method described in JP-A No. 60-90842 dehydrates a silica glass particle aggregate and firstly evaporates it in an α compound-containing atmosphere to remove impurities.
This is a method in which a heat treatment is performed, then a second heat treatment is performed in a gas atmosphere containing fluorine or a fluorine compound, and finally a third heat treatment is performed for transparent vitrification.
The method described in Japanese Patent No. 275035 involves impregnating fluorine at a temperature at which the silica glass particle laminate is in a porous state;
Thereafter, the material is made transparent in a high-temperature furnace in an atmosphere containing fluorine compound gas. Further, as the fluorine compound used at this time, it is desirable to use 5iF4, which does not cause a reaction with quartz, SIC, etc. used to maintain airtightness.

5FI−CF4、CCetFwは1000℃以上で分解
し、F、ガスを生成し、5iOt、SiC等をエツチン
グする。
5FI-CF4 and CCetFw decompose at 1000° C. or higher, generate F and gas, and etch 5iOt, SiC, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、sl F4と5iftを1400℃以上
又は5IFlとSjCを1380℃以上で共存させると
、微量ながらSing、 stcの消耗が観測されるこ
とが確認された。このことは、高温下、特に1400°
C以上でsi F4共存下で母材の処理を行なう場合、
気密を保つ炉心管の材質であるSingないしはSiC
をコーティングしたカーボン等がエツチングされ、炉心
管内に含有される不純物が母材中に混入することを意味
する。
However, it was confirmed that when slF4 and 5ift coexisted at 1400°C or higher or 5IFl and SjC coexisted at 1380°C or higher, consumption of Sing and stc was observed, albeit in a small amount. This means that under high temperatures, especially 1400°
When processing the base material in the coexistence of SiF4 at a temperature of C or higher,
Sing or SiC is the material of the reactor core tube that maintains airtightness.
This means that the carbon, etc. coated with this material is etched, and impurities contained in the reactor core tube are mixed into the base material.

それでは、透明化時に弗素化合物を使用しなければよい
のであるが、通常行われる1150℃〜1300℃の弗
素添加処理では、スートの収縮が充分(カサ密度1.7
 g/enr以上)まで進まないため、透明化時に弗素
化合物を流さないと、母材外周部の弗素が揮散し、屈折
率が不良となる。また、弗素添加処理時に力→ノ密度1
.7 g/a/以上程度に充分収縮させれば、弗素揮散
は防げるが、母材の処理時間が長くなり、生産性に問題
が生じる。
Then, it would be better not to use a fluorine compound at the time of transparency, but in the commonly performed fluorine addition treatment at 1150°C to 1300°C, the soot shrinks sufficiently (bulk density 1.7
If the fluorine compound is not flowed during transparentization, the fluorine at the outer periphery of the base material will volatilize, resulting in a poor refractive index. Also, during fluorine addition treatment, force → density 1
.. If the material is sufficiently shrunk to about 7 g/a/ or more, fluorine volatilization can be prevented, but the processing time for the base material becomes longer, causing problems in productivity.

本発明は上記した問題点を解決するためになされたもの
で、熱処理工程を改善することにより、弗素を均一に添
加した光ファイバ用ガラス母材を得ることを目的とする
ものである。
The present invention has been made in order to solve the above-mentioned problems, and its object is to obtain a glass base material for optical fibers uniformly doped with fluorine by improving the heat treatment process.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は火炎加水分解法等で合成された5lozガラス
粒子体を弗素系ガス含有雰囲気下で加熱処理を行なう弗
素添加工程を有する光ファイバ用ガラス母材の製造方法
において、θ;I記加熱加熱処理った後、炉温を弗素添
加温度と同一から1400°Cまでの温度に設定し、弗
素系ガス含有雰囲気下で第2の加熱処理を行い、その後
不活性ガス雰囲気中で透明ガラス化を行なうことを特徴
とする光ファイバ用ガラス母材の製造方法である。
The present invention provides a method for producing a glass preform for optical fibers, which includes a fluorine addition step in which 5 loz glass particles synthesized by flame hydrolysis or the like are heat-treated in an atmosphere containing a fluorine-based gas. After the treatment, the furnace temperature was set from the same as the fluorine addition temperature to 1400°C, a second heat treatment was performed in an atmosphere containing fluorine gas, and then transparent vitrification was performed in an inert gas atmosphere. This is a method of manufacturing a glass preform for optical fiber, characterized by carrying out the following steps.

第1の熱処理(弗素添加処理)における炉内温度は好ま
しくは1150°C以上〜1300°Cまでであって、
第2の熱処理における炉内温度は好ましくは1300℃
以上1400℃以下である。
The furnace temperature in the first heat treatment (fluorine addition treatment) is preferably from 1150°C to 1300°C,
The furnace temperature in the second heat treatment is preferably 1300°C
The temperature is above 1400°C.

本発明における5intガラス粒子体は、ガラス原料例
えばsi CI!sを加熱下02雰囲気中で5iCf+
+0t−4SIO*+ 2 Getのように反応させる
方法、 又は、St Clhを加熱水蒸気中で 5iCJ’i+ 4 HtO4SiOt+ 4 HCI
’のように反応させる方法により合成することができる
The 5-int glass particles in the present invention are glass raw materials such as si CI! 5iCf+ in 02 atmosphere under heating
+0t-4SIO*+ 2 A method of reacting like Get, or 5iCJ'i+ 4 HtO4SiOt+ 4 HCI in heated steam
It can be synthesized by a reaction method as shown in '.

本発明の第2の熱処理の後の透明化の不活性ガスとして
は、望ましくは1kを用いる。
As the inert gas for transparency after the second heat treatment of the present invention, 1K is desirably used.

〔作用〕[Effect]

本発明者らは、先ず810!とSIC,5IFtとの反
応について、熱力学的な検討を行った。その結果、Si
 Flは5iftと下記式(1)の反応を起こし得るこ
とがi認された。
The present inventors first 810! A thermodynamic study was conducted on the reaction between SIC and 5IFt. As a result, Si
It was recognized that Fl can cause the reaction of the following formula (1) with 5ift.

st F4 + 310s  → 2 sl OF*↑
 ・・・+11また、SICとst F4の反応の場合
は下記(2)式%式%(2) の反応により、SiCのエツチングが起こる。
st F4 + 310s → 2 sl OF*↑
...+11 Furthermore, in the case of the reaction between SIC and st F4, etching of SiC occurs due to the reaction of formula (2) below.

以上のことから、1400℃以上でSt Ofないしは
SiCのSt Flによるエツチングが進むことがわが
る。
From the above, it can be seen that etching of St Of or SiC by St Fl progresses at temperatures above 1400°C.

炉心管がエツチングされると、炉心管に内在する不純物
の雰囲気ガス中への飛散が起こり、不純物が原因となる
伝送損失の増加を引き起こす。従って、1450℃以上
の透明化条件においては、Si Flを使用しない方が
望ましい。
When the core tube is etched, impurities present in the core tube are scattered into the atmospheric gas, causing an increase in transmission loss caused by the impurities. Therefore, it is preferable not to use Si Fl under transparent conditions of 1450° C. or higher.

しかしながら、従来の弗素添加工程(1150℃〜13
00℃)の後、Si Flのない雰囲気下でスートの透
明化を行なうと、スート外周部の弗素が揮散し、第2図
に示すような屈折率分布となる。
However, the conventional fluorine addition process (1150℃~13℃
When the soot is made transparent in an atmosphere without Si Fl, the fluorine at the outer periphery of the soot is volatilized, resulting in a refractive index distribution as shown in FIG.

弗素添加温度を」二げた場合、外周部の揮散はなくなる
が、スートの弗素添加に伴う収縮のため、中心部への弗
素添加が充分になされず、第3図に示すプロファイルと
なる。
When the fluorine addition temperature is lowered, volatilization at the outer periphery disappears, but due to shrinkage of the soot due to fluorine addition, sufficient fluorine is not added to the center, resulting in the profile shown in FIG. 3.

本発明においては、第1の熱処理(温度1150℃〜1
300℃)にて、弗素をガラス粒子体全域に添加した後
、第2の熱処理を1400℃以下の温度で行なうことで
、外周部の弗素の揮散を防ぎ得るだけのスートの収縮を
行い、さらに不活性ガス中、1450℃以上の温度で透
明化を行なうことで、高温下におけるSi F4による
炉心管エツチングを防止し、母材への均質な弗素添加を
実現し、且つ高純度なガラス体を得ることができる。
In the present invention, the first heat treatment (temperature 1150°C to 1
After adding fluorine to the entire glass particle body at a temperature of 300°C, a second heat treatment is performed at a temperature of 1400°C or lower to shrink the soot enough to prevent volatilization of the fluorine in the outer periphery. By performing transparency at a temperature of 1,450°C or higher in an inert gas, it is possible to prevent core tube etching caused by SiF4 at high temperatures, achieve homogeneous fluorine addition to the base material, and produce a high-purity glass body. Obtainable.

火炎加水分解法等で作成されたSIO!スート中には通
常約1000〜2000ppmのIIs Oが含有され
ている。11.OとSt F4との反応により生成する
1−I Fにより石英物品がエツチングされること、ま
た更にlit Oが1000℃以上で分解し、O3を生
成するため、弗素添加に先立ちスート中の水分はα系ガ
ス、例えばCL、 Sii’4、Cα4等により除去す
ることが望ましい。脱水条件は、850℃以上1100
°C以下の温度範囲にてα濃度0,5〜8%<ce*−
cは0.25〜4%、5IC11,Cα4では0、12
5〜2%)の範囲で行なうことが好ましい。
SIO created using flame hydrolysis method etc. The soot usually contains about 1000-2000 ppm IIsO. 11. Since the quartz article is etched by 1-IF produced by the reaction between O and StF4, and because litO decomposes at temperatures above 1000°C to produce O3, the moisture in the soot is It is desirable to remove it using an α-based gas such as CL, Sii'4, Cα4, etc. Dehydration conditions are 850℃ or higher and 1100℃
α concentration 0.5-8%<ce*- in the temperature range below °C
c is 0.25-4%, 5IC11, Cα4 is 0, 12
It is preferable to carry out in the range of 5-2%).

〔実施例〕〔Example〕

実施例1 VAD法により合成した、外径120mm、長さ500
 mmのStowガラス粒子体を、5lot炉心管を有
するリング状の抵抗加熱ヒーターによる加熱炉内で温度
1050℃、)Ie15J!/分、C4’、300cc
/分の雰囲気下でトラバース速度10an/分で脱水処
理を行った。脱水終了後、1220℃、賜151!/分
、SiF* 600 cc/分にガスを切替え、10+
+ua/分で弗素添加処理を行った。次いで、炉温を1
375℃まで昇温し、同一のガス量にて12an/分の
トラバース速度で収縮処理を行った。
Example 1 Synthesized by VAD method, outer diameter 120 mm, length 500 mm
mm Stow glass particles were heated at 1050°C in a heating furnace using a ring-shaped resistance heating heater with a 5-lot furnace tube.)Ie15J! /min, C4', 300cc
Dehydration treatment was carried out at a traverse speed of 10 an/min in an atmosphere of 10 an/min. After dehydration, 1220℃, 151℃! /min, SiF* Switch gas to 600 cc/min, 10+
Fluorine addition treatment was performed at +ua/min. Next, increase the furnace temperature to 1
The temperature was raised to 375° C., and shrinkage treatment was performed at a traverse speed of 12 an/min using the same amount of gas.

最後に、ガスをl1elO1/分のみに変え、炉温を1
580℃として12IIIl/分のトラバース速度で透
明ガラス化を行った。このときの処理時間は約6時間で
あった。
Finally, change the gas to l1elO1/min only and reduce the furnace temperature to 1
Transparent vitrification was carried out at 580° C. and a traverse speed of 12 III/min. The processing time at this time was about 6 hours.

以上で得られた母材の屈折率分布は第4図のようになり
、内部と外周の屈折率差は0.01%未満であった。上
記処理と同一の弗素添加ガラス化処理を行った母材10
本について、純5lotコアSMファイバ(Δn=0.
34%、コア径9.6 ts )を製造した。ファイバ
の損失平均値は、波長1.554にて0.1735 d
B/kmであった。
The refractive index distribution of the base material obtained above was as shown in FIG. 4, and the difference in refractive index between the inside and the outer periphery was less than 0.01%. Base material 10 subjected to the same fluorine addition vitrification treatment as the above treatment
Regarding the book, pure 5lot core SM fiber (Δn=0.
34%, core diameter 9.6 ts). The average fiber loss is 0.1735 d at a wavelength of 1.554
It was B/km.

実施例2 実施例1と同様の形状のSIO!ガラス粒子体を、Sa
cをCVD法で80−にコーティングした不純物量5p
pm未満のカーボン製炉心管を有する抵抗加熱ヒーター
による加熱炉内を、温度1050°C1)&151/分
、5iC1’4150cc/分の雰囲気下でトラバース
速度1ON/分で脱水処理した。
Example 2 SIO with the same shape as Example 1! Glass particle body, Sa
The amount of impurities 5p coated with c by CVD method to 80-
The inside of a heating furnace using a resistance heating heater having a carbon core tube of less than pm was subjected to dehydration treatment at a temperature of 1050° C1) & 151/min and a traverse speed of 1 ON/min in an atmosphere of 5iC1'4150 cc/min.

以後の弗素添加処理は実施例1と同様にしてガラス体を
製造した。
The subsequent fluorine addition treatment was carried out in the same manner as in Example 1 to produce a glass body.

得られた母材の屈折率分布は第4図のようになった。ま
た、上記処理と同一の弗素添加ガラス化処理を行った母
材10本について、純5insコアSMファイバ(Δn
=0.34%、コア径9.5 ppm )を製造した。
The refractive index distribution of the obtained base material was as shown in FIG. In addition, pure 5ins core SM fiber (Δn
= 0.34%, core diameter 9.5 ppm).

該ファイバの損失平均値は波長1.55pにて0.17
40 dB/kmであった。
The average loss value of the fiber is 0.17 at a wavelength of 1.55p.
It was 40 dB/km.

比較例1 実施例1と同一の加熱炉、炉心管を用い、Sj Otガ
ラス粒子体を、先ず1050℃、Cf*300cc/分
、Ib15Z/分の雰囲気下、トラバース速度10an
/分で脱水処理した。脱水終了後、1220℃、l1e
15f/分、5iF4600 cc/分にガス、温度条
件を変え、トラバース速度10an/分で弗素添加処理
を行った。次いで、ガスを同一として、炉温を1600
℃とし、8mm/分の速度でヒーターを通過せしめ、透
明ガラス化を行った。
Comparative Example 1 Using the same heating furnace and furnace tube as in Example 1, Sj Ot glass particles were first heated at 1050° C. in an atmosphere of Cf*300cc/min and Ib15Z/min at a traverse speed of 10an.
/min. After dehydration, 1220℃, l1e
The gas and temperature conditions were changed to 15 f/min and 5iF4600 cc/min, and fluorine addition treatment was performed at a traverse speed of 10 an/min. Next, with the same gas, the furnace temperature was set to 1600.
℃ and passed through a heater at a speed of 8 mm/min to achieve transparent vitrification.

以上で得られた母材の屈折率分布は第4図に示すように
なった。該母材をもとに、純SIO!コアSMファイバ
を製造したところ、10本の損失平均値は0.1792
 dB/kmであった。
The refractive index distribution of the base material obtained above was as shown in FIG. Based on the base material, pure SIO! When core SM fiber was manufactured, the average loss value of 10 fibers was 0.1792.
It was dB/km.

比較例2 実施例1と同一の加熱炉、炉心管を用い、SI O!ガ
ラス粒子体を脱水(1050℃、Clt/ 1−1e 
=0.3/15、トラバース速度1ON/分)処理した
後、弗素添加(1220℃、SiF4/lも= 0.6
 /15、トラバース速度5關/分)処理の後、ガス種
を1kに切替え1600℃で透明化した。得られた母材
のプロファイルは第2図に示す如く外周部の弗素揮散が
大であった。
Comparative Example 2 Using the same heating furnace and core tube as in Example 1, SI O! Dehydrate the glass particles (1050°C, Clt/1-1e
= 0.3/15, traverse speed 1 ON/min), then fluorine addition (1220°C, SiF4/l = 0.6
/15, traverse speed 5/min) After the treatment, the gas type was changed to 1K and transparentization was performed at 1600°C. As shown in FIG. 2, the profile of the obtained base material showed that fluorine volatilization was large in the outer periphery.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明ではSl O*ガラス粒予
備に16素を均一に添加することができ、また、炉心管
からの汚染を最小限に抑えることができる。
As explained above, in the present invention, element 16 can be uniformly added to the preliminary Sl 2 O* glass grains, and contamination from the furnace tube can be minimized.

それゆえ、本発明の方法により製造された母材から作成
された純5iftコア光ファイバの伝送損失を安定化さ
せることができる。
Therefore, the transmission loss of a pure 5ift core optical fiber made from a preform produced by the method of the present invention can be stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱処理の工程を示したフロー閃であり
、第2図〜第4図は非素添加ガラス母材の屈折率分布図
であり、第2図は比較例2によるもの、第3図は高温で
弗素添加した場合の不十分なり1;素添加の例を示すも
の、第4図は実施例1、実施例2及び比較例1によるも
のである。
FIG. 1 is a flow diagram showing the heat treatment process of the present invention, FIGS. 2 to 4 are refractive index distribution diagrams of a non-additive glass base material, and FIG. FIG. 3 shows an example of fluorine addition at high temperature (1), and FIG. 4 shows examples of Example 1, Example 2, and Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims] (1)火炎加水分解法等で合成されたSiO_2TEL
ガラス粒子体を弗素系ガス含有雰囲気下で加熱処理を行
なう弗素添加工程を有する光ファイバ用ガラス母材の製
造方法において、前記加熱処理を行った後、炉温を弗素
添加温度と同一から1400℃までの温度に設定し、弗
素系ガス含有雰囲気下で第2の加熱処理を行い、その後
不活性ガス雰囲気中で透明ガラス化を行なうことを特徴
とする光ファイバ用ガラス母材の製造方法。
(1) SiO_2TEL synthesized by flame hydrolysis method etc.
In a method for manufacturing a glass base material for an optical fiber, which includes a fluorine addition step in which a glass particle body is heat-treated in an atmosphere containing a fluorine-based gas, after the heat treatment, the furnace temperature is adjusted from the same as the fluorine addition temperature to 1400°C. 1. A method for producing a glass preform for an optical fiber, comprising: performing a second heat treatment in an atmosphere containing a fluorine-based gas, and then performing transparent vitrification in an inert gas atmosphere.
JP32262489A 1989-12-14 1989-12-14 Production of glass preform for optical fiber Pending JPH03183632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32262489A JPH03183632A (en) 1989-12-14 1989-12-14 Production of glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32262489A JPH03183632A (en) 1989-12-14 1989-12-14 Production of glass preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH03183632A true JPH03183632A (en) 1991-08-09

Family

ID=18145793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32262489A Pending JPH03183632A (en) 1989-12-14 1989-12-14 Production of glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH03183632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221430A2 (en) * 2001-01-05 2002-07-10 Lucent Technologies Inc. Process of manufacturing fluorine-doped preforms for optical fibres

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221430A2 (en) * 2001-01-05 2002-07-10 Lucent Technologies Inc. Process of manufacturing fluorine-doped preforms for optical fibres
EP1221430A3 (en) * 2001-01-05 2003-01-08 Lucent Technologies Inc. Process of manufacturing fluorine-doped preforms for optical fibres

Similar Documents

Publication Publication Date Title
US4979971A (en) Method for producing glass preform for optical fiber
US5221309A (en) Method for producing glass preform for optical fiber
JP3845906B2 (en) Method for producing synthetic silica glass
DK158940B (en) PROCEDURE FOR MANUFACTURING FRAME FOR OPTICAL FIBERS
CA1260684A (en) Optical waveguide manufacture
JPS5844619B2 (en) Manufacturing method of optical fiber base material
JPS6186436A (en) Production of parent material for optical fiber
EP0164127A2 (en) Method for producing glass preform for optical fibers
JPH03183632A (en) Production of glass preform for optical fiber
JP2722573B2 (en) Manufacturing method of high purity quartz glass
JPH038737A (en) Production of preform for optical fiber
JPH0524873A (en) Production of glass preform for optical fiber
JPH0476936B2 (en)
JP2620275B2 (en) Glass manufacturing method
JPS6283323A (en) Production of glass
JPH0450130A (en) Production of preform for optical fiber
JPH0324415B2 (en)
JPS6144725A (en) Method of treating quartz porous glass layer
JPH0218333A (en) Heat treatment of porous base material
JP2002274876A (en) Method of manufacturing glass article
JPH03242340A (en) Preparation of glass preform for optical fiber
JPH04164836A (en) Production of glass preform for optical fiber
JPS632902B2 (en)
JPS62230638A (en) Production of glass article
JP2540056B2 (en) Method for manufacturing fluorine-containing clad optical fiber foam