JPS6251215B2 - - Google Patents

Info

Publication number
JPS6251215B2
JPS6251215B2 JP59036827A JP3682784A JPS6251215B2 JP S6251215 B2 JPS6251215 B2 JP S6251215B2 JP 59036827 A JP59036827 A JP 59036827A JP 3682784 A JP3682784 A JP 3682784A JP S6251215 B2 JPS6251215 B2 JP S6251215B2
Authority
JP
Japan
Prior art keywords
base material
porous glass
fluorine
glass layer
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59036827A
Other languages
Japanese (ja)
Other versions
JPS60180928A (en
Inventor
Kazuya Oosawa
Seiji Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3682784A priority Critical patent/JPS60180928A/en
Publication of JPS60180928A publication Critical patent/JPS60180928A/en
Publication of JPS6251215B2 publication Critical patent/JPS6251215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はフツ素がドープされた石英系光フアイ
バ母材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a fluorine-doped quartz-based optical fiber base material.

(従来技術) 通信用としてすでに実用化されている光フアイ
バは、一般にそのコアが酸化ゲルマニウムを含む
石英系ガラス(高屈折率)からなり、クラツドが
高純度石英ガラス(低屈折率)からなるが、この
光フアイバは放射線環境下において既知の失透が
起こるので、耐放射線光フアイバとしてクラツド
にフツ素をドープしたものが提案されている。
(Prior art) Optical fibers that are already in practical use for communications generally have a core made of silica-based glass (high refractive index) containing germanium oxide, and a cladding made of high-purity quartz glass (low refractive index). Since this optical fiber undergoes a known devitrification in a radiation environment, a radiation-resistant optical fiber whose cladding is doped with fluorine has been proposed.

光フアイバ母材の製造に際してフツ素ドープト
石英ガラス(クラツド用ガラス)を合成すると
き、例えば火炎分解法における火炎中に直接フツ
素化合物を混入してその合成ガラス中にフツ素を
ドープする方法が試みられている。
When synthesizing fluorine-doped quartz glass (glass for cladding) in the production of optical fiber base materials, for example, there is a method of doping fluorine into the synthetic glass by directly mixing a fluorine compound into the flame of the flame decomposition method. is being attempted.

この方法の場合、フツ素がガラス中のケイ素と
反応して気体状のSiF4を生成する傾向が強く、そ
のためガラス中にドープできるフツ素の量に限界
があつた。
In this method, fluorine has a strong tendency to react with silicon in the glass to form gaseous SiF 4 , which limits the amount of fluorine that can be doped into the glass.

一方、多孔質ガラスからなる棒状母材をフツ素
化剤の雰囲気中で焼結する方法も試みられている
が、この方法にしても上記と同様の理由によりフ
ツ素ドープ量の限界があつた。
On the other hand, a method of sintering a rod-shaped base material made of porous glass in an atmosphere of a fluorinating agent has been attempted, but even with this method, there is a limit to the amount of fluorine doped for the same reason as above. .

その他、石英ガラスの屈折率を低下させる成分
としてホウ素が知られており、CVD法や火炎分
解法などにおける気相原料中にフツ素とホウ素と
を送りこみ、こうして生成される石英ガラス中に
フツ素とホウ素とを同時に含有させる試みもある
が、かかる方法でもフツ素とホウ素との親和力が
非常に大きいため優先的に気体状のBF3が生成さ
れてしまい、ガラス中にドープされるドーパント
の量がわずかなものとなつていた。
In addition, boron is known as a component that lowers the refractive index of silica glass, and when fluorine and boron are introduced into the gas phase raw material in CVD or flame decomposition methods, fluorine and boron are added to the quartz glass produced in this way. Some attempts have been made to contain fluorine and boron at the same time, but even with such methods, the affinity between fluorine and boron is very large, so gaseous BF3 is preferentially produced, and the dopant that is doped into the glass is The amount was small.

このように、従来の試みでは石英ガラス中にフ
ツ素を十分含有させることができず、その結果、
例えばコア用ガラスが高純度石英ガラス製、クラ
ツド用ガラスがフツ素ドープト石英ガラス製であ
る光フアイバ母材により耐放射線光フアイバをつ
くるとき、クラツド中における屈折率低下用のフ
ツ素量が少ないためコア、クラツド相互の十分な
屈折率差が確保できなかつた。
In this way, conventional attempts have not been able to incorporate sufficient fluorine into quartz glass, and as a result,
For example, when making a radiation-resistant optical fiber using an optical fiber base material in which the core glass is made of high-purity quartz glass and the cladding glass is made of fluorine-doped quartz glass, the amount of fluorine in the cladding to lower the refractive index is small. It was not possible to ensure a sufficient refractive index difference between the core and the cladding.

(発明の目的) 本発明は上記の問題点に鑑み、クラツド用ガラ
ス中に必要かつ十分な量のフツ素がドープできる
石英系光フアイバ母材の製造方法を提供しようと
するものである。
(Object of the Invention) In view of the above-mentioned problems, the present invention seeks to provide a method for manufacturing a quartz-based optical fiber base material, which allows a necessary and sufficient amount of fluorine to be doped into the glass for the cladding.

(発明の構成) 本発明は高純度石英系の多孔質ガラスまたは非
多孔質ガラスからなる棒状母材の外周に、酸化ホ
ウ素含有の高純度石英からなる多孔質ガラス層を
形成した後、その多孔質ガラス層を、フツ素化剤
を含む雰囲気中にて焼結することを特徴としてい
る。
(Structure of the Invention) The present invention involves forming a porous glass layer made of high-purity quartz containing boron oxide on the outer periphery of a rod-shaped base material made of high-purity quartz-based porous glass or non-porous glass, and then forming a porous glass layer made of high-purity quartz containing boron oxide. The method is characterized in that the glass layer is sintered in an atmosphere containing a fluorinating agent.

(実施例) 以下、本発明の実施例につき、図面を参照して
説明する。
(Example) Examples of the present invention will be described below with reference to the drawings.

第1図において、1は高純度石英系の多孔質ガ
ラスからなる棒状母材であり、この棒状母材は、
火炎分解法の一種である既知のVAD法を介して
つくられる。
In FIG. 1, 1 is a rod-shaped base material made of high-purity quartz-based porous glass, and this rod-shaped base material is
It is produced through the known VAD method, which is a type of flame decomposition method.

VAD法を介して棒状母材1をつくるとき、気
相原料としてはSiCl4が用いられ、火炎としては
酸水素炎、一酸化炭素火炎などが用いられる。
When producing the rod-shaped base material 1 through the VAD method, SiCl 4 is used as a gas phase raw material, and an oxyhydrogen flame, a carbon monoxide flame, etc. are used as a flame.

上記棒状母材1の外周には、酸化ホウ素を含有
せる高純度石英系の多孔質ガラス層2が形成され
る。
A high-purity quartz-based porous glass layer 2 containing boron oxide is formed on the outer periphery of the rod-shaped base material 1 .

この多孔質ガラス層2もVAD法を介してつく
られるのであり、例えば二つの反応バーナを介し
てVAD法を実施するとき、棒状母材1、多孔質
ガラス層2は同時に合成することができる。
This porous glass layer 2 is also produced through the VAD method. For example, when implementing the VAD method through two reaction burners, the rod-shaped base material 1 and the porous glass layer 2 can be synthesized at the same time.

棒状母材1外周に多孔質ガラス層2を形成した
後は、これらを焼結して透明ガラス化する。
After forming the porous glass layer 2 on the outer periphery of the rod-shaped base material 1, the porous glass layer 2 is sintered to form transparent glass.

この際の焼結はフツ素化剤を含む雰囲気中で行
なわれるが、当該焼結時、多孔質ガラス層2中の
酸化ホウ素とフツ素化剤中のフツ素とに親和性が
あつてこれら酸化ホウ素とフツ素とが強力に結合
しようとする傾向を示すから、その多孔質ガラス
層2中には多量のフツ素が含有され、かかる状態
にて棒状母材1、多孔質ガラス層2が透明ガラス
化される。
This sintering is carried out in an atmosphere containing a fluorinating agent, but at the time of the sintering, boron oxide in the porous glass layer 2 has an affinity with fluorine in the fluorinating agent. Since boron oxide and fluorine tend to bond strongly, a large amount of fluorine is contained in the porous glass layer 2, and in this state, the rod-shaped base material 1 and the porous glass layer 2 Transparent vitrification.

透明ガラス化後の棒状母材1、ガラス層2はそ
れぞれコア用ガラス、クラツド用ガラスなるので
あり、これらのガラスを備なえた光フアイバ母材
を常法(加熱延伸)にて紡糸することにより所望
の光フアイバが得られる。
The rod-shaped base material 1 and the glass layer 2 after being made transparent are glass for the core and glass for the cladding, respectively, and by spinning the optical fiber base material equipped with these glasses using a conventional method (heat drawing). The desired optical fiber is obtained.

つぎに本発明の他の実施例を第2図により説明
すると、この実施例では棒状母材1を高純度石英
系の非多孔質ガラス、すなわち透明ガラス製とし
たものである。
Next, another embodiment of the present invention will be described with reference to FIG. 2. In this embodiment, the rod-shaped base material 1 is made of high-purity quartz-based non-porous glass, that is, transparent glass.

この実施例の棒状母材1としては、例えば
MCVD法、OVD法、VAD法などを介してつくら
れた透明ガラス棒が採用される。
As the rod-shaped base material 1 of this embodiment, for example,
Transparent glass rods made using the MCVD method, OVD method, VAD method, etc. are used.

上記棒状母材1の外周には前記と同じく酸化ホ
ウ素を含有せる高純度石英系の多孔質ガラス層2
が形成されるのであり、当該多孔質ガラス層2を
形成する手段としてはVAD法、OVD法などが採
用される。
On the outer periphery of the rod-shaped base material 1 is a high-purity quartz-based porous glass layer 2 containing boron oxide as described above.
The porous glass layer 2 is formed by a VAD method, an OVD method, or the like.

このようにして棒状母材1の外周に形成された
多孔質ガラス層2は、これも前記と同じくフツ素
化剤を含む雰囲気中で焼結され、透明ガラス化さ
れる。
The porous glass layer 2 thus formed on the outer periphery of the rod-shaped base material 1 is also sintered in an atmosphere containing a fluorinating agent as described above, and is made into transparent glass.

この場合も酸化ホウ素とフツ素との親和性によ
り、上記ガラス層2中には多量のフツ素が含有さ
れる。
In this case as well, a large amount of fluorine is contained in the glass layer 2 due to the affinity between boron oxide and fluorine.

以下は前記と同様に光フアイバ母材が紡糸され
て所定の光フアイバが得られる。
Thereafter, the optical fiber base material is spun to obtain a predetermined optical fiber in the same manner as described above.

なお、上記において多孔質ガラス層2に含有さ
せるホウ素の量は0.1モル%以上であることが望
ましく、その上限は通常25モル%以下である。
In the above, the amount of boron contained in the porous glass layer 2 is preferably 0.1 mol% or more, and the upper limit is usually 25 mol% or less.

フツ素化剤としてはSF6、CF4、C2F6および
CCl2F2など、気体状フツ素化合物が使用でき
る。
Fluorinating agents include SF 6 , CF 4 , C 2 F 6 and
Gaseous fluorine compounds such as CCl 2 F 2 can be used.

上記多孔質ガラス層2を焼結する際の雰囲気中
にはフツ素化剤とともにヘリウムガスが含まれて
いることが望ましい。
It is desirable that the atmosphere in which the porous glass layer 2 is sintered contains helium gas together with the fluorinating agent.

当該焼結は多孔質ガラス層2の最低焼結温度よ
りも高い温度で行なうのであり、その焼結温度は
通常、1100〜1500℃とする。
The sintering is performed at a temperature higher than the lowest sintering temperature of the porous glass layer 2, and the sintering temperature is usually 1100 to 1500°C.

コア用ガラスとなる棒状母材1は低レイリー散
乱性や耐放射線性などを高める上で高純度石英系
とするのがよい。
The rod-shaped base material 1 serving as the core glass is preferably made of high-purity quartz to improve low Rayleigh scattering properties and radiation resistance.

つぎに本発明の具体例につき説明する。 Next, specific examples of the present invention will be explained.

具体例 1 水酸基800ppmを含む高純度石英系(合成)ガ
ラス棒を棒状母材1とし、これを回転させながら
その母材外周にはOVD法により酸化ホウ素5モ
ル%含有せる高純度石英系の多孔質ガラス層2を
形成した。
Specific example 1 A high-purity quartz-based (synthetic) glass rod containing 800 ppm of hydroxyl groups is used as the rod-shaped base material 1, and while the rod-shaped base material 1 is rotated, a high-purity quartz-based porous material containing 5 mol% of boron oxide is formed on the outer periphery of the base material using the OVD method. A glass layer 2 was formed.

つぎに上記ガラス層付の棒状母材1を、濃度1
モル%の六フツ化イオウ(SF6)を含むヘリウム
ガス雰囲気中に入れ、1250℃の温度で加熱するこ
とにより多孔質ガラス層2を焼結し、透明ガラス
化した。
Next, the rod-shaped base material 1 with the glass layer is heated to a concentration of 1
The porous glass layer 2 was placed in a helium gas atmosphere containing mole % of sulfur hexafluoride (SF 6 ) and heated at a temperature of 1250° C. to sinter the porous glass layer 2 and turn it into transparent glass.

これによりコア、クラツド相互間の屈折率差が
1.5%となる光フアイバ母材が得られた。
This reduces the refractive index difference between the core and cladding.
An optical fiber base material with a concentration of 1.5% was obtained.

この屈折率差1.5%は従来例における屈折率差
0.6%をかなり上回つており、実用的開口数をも
つ光フアイバを得るのに十分な値であつた。
This refractive index difference of 1.5% is the refractive index difference in the conventional example.
The value was considerably higher than 0.6%, which was sufficient to obtain an optical fiber with a practical numerical aperture.

具体例 2 VAD法により高純度石英系の多孔質ガラスか
らなる棒状母材1をつくりながら、該棒状母材1
に酸化ホウ素8モル%含有の高純度石英系多孔質
ガラス層2を形成した。
Specific example 2 While making a rod-shaped base material 1 made of high-purity quartz-based porous glass by the VAD method, the rod-shaped base material 1
A high-purity silica-based porous glass layer 2 containing 8 mol % of boron oxide was formed on the substrate.

つぎに上記多孔質棒状母材を、0.8モル%の
C2F6を含むヘリウムガス雰囲気中で加熱焼結
し、透明ガラス化した。
Next, the above porous rod-shaped base material was added to 0.8 mol%
The material was heated and sintered in a helium gas atmosphere containing C 2 F 6 to form transparent glass.

これにより得られた光フアイバ母材の前記屈折
率差は1.2%であり、この場合も従来例の値を上
回ることとなつた。
The refractive index difference of the optical fiber base material thus obtained was 1.2%, which in this case also exceeded the value of the conventional example.

(発明の効果) 以上説明した通り、本発明によるときは棒状母
材外周に多孔質ガラス層を形成するとき、これに
あらかじめ酸化ホウ素を含有させておき、その後
該多孔質ガラス層をフツ素化剤含有雰囲気中で焼
結するといつた二段階の工程をとるから、不本意
な生成物を生ずることなく酸化ホウ素とフツ素と
の親和力により、多孔質ガラス層中に多量のフツ
素をドープすることができ、しかも酸化ホウ素は
石英ガラス中に比較的均一に分布するので、これ
を介在としてフツ素も該ガラス中に分布するよう
になり、したがつてフツ素が多量かつ均一にドー
プされた石英系光フアイバ母材が製造できる。
(Effects of the Invention) As explained above, according to the present invention, when forming a porous glass layer on the outer periphery of a rod-shaped base material, boron oxide is contained in the porous glass layer in advance, and then the porous glass layer is fluorinated. The two-step process of sintering in a chemical-containing atmosphere allows a large amount of fluorine to be doped into the porous glass layer due to the affinity between boron oxide and fluorine without producing any unwanted products. Moreover, since boron oxide is relatively uniformly distributed in the quartz glass, fluorine is also distributed in the glass via this intervening material, so that a large amount of fluorine is doped uniformly. A quartz-based optical fiber base material can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明方法の各実施例により
製造される光フアイバ母材の略示説明図である。 1……棒状母材、2……多孔質ガラス層。
FIGS. 1 and 2 are schematic illustrations of optical fiber preforms manufactured by each embodiment of the method of the present invention. 1... Rod-shaped base material, 2... Porous glass layer.

Claims (1)

【特許請求の範囲】[Claims] 1 高純度石英系の多孔質ガラスまたは非多孔質
ガラスからなる棒状母材の外周に、酸化ホウ素含
有の高純度石英からなる多孔質ガラス層を形成し
た後、その多孔質ガラス層を、フツ素化剤を含む
雰囲気中にて焼結することを特徴とする石英系光
フアイバ母材の製造方法。
1 After forming a porous glass layer made of high-purity quartz containing boron oxide on the outer periphery of a rod-shaped base material made of high-purity quartz-based porous glass or non-porous glass, the porous glass layer is A method for producing a quartz-based optical fiber base material, which comprises sintering in an atmosphere containing a curing agent.
JP3682784A 1984-02-28 1984-02-28 Production of quartz base material for optical fiber Granted JPS60180928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3682784A JPS60180928A (en) 1984-02-28 1984-02-28 Production of quartz base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3682784A JPS60180928A (en) 1984-02-28 1984-02-28 Production of quartz base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS60180928A JPS60180928A (en) 1985-09-14
JPS6251215B2 true JPS6251215B2 (en) 1987-10-29

Family

ID=12480573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3682784A Granted JPS60180928A (en) 1984-02-28 1984-02-28 Production of quartz base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60180928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642106U (en) * 1987-06-24 1989-01-09

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152818A (en) * 1990-11-09 1992-10-06 Corning Incorporated Method of making polarization retaining fiber
US5203898A (en) * 1991-12-16 1993-04-20 Corning Incorporated Method of making fluorine/boron doped silica tubes
EP2712848B1 (en) 2012-09-27 2017-11-29 Heraeus Quarzglas GmbH & Co. KG Hydrogen-assisted fluorination of soot bodies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567533A (en) * 1978-11-07 1980-05-21 Nippon Telegr & Teleph Corp <Ntt> Production of glass base material for light transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567533A (en) * 1978-11-07 1980-05-21 Nippon Telegr & Teleph Corp <Ntt> Production of glass base material for light transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642106U (en) * 1987-06-24 1989-01-09

Also Published As

Publication number Publication date
JPS60180928A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
EP0249230B1 (en) Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
JPH0138063B2 (en)
US4690504A (en) Quartz glass-made optical fibers and a method for the preparation thereof
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
US4812153A (en) Method of making a glass body having a graded refractive index profile
JPS6251215B2 (en)
EP0164127B1 (en) Method for producing glass preform for optical fibers
JP3106564B2 (en) Manufacturing method of optical fiber and silica-based optical fiber
JP2000203859A (en) Quartz glass tube for optical fiber parent material and optical fiber parent material using the quartz glass for parent material
JPS61191544A (en) Quartz base optical fiber
JPS62108744A (en) Transparent vitrification method of porous glass base material
JPS6131324A (en) Production of base material for optical fiber
US5641333A (en) Increasing the retention of Ge02 during production of glass articles
JPH0463365B2 (en)
JPS6081038A (en) Manufacture of optical glass fiber containing tio2
JPH0551542B2 (en)
JPH038743A (en) Optical fiber preform and preparation thereof
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
JP2831842B2 (en) Manufacturing method of optical fiber base material
AU698054B2 (en) Increasing the retention of GeO2 during production of glass articles
JPS61251539A (en) Optical fiber
JPS6227014B2 (en)
JPH0826763A (en) Optical fiber and its production
JPS60231432A (en) Manufacture of quartz series optical fiber base material
JPH0460056B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees