JPS6251215B2 - - Google Patents
Info
- Publication number
- JPS6251215B2 JPS6251215B2 JP59036827A JP3682784A JPS6251215B2 JP S6251215 B2 JPS6251215 B2 JP S6251215B2 JP 59036827 A JP59036827 A JP 59036827A JP 3682784 A JP3682784 A JP 3682784A JP S6251215 B2 JPS6251215 B2 JP S6251215B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- porous glass
- fluorine
- glass layer
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 37
- 239000005373 porous glass Substances 0.000 claims description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 29
- 239000013307 optical fiber Substances 0.000 claims description 18
- 239000010453 quartz Substances 0.000 claims description 17
- 229910052810 boron oxide Inorganic materials 0.000 claims description 13
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 24
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 21
- 239000011737 fluorine Substances 0.000 description 21
- 229910052731 fluorine Inorganic materials 0.000 description 21
- 238000005253 cladding Methods 0.000 description 9
- 239000012025 fluorinating agent Substances 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はフツ素がドープされた石英系光フアイ
バ母材の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a fluorine-doped quartz-based optical fiber base material.
(従来技術)
通信用としてすでに実用化されている光フアイ
バは、一般にそのコアが酸化ゲルマニウムを含む
石英系ガラス(高屈折率)からなり、クラツドが
高純度石英ガラス(低屈折率)からなるが、この
光フアイバは放射線環境下において既知の失透が
起こるので、耐放射線光フアイバとしてクラツド
にフツ素をドープしたものが提案されている。(Prior art) Optical fibers that are already in practical use for communications generally have a core made of silica-based glass (high refractive index) containing germanium oxide, and a cladding made of high-purity quartz glass (low refractive index). Since this optical fiber undergoes a known devitrification in a radiation environment, a radiation-resistant optical fiber whose cladding is doped with fluorine has been proposed.
光フアイバ母材の製造に際してフツ素ドープト
石英ガラス(クラツド用ガラス)を合成すると
き、例えば火炎分解法における火炎中に直接フツ
素化合物を混入してその合成ガラス中にフツ素を
ドープする方法が試みられている。 When synthesizing fluorine-doped quartz glass (glass for cladding) in the production of optical fiber base materials, for example, there is a method of doping fluorine into the synthetic glass by directly mixing a fluorine compound into the flame of the flame decomposition method. is being attempted.
この方法の場合、フツ素がガラス中のケイ素と
反応して気体状のSiF4を生成する傾向が強く、そ
のためガラス中にドープできるフツ素の量に限界
があつた。 In this method, fluorine has a strong tendency to react with silicon in the glass to form gaseous SiF 4 , which limits the amount of fluorine that can be doped into the glass.
一方、多孔質ガラスからなる棒状母材をフツ素
化剤の雰囲気中で焼結する方法も試みられている
が、この方法にしても上記と同様の理由によりフ
ツ素ドープ量の限界があつた。 On the other hand, a method of sintering a rod-shaped base material made of porous glass in an atmosphere of a fluorinating agent has been attempted, but even with this method, there is a limit to the amount of fluorine doped for the same reason as above. .
その他、石英ガラスの屈折率を低下させる成分
としてホウ素が知られており、CVD法や火炎分
解法などにおける気相原料中にフツ素とホウ素と
を送りこみ、こうして生成される石英ガラス中に
フツ素とホウ素とを同時に含有させる試みもある
が、かかる方法でもフツ素とホウ素との親和力が
非常に大きいため優先的に気体状のBF3が生成さ
れてしまい、ガラス中にドープされるドーパント
の量がわずかなものとなつていた。 In addition, boron is known as a component that lowers the refractive index of silica glass, and when fluorine and boron are introduced into the gas phase raw material in CVD or flame decomposition methods, fluorine and boron are added to the quartz glass produced in this way. Some attempts have been made to contain fluorine and boron at the same time, but even with such methods, the affinity between fluorine and boron is very large, so gaseous BF3 is preferentially produced, and the dopant that is doped into the glass is The amount was small.
このように、従来の試みでは石英ガラス中にフ
ツ素を十分含有させることができず、その結果、
例えばコア用ガラスが高純度石英ガラス製、クラ
ツド用ガラスがフツ素ドープト石英ガラス製であ
る光フアイバ母材により耐放射線光フアイバをつ
くるとき、クラツド中における屈折率低下用のフ
ツ素量が少ないためコア、クラツド相互の十分な
屈折率差が確保できなかつた。 In this way, conventional attempts have not been able to incorporate sufficient fluorine into quartz glass, and as a result,
For example, when making a radiation-resistant optical fiber using an optical fiber base material in which the core glass is made of high-purity quartz glass and the cladding glass is made of fluorine-doped quartz glass, the amount of fluorine in the cladding to lower the refractive index is small. It was not possible to ensure a sufficient refractive index difference between the core and the cladding.
(発明の目的)
本発明は上記の問題点に鑑み、クラツド用ガラ
ス中に必要かつ十分な量のフツ素がドープできる
石英系光フアイバ母材の製造方法を提供しようと
するものである。(Object of the Invention) In view of the above-mentioned problems, the present invention seeks to provide a method for manufacturing a quartz-based optical fiber base material, which allows a necessary and sufficient amount of fluorine to be doped into the glass for the cladding.
(発明の構成)
本発明は高純度石英系の多孔質ガラスまたは非
多孔質ガラスからなる棒状母材の外周に、酸化ホ
ウ素含有の高純度石英からなる多孔質ガラス層を
形成した後、その多孔質ガラス層を、フツ素化剤
を含む雰囲気中にて焼結することを特徴としてい
る。(Structure of the Invention) The present invention involves forming a porous glass layer made of high-purity quartz containing boron oxide on the outer periphery of a rod-shaped base material made of high-purity quartz-based porous glass or non-porous glass, and then forming a porous glass layer made of high-purity quartz containing boron oxide. The method is characterized in that the glass layer is sintered in an atmosphere containing a fluorinating agent.
(実施例)
以下、本発明の実施例につき、図面を参照して
説明する。(Example) Examples of the present invention will be described below with reference to the drawings.
第1図において、1は高純度石英系の多孔質ガ
ラスからなる棒状母材であり、この棒状母材は、
火炎分解法の一種である既知のVAD法を介して
つくられる。 In FIG. 1, 1 is a rod-shaped base material made of high-purity quartz-based porous glass, and this rod-shaped base material is
It is produced through the known VAD method, which is a type of flame decomposition method.
VAD法を介して棒状母材1をつくるとき、気
相原料としてはSiCl4が用いられ、火炎としては
酸水素炎、一酸化炭素火炎などが用いられる。 When producing the rod-shaped base material 1 through the VAD method, SiCl 4 is used as a gas phase raw material, and an oxyhydrogen flame, a carbon monoxide flame, etc. are used as a flame.
上記棒状母材1の外周には、酸化ホウ素を含有
せる高純度石英系の多孔質ガラス層2が形成され
る。 A high-purity quartz-based porous glass layer 2 containing boron oxide is formed on the outer periphery of the rod-shaped base material 1 .
この多孔質ガラス層2もVAD法を介してつく
られるのであり、例えば二つの反応バーナを介し
てVAD法を実施するとき、棒状母材1、多孔質
ガラス層2は同時に合成することができる。 This porous glass layer 2 is also produced through the VAD method. For example, when implementing the VAD method through two reaction burners, the rod-shaped base material 1 and the porous glass layer 2 can be synthesized at the same time.
棒状母材1外周に多孔質ガラス層2を形成した
後は、これらを焼結して透明ガラス化する。 After forming the porous glass layer 2 on the outer periphery of the rod-shaped base material 1, the porous glass layer 2 is sintered to form transparent glass.
この際の焼結はフツ素化剤を含む雰囲気中で行
なわれるが、当該焼結時、多孔質ガラス層2中の
酸化ホウ素とフツ素化剤中のフツ素とに親和性が
あつてこれら酸化ホウ素とフツ素とが強力に結合
しようとする傾向を示すから、その多孔質ガラス
層2中には多量のフツ素が含有され、かかる状態
にて棒状母材1、多孔質ガラス層2が透明ガラス
化される。 This sintering is carried out in an atmosphere containing a fluorinating agent, but at the time of the sintering, boron oxide in the porous glass layer 2 has an affinity with fluorine in the fluorinating agent. Since boron oxide and fluorine tend to bond strongly, a large amount of fluorine is contained in the porous glass layer 2, and in this state, the rod-shaped base material 1 and the porous glass layer 2 Transparent vitrification.
透明ガラス化後の棒状母材1、ガラス層2はそ
れぞれコア用ガラス、クラツド用ガラスなるので
あり、これらのガラスを備なえた光フアイバ母材
を常法(加熱延伸)にて紡糸することにより所望
の光フアイバが得られる。 The rod-shaped base material 1 and the glass layer 2 after being made transparent are glass for the core and glass for the cladding, respectively, and by spinning the optical fiber base material equipped with these glasses using a conventional method (heat drawing). The desired optical fiber is obtained.
つぎに本発明の他の実施例を第2図により説明
すると、この実施例では棒状母材1を高純度石英
系の非多孔質ガラス、すなわち透明ガラス製とし
たものである。 Next, another embodiment of the present invention will be described with reference to FIG. 2. In this embodiment, the rod-shaped base material 1 is made of high-purity quartz-based non-porous glass, that is, transparent glass.
この実施例の棒状母材1としては、例えば
MCVD法、OVD法、VAD法などを介してつくら
れた透明ガラス棒が採用される。 As the rod-shaped base material 1 of this embodiment, for example,
Transparent glass rods made using the MCVD method, OVD method, VAD method, etc. are used.
上記棒状母材1の外周には前記と同じく酸化ホ
ウ素を含有せる高純度石英系の多孔質ガラス層2
が形成されるのであり、当該多孔質ガラス層2を
形成する手段としてはVAD法、OVD法などが採
用される。 On the outer periphery of the rod-shaped base material 1 is a high-purity quartz-based porous glass layer 2 containing boron oxide as described above.
The porous glass layer 2 is formed by a VAD method, an OVD method, or the like.
このようにして棒状母材1の外周に形成された
多孔質ガラス層2は、これも前記と同じくフツ素
化剤を含む雰囲気中で焼結され、透明ガラス化さ
れる。 The porous glass layer 2 thus formed on the outer periphery of the rod-shaped base material 1 is also sintered in an atmosphere containing a fluorinating agent as described above, and is made into transparent glass.
この場合も酸化ホウ素とフツ素との親和性によ
り、上記ガラス層2中には多量のフツ素が含有さ
れる。 In this case as well, a large amount of fluorine is contained in the glass layer 2 due to the affinity between boron oxide and fluorine.
以下は前記と同様に光フアイバ母材が紡糸され
て所定の光フアイバが得られる。 Thereafter, the optical fiber base material is spun to obtain a predetermined optical fiber in the same manner as described above.
なお、上記において多孔質ガラス層2に含有さ
せるホウ素の量は0.1モル%以上であることが望
ましく、その上限は通常25モル%以下である。 In the above, the amount of boron contained in the porous glass layer 2 is preferably 0.1 mol% or more, and the upper limit is usually 25 mol% or less.
フツ素化剤としてはSF6、CF4、C2F6および
CCl2F2など、気体状フツ素化合物が使用でき
る。 Fluorinating agents include SF 6 , CF 4 , C 2 F 6 and
Gaseous fluorine compounds such as CCl 2 F 2 can be used.
上記多孔質ガラス層2を焼結する際の雰囲気中
にはフツ素化剤とともにヘリウムガスが含まれて
いることが望ましい。 It is desirable that the atmosphere in which the porous glass layer 2 is sintered contains helium gas together with the fluorinating agent.
当該焼結は多孔質ガラス層2の最低焼結温度よ
りも高い温度で行なうのであり、その焼結温度は
通常、1100〜1500℃とする。 The sintering is performed at a temperature higher than the lowest sintering temperature of the porous glass layer 2, and the sintering temperature is usually 1100 to 1500°C.
コア用ガラスとなる棒状母材1は低レイリー散
乱性や耐放射線性などを高める上で高純度石英系
とするのがよい。 The rod-shaped base material 1 serving as the core glass is preferably made of high-purity quartz to improve low Rayleigh scattering properties and radiation resistance.
つぎに本発明の具体例につき説明する。 Next, specific examples of the present invention will be explained.
具体例 1
水酸基800ppmを含む高純度石英系(合成)ガ
ラス棒を棒状母材1とし、これを回転させながら
その母材外周にはOVD法により酸化ホウ素5モ
ル%含有せる高純度石英系の多孔質ガラス層2を
形成した。Specific example 1 A high-purity quartz-based (synthetic) glass rod containing 800 ppm of hydroxyl groups is used as the rod-shaped base material 1, and while the rod-shaped base material 1 is rotated, a high-purity quartz-based porous material containing 5 mol% of boron oxide is formed on the outer periphery of the base material using the OVD method. A glass layer 2 was formed.
つぎに上記ガラス層付の棒状母材1を、濃度1
モル%の六フツ化イオウ(SF6)を含むヘリウム
ガス雰囲気中に入れ、1250℃の温度で加熱するこ
とにより多孔質ガラス層2を焼結し、透明ガラス
化した。 Next, the rod-shaped base material 1 with the glass layer is heated to a concentration of 1
The porous glass layer 2 was placed in a helium gas atmosphere containing mole % of sulfur hexafluoride (SF 6 ) and heated at a temperature of 1250° C. to sinter the porous glass layer 2 and turn it into transparent glass.
これによりコア、クラツド相互間の屈折率差が
1.5%となる光フアイバ母材が得られた。 This reduces the refractive index difference between the core and cladding.
An optical fiber base material with a concentration of 1.5% was obtained.
この屈折率差1.5%は従来例における屈折率差
0.6%をかなり上回つており、実用的開口数をも
つ光フアイバを得るのに十分な値であつた。 This refractive index difference of 1.5% is the refractive index difference in the conventional example.
The value was considerably higher than 0.6%, which was sufficient to obtain an optical fiber with a practical numerical aperture.
具体例 2
VAD法により高純度石英系の多孔質ガラスか
らなる棒状母材1をつくりながら、該棒状母材1
に酸化ホウ素8モル%含有の高純度石英系多孔質
ガラス層2を形成した。Specific example 2 While making a rod-shaped base material 1 made of high-purity quartz-based porous glass by the VAD method, the rod-shaped base material 1
A high-purity silica-based porous glass layer 2 containing 8 mol % of boron oxide was formed on the substrate.
つぎに上記多孔質棒状母材を、0.8モル%の
C2F6を含むヘリウムガス雰囲気中で加熱焼結
し、透明ガラス化した。 Next, the above porous rod-shaped base material was added to 0.8 mol%
The material was heated and sintered in a helium gas atmosphere containing C 2 F 6 to form transparent glass.
これにより得られた光フアイバ母材の前記屈折
率差は1.2%であり、この場合も従来例の値を上
回ることとなつた。 The refractive index difference of the optical fiber base material thus obtained was 1.2%, which in this case also exceeded the value of the conventional example.
(発明の効果)
以上説明した通り、本発明によるときは棒状母
材外周に多孔質ガラス層を形成するとき、これに
あらかじめ酸化ホウ素を含有させておき、その後
該多孔質ガラス層をフツ素化剤含有雰囲気中で焼
結するといつた二段階の工程をとるから、不本意
な生成物を生ずることなく酸化ホウ素とフツ素と
の親和力により、多孔質ガラス層中に多量のフツ
素をドープすることができ、しかも酸化ホウ素は
石英ガラス中に比較的均一に分布するので、これ
を介在としてフツ素も該ガラス中に分布するよう
になり、したがつてフツ素が多量かつ均一にドー
プされた石英系光フアイバ母材が製造できる。(Effects of the Invention) As explained above, according to the present invention, when forming a porous glass layer on the outer periphery of a rod-shaped base material, boron oxide is contained in the porous glass layer in advance, and then the porous glass layer is fluorinated. The two-step process of sintering in a chemical-containing atmosphere allows a large amount of fluorine to be doped into the porous glass layer due to the affinity between boron oxide and fluorine without producing any unwanted products. Moreover, since boron oxide is relatively uniformly distributed in the quartz glass, fluorine is also distributed in the glass via this intervening material, so that a large amount of fluorine is doped uniformly. A quartz-based optical fiber base material can be manufactured.
第1図、第2図は本発明方法の各実施例により
製造される光フアイバ母材の略示説明図である。
1……棒状母材、2……多孔質ガラス層。
FIGS. 1 and 2 are schematic illustrations of optical fiber preforms manufactured by each embodiment of the method of the present invention. 1... Rod-shaped base material, 2... Porous glass layer.
Claims (1)
ガラスからなる棒状母材の外周に、酸化ホウ素含
有の高純度石英からなる多孔質ガラス層を形成し
た後、その多孔質ガラス層を、フツ素化剤を含む
雰囲気中にて焼結することを特徴とする石英系光
フアイバ母材の製造方法。1 After forming a porous glass layer made of high-purity quartz containing boron oxide on the outer periphery of a rod-shaped base material made of high-purity quartz-based porous glass or non-porous glass, the porous glass layer is A method for producing a quartz-based optical fiber base material, which comprises sintering in an atmosphere containing a curing agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3682784A JPS60180928A (en) | 1984-02-28 | 1984-02-28 | Production of quartz base material for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3682784A JPS60180928A (en) | 1984-02-28 | 1984-02-28 | Production of quartz base material for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60180928A JPS60180928A (en) | 1985-09-14 |
JPS6251215B2 true JPS6251215B2 (en) | 1987-10-29 |
Family
ID=12480573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3682784A Granted JPS60180928A (en) | 1984-02-28 | 1984-02-28 | Production of quartz base material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60180928A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS642106U (en) * | 1987-06-24 | 1989-01-09 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5152818A (en) * | 1990-11-09 | 1992-10-06 | Corning Incorporated | Method of making polarization retaining fiber |
US5203898A (en) * | 1991-12-16 | 1993-04-20 | Corning Incorporated | Method of making fluorine/boron doped silica tubes |
EP2712848B1 (en) | 2012-09-27 | 2017-11-29 | Heraeus Quarzglas GmbH & Co. KG | Hydrogen-assisted fluorination of soot bodies |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5567533A (en) * | 1978-11-07 | 1980-05-21 | Nippon Telegr & Teleph Corp <Ntt> | Production of glass base material for light transmission |
-
1984
- 1984-02-28 JP JP3682784A patent/JPS60180928A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5567533A (en) * | 1978-11-07 | 1980-05-21 | Nippon Telegr & Teleph Corp <Ntt> | Production of glass base material for light transmission |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS642106U (en) * | 1987-06-24 | 1989-01-09 |
Also Published As
Publication number | Publication date |
---|---|
JPS60180928A (en) | 1985-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0249230B1 (en) | Glass preform for dispersion shifted single mode optical fiber and method for the production of the same | |
JPH0138063B2 (en) | ||
US4690504A (en) | Quartz glass-made optical fibers and a method for the preparation thereof | |
Blankenship et al. | The outside vapor deposition method of fabricating optical waveguide fibers | |
US4812153A (en) | Method of making a glass body having a graded refractive index profile | |
JPS6251215B2 (en) | ||
EP0164127B1 (en) | Method for producing glass preform for optical fibers | |
JP3106564B2 (en) | Manufacturing method of optical fiber and silica-based optical fiber | |
JP2000203859A (en) | Quartz glass tube for optical fiber parent material and optical fiber parent material using the quartz glass for parent material | |
JPS61191544A (en) | Quartz base optical fiber | |
JPS62108744A (en) | Transparent vitrification method of porous glass base material | |
JPS6131324A (en) | Production of base material for optical fiber | |
US5641333A (en) | Increasing the retention of Ge02 during production of glass articles | |
JPH0463365B2 (en) | ||
JPS6081038A (en) | Manufacture of optical glass fiber containing tio2 | |
JPH0551542B2 (en) | ||
JPH038743A (en) | Optical fiber preform and preparation thereof | |
JPH0791088B2 (en) | Rare-earth element-doped silica glass optical fiber preform and method for producing the same | |
JP2831842B2 (en) | Manufacturing method of optical fiber base material | |
AU698054B2 (en) | Increasing the retention of GeO2 during production of glass articles | |
JPS61251539A (en) | Optical fiber | |
JPS6227014B2 (en) | ||
JPH0826763A (en) | Optical fiber and its production | |
JPS60231432A (en) | Manufacture of quartz series optical fiber base material | |
JPH0460056B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |