JPS6227014B2 - - Google Patents

Info

Publication number
JPS6227014B2
JPS6227014B2 JP55020623A JP2062380A JPS6227014B2 JP S6227014 B2 JPS6227014 B2 JP S6227014B2 JP 55020623 A JP55020623 A JP 55020623A JP 2062380 A JP2062380 A JP 2062380A JP S6227014 B2 JPS6227014 B2 JP S6227014B2
Authority
JP
Japan
Prior art keywords
glass
sio
gas
refractive index
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55020623A
Other languages
Japanese (ja)
Other versions
JPS56120539A (en
Inventor
Motohiro Nakahara
Shiro Kurosaki
Shigeru Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2062380A priority Critical patent/JPS56120539A/en
Publication of JPS56120539A publication Critical patent/JPS56120539A/en
Publication of JPS6227014B2 publication Critical patent/JPS6227014B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は長波長域での伝送損失が少い光伝送用
ガラスフアイバとその製造方法に関する。 最近光通信に用いられるフアイバの開発は急速
に進み一部は既に実用化されている。その一つに
はM−CVD法により作られた石英系フアイバが
ある。これまでは主にコアがGeO2−SiO2又は
GeO2−P2O5−SiO2クラツドがSiO2,P2O5−SiO2
又はP2O5−B2O3−SiO2の石英系フアイバが主と
して研究されて来た。これらフアイバの長波長域
での伝送損失についてはレーリ散乱損失や赤外吸
収のスソ野による吸収損失についての解析が進
み、それらは例えばばS.Sentsui eralらによる発
表(Optical Communication Conference 17−
19,1979 5.3)に見ることが出来る。 本発明は、上記に記載されているよりも長波長
での伝送損失がさらに小さいフアイバを提供する
ものである。 そしてまた放射線の環境下に対しても強いフア
イバーを提供するものである。 長波長領域(1.1〜1.6μm)での吸収損失は、
赤外吸収のスソ野の影響が大きいので、まずOH
基は極力低下させねばならなくさらにBやPの如
き軽元素もドーパントとしては好ましくなく、
GeO2,SnO2,PbO,As2O3,Sb2O3,Bi2O3のよ
うなドーパントが好ましい。特にOH基を少なく
するには原料ガスの反応系に水素の存在しないM
−CVDが好ましい。しかしM−CVDに於いて酸
化分解反応及び溶融ガラス化を同時に行う為
SiO2に添加するドーパントとしては少量でも溶
融温度を下げるドーパントが好ましい。 ここで上記ドーパントに相当する酸化物単体の
溶融温度は次表のように相違するので、この酸化
物単体の溶融温度を目安にすると、GeO2
SnO2,PbOは溶融温度が高いので好ましくな
く、またAs2O3は低過ぎるのでドープしにくい。
The present invention relates to a glass fiber for optical transmission with low transmission loss in a long wavelength region and a method for manufacturing the same. Recently, the development of fibers used in optical communications has progressed rapidly, and some have already been put into practical use. One of them is quartz fiber made by the M-CVD method. Until now, the core has mainly been GeO 2 −SiO 2 or
GeO 2 −P 2 O 5 −SiO 2 cladding is SiO 2 , P 2 O 5 −SiO 2
Or, silica-based fibers of P 2 O 5 -B 2 O 3 -SiO 2 have been mainly studied. Regarding the transmission loss of these fibers in the long wavelength range, analysis of Rayleigh scattering loss and absorption loss due to the Suso field of infrared absorption is progressing, and these are, for example, presented by S. Sentsui et al. (Optical Communication Conference 17-
19, 1979 5.3). The present invention provides a fiber with lower transmission losses at longer wavelengths than those described above. It also provides a fiber that is resistant to radiation environments. Absorption loss in the long wavelength region (1.1 to 1.6 μm) is
First, OH
The number of groups must be reduced as much as possible, and light elements such as B and P are also not preferred as dopants.
Dopants such as GeO2 , SnO2 , PbO, As2O3 , Sb2O3 , Bi2O3 are preferred. In particular, to reduce the number of OH groups, M
- CVD is preferred. However, in M-CVD, the oxidative decomposition reaction and the melting and vitrification are performed simultaneously.
The dopant added to SiO 2 is preferably a dopant that lowers the melting temperature even in a small amount. Here, the melting temperatures of the simple oxides corresponding to the above dopants are different as shown in the table below, so using the melting temperatures of the simple oxides as a guide, GeO 2 ,
SnO 2 and PbO are undesirable because their melting temperatures are high, and As 2 O 3 is difficult to dope because it is too low.

【表】 次に原料の点からみると常温付近でガス又は容
易にガス化出来る化合物が鉄や銅の不純物汚染を
避けるうえで大切である。例えば、Sicl4
Gecl4,Sncl4,Pbcl4,Ascl3,Sbcl3,Sbcl5は好
ましいが、Bicl2,Bicl3の融点は163℃,230℃と
高いので好ましくない。 従つてドーパントとしてはSb2O3がもつとも好
ましい。しかしコアとクラツドの屈折率差を大き
くしようとするとコアに多くのSb2O5をドープし
たSiO2ガラスを用い、クラツドには少いSb2O5
ドープしたSiO2ガラスを用いなければならな
い。このような場合に於いてはコアにはSb2O5
ドープ量が多いのでレーリ散乱損失が大きくな
り、またコアとクラツド間の膨張係数差のマツチ
ングがとれにくくなる。 そこで本発明ではFが屈折率を下げる作用のあ
ることに注目し、Sb2O3と組合せてFをドープす
ることにより、溶融温度を下げるというSb2O3
利点を生かしつつ屈折率差をも大きくし、かつ溶
融温度をもマツチングさせる。この場合、Sb2O3
は合成ガラスの溶融温度を下げるのでSb2O3をド
ープするとFもドープし易くなるという利点もあ
る。 このようなコ・ドーピングをすればコア、クラ
ツドの両方にドーピングするSb2O3の量は少なく
てすみ安価になるというメリツトもある。しかも
このコ・ドーピングは伝送損失には殆んど影響し
ないことも一層有利である。更にFないしSb2O3
をドープしたガラスは比較的放射線損傷に対して
耐久性があり、特に上記ガラスが低温度で合成さ
れることにより構造欠陥が少ない時には放射線に
強いフアイバであると云える。以上の条件を考慮
してコアとクラツドとにおけるSb2O3ないしFの
最適なドープ量を追求すると、コアにSb2O3を5
〜35重量%混入したとき溶融温度は1300〜1100℃
程度にまで下りまた屈折率は約1.470〜1.530程度
になる。一方クラツドにSb2O3とFとをそれぞれ
2〜25重量%および0を越えて5重量%を越えな
い程度混入したとき溶融温度は1350〜1150℃程度
になり更にコアとの熱膨張率の差も50%程度に抑
えられしかも屈折率差は0.3〜3.5%程度も開くこ
とができる。 以上、本発明の光伝送用ガラスフアイバは高屈
折率部分がSb2O3をドープしたSiO2ガラスからな
り、低屈折率部分がSb2O3およびFをドープした
SiO2ガラスからなることを特徴とする。 次に上記光伝送用ガラスフアイバの製造方法を
説明する。該製造方法はM−CVD法を利用す
る。まず、石英ガラス管をガラス旋ばんにかけて
回転しておきその外側を行きはゆつくり移動し帰
りは速く移動する酸水素炎等の火炎で外部を加熱
する。次にこのガラス管の内部に原料ガスとして
酸素と以下の組合せからなるガスを送る。勿論こ
の場合、He,N2等の不活性ガスをキヤリアガス
として用いてもよい。 a Sicl4,Sbcl5,F含有ガス(SoF2又はCF4
CCl5F2等) b SiF4,SbF5, c Sicl4,SbF5 d SiF4,Sbcl5 上記ガスは酸化分解してFおよびSb2O3をコド
ープしたSiO2ガラスとなり上記ガラス管の内側
に堆積しクラツドガラスになる。次にコアガラス
の原料ガスとして酸素ガスとSicl4,Sbcl5とを上
記ガラス管の内部に供給し、酸化分解させて、
Sb2O3をドープしたSiO2ガラスを生成し、これを
上記クラツドガラス層のうえに堆積させる。勿論
この場合も必要に応じ不活性ガス等をキヤリアガ
スとして用いてもよい。上記コアガラス,クラツ
ドガラスの積層したガラス管を高温に加熱しコラ
プスして溶融紡糸すれば上記光伝送用ガラスフア
イバを得ることができる。尚、上記製造方法にお
いては原料ガスとしてSicl4,Sbcl5,SiF4
SbF5,SoF2,CF4,CCl2F2等が取扱い易い。ま
た製造方法としてはM−CVD法を利用したがこ
れら原料ガスおよび製造方法の基本原理は必ずし
も上記のものに限らず実施することができる。 次に本発明の一実施例について述べる。 内径16mmφ,外径20mmφの石英ガラス管をガラ
ス旋ばんにかけ移動H2/O2炎で加熱しておき、
30℃のSicl4,90℃のSbF5の液の中にHeガスをそ
れぞれ300c.c./min,200c.c./minで送り込みこれ
らの飽和蒸気をO21000c.c./minと一緒にして上記
ガラス管の中に3時間送り込みSb2O3−F−SiO2
ガラスを内面に堆積させ、次いで30℃のSicl4
70℃のSbcl5の液の中にHeガスをそれぞれ200
c.c./min,200c.c./minで送り込みこれらの飽和蒸
気をO21000c.c./minと一緒にして上記ガラス管の
中に1時間送り込みSb2O3−SiO2ガラスを内面に
積層させた。この後さらに高温に加熱して
(H2/O2炎の移動はゆつくりした)該管をつぶし
16mmφのプレフオームを作つた。これを通電加熱
炉で2200℃にして150μφに紡糸し、プライマリ
ーコートを施しフアイバーとした。さらにナイロ
ンをかぶせて0.9mmφとした。このフアイバの損
失はλ=1.55μmで1.0dB/Km以下であり、放射
線( 60Co)下でも強かつた。 以上説明した本発明の光伝送用ガラスフアイバ
およびその製造方法は次の利点を有する。 (i) 長波長での低損失フアイバが得られる。 (ii) 製造が容易で低コストのフアイバが得られ
る。 (iii) 放射線に対しても強いフアイバが得られる。 (iv) 原料は安価であり取扱い容易である。
[Table] Next, from the point of view of raw materials, gases or compounds that can be easily gasified at room temperature are important in order to avoid impurity contamination of iron and copper. For example, Sicl 4 ,
Gecl 4 , Sncl 4 , Pbcl 4 , Ascl 3 , Sbcl 3 , and Sbcl 5 are preferred, but Bicl 2 and Bicl 3 have high melting points of 163°C and 230°C, so they are not preferred. Therefore, Sb 2 O 3 is preferred as the dopant. However, in order to increase the refractive index difference between the core and the cladding, it is necessary to use SiO 2 glass doped with a large amount of Sb 2 O 5 for the core, and use SiO 2 glass doped with a small amount of Sb 2 O 5 for the cladding. . In such a case, since the core is doped with a large amount of Sb 2 O 5 , Rayleigh scattering loss becomes large, and it becomes difficult to match the difference in expansion coefficient between the core and the cladding. Therefore, in the present invention, we focused on the fact that F has the effect of lowering the refractive index, and by doping F in combination with Sb 2 O 3 , we can reduce the refractive index difference while taking advantage of Sb 2 O 3 's advantage of lowering the melting temperature. and also match the melting temperature. In this case, Sb2O3
Since it lowers the melting temperature of synthetic glass, doping with Sb 2 O 3 also has the advantage of making it easier to dope with F. Such co-doping has the advantage that the amount of Sb 2 O 3 doped into both the core and the cladding can be reduced, resulting in lower costs. Moreover, it is further advantageous that this co-doping has almost no effect on transmission loss. Further F or Sb 2 O 3
Doped glasses are relatively resistant to radiation damage, and can be said to be radiation-resistant fibers, especially when the glasses are synthesized at low temperatures and thus have few structural defects. Considering the above conditions and pursuing the optimal doping amount of Sb 2 O 3 or F in the core and cladding, it was found that 50% of Sb 2 O 3 or F was doped in the core.
When mixed with ~35% by weight, the melting temperature is 1300~1100℃
The refractive index is about 1.470 to 1.530. On the other hand, when Sb 2 O 3 and F are mixed in the cladding in an amount of 2 to 25% by weight and more than 0 but not more than 5% by weight, the melting temperature becomes about 1350 to 1150℃, and the thermal expansion coefficient with the core increases. The difference can be suppressed to about 50%, and the difference in refractive index can be increased by about 0.3 to 3.5%. As described above, in the optical transmission glass fiber of the present invention, the high refractive index portion is made of SiO 2 glass doped with Sb 2 O 3 , and the low refractive index portion is made of SiO 2 glass doped with Sb 2 O 3 and F.
It is characterized by being made of SiO 2 glass. Next, a method of manufacturing the above optical transmission glass fiber will be explained. The manufacturing method utilizes the M-CVD method. First, a quartz glass tube is rotated in a glass lathe, and the outside of the tube is heated with a flame such as an oxyhydrogen flame that moves slowly on the way there and quickly on the way back. Next, a gas consisting of oxygen and the following combination is fed into the glass tube as a raw material gas. Of course, in this case, an inert gas such as He or N 2 may be used as the carrier gas. a Sicl 4 , Sbcl 5 , F-containing gas (SoF 2 or CF 4 ,
CCl 5 F 2 etc.) b SiF 4 , SbF 5 , c Sicl 4 , SbF 5 d SiF 4 , Sbcl 5 The above gases undergo oxidative decomposition to become SiO 2 glass co-doped with F and Sb 2 O 3 inside the above glass tube. It is deposited on the surface and becomes clad glass. Next, oxygen gas and Sicl 4 and Sbcl 5 are supplied to the inside of the glass tube as raw material gas for core glass, and oxidized and decomposed.
A SiO 2 glass doped with Sb 2 O 3 is produced and deposited on top of the clad glass layer. Of course, in this case as well, an inert gas or the like may be used as the carrier gas, if necessary. The above optical transmission glass fiber can be obtained by heating a glass tube in which the core glass and clad glass are laminated to a high temperature, collapsing it, and melt-spinning it. In addition, in the above manufacturing method, Sicl 4 , Sbcl 5 , SiF 4 ,
SbF 5 , SoF 2 , CF 4 , CCl 2 F 2 etc. are easy to handle. Furthermore, although the M-CVD method was used as the manufacturing method, these raw material gases and the basic principles of the manufacturing method are not necessarily limited to those described above and can be implemented. Next, one embodiment of the present invention will be described. A quartz glass tube with an inner diameter of 16 mmφ and an outer diameter of 20 mmφ was placed in a glass lathe and heated with a moving H 2 /O 2 flame.
He gas is fed into Sicl 4 at 30℃ and SbF 5 at 90℃ at 300c.c./min and 200c.c./min, respectively, and these saturated vapors are combined with O 2 at 1000c.c./min. Sb 2 O 3 −F−SiO 2 was then fed into the above glass tube for 3 hours.
Glass was deposited on the inner surface, then Sicl 4 at 30°C,
200% He gas in Sbcl 5 solution at 70℃
cc/min, 200c.c./min. These saturated vapors were combined with O 2 1000c.c./min and fed into the above glass tube for 1 hour to layer Sb 2 O 3 -SiO 2 glass on the inner surface. I let it happen. After this, the tube was crushed by heating it to a higher temperature (the movement of the H 2 /O 2 flame was slow).
I made a preform of 16mmφ. This was heated to 2200°C in an energized heating furnace, spun to a diameter of 150 μφ, and a primary coat was applied to form a fiber. Furthermore, it was covered with nylon to make it 0.9mmφ. The loss of this fiber was less than 1.0 dB/Km at λ = 1.55 μm, and was strong even under radiation ( 60 Co). The optical transmission glass fiber and the manufacturing method thereof of the present invention described above have the following advantages. (i) A fiber with low loss at long wavelengths can be obtained. (ii) Easy to manufacture and low cost fibers are obtained. (iii) Fibers that are resistant to radiation can be obtained. (iv) Raw materials are cheap and easy to handle.

Claims (1)

【特許請求の範囲】 1 高屈折率部分がSb2O3をドープしたSiO2ガラ
スからなり、低屈折率部分がSb2O3およびFをド
ープしたSiO2ガラスからなることを特徴とする
光伝送用ガラスフアイバ。 2 高屈折率部分のSb2O3の含有量が5〜35重量
%、低屈折率部分のSb2O3およびFの含有量がそ
れぞれ2〜25重量%および5重量%を越えない程
度であることを特徴とする特許請求の範囲1項記
載の光伝送用ガラスフアイバ。 3 往復移動する火炎により回転する高ケイ酸ガ
ラス管を外部より加熱し、該ガラス管の中にSiと
SbとFとをそれぞれ含む原料ガスとO2ガスとを
供給して該ガラス管の内側にSb2O3とFとを含有
したSiO2ガラスを積層し、引き続いて該ガラス
管の内部にSiCl4とSbCl5とO2ガスとを供給して上
記ガラス層のうえにSb2O3を含有したSiO2ガラス
を積層し、その後該ガラス体を溶融紡糸すること
を特徴とする光伝送用ガラスフアイバの製造方
法。 4 上記原料ガスがSiF4,SbF5であるかまたは
これらの他にSi含有ガスがSiCl4,Sb含有ガスが
SbCl5,F含有ガスがSOF2,CF4またはCCl2F2
であることを特徴とする特許請求の範囲第3項の
光伝送用ガラスフアイバの製造方法。
[Claims] 1. A light characterized in that the high refractive index portion is made of SiO 2 glass doped with Sb 2 O 3 and the low refractive index portion is made of SiO 2 glass doped with Sb 2 O 3 and F. Glass fiber for transmission. 2 The content of Sb 2 O 3 in the high refractive index part is 5 to 35% by weight, and the content of Sb 2 O 3 and F in the low refractive index part does not exceed 2 to 25% by weight and 5% by weight, respectively. A glass fiber for optical transmission according to claim 1, characterized in that: 3 A rotating high silicate glass tube is heated from the outside by a reciprocating flame, and Si and Si are heated inside the glass tube.
SiO 2 glass containing Sb 2 O 3 and F is laminated inside the glass tube by supplying raw material gas containing Sb and F, respectively, and O 2 gas, and then SiCl is layered inside the glass tube. 4 , SbCl 5 and O 2 gas are supplied, SiO 2 glass containing Sb 2 O 3 is laminated on the glass layer, and the glass body is then melt-spun. Method of manufacturing fiber. 4 The above raw material gas is SiF 4 or SbF 5 , or in addition to these, the Si-containing gas is SiCl 4 or Sb-containing gas.
SbCl 5 , F-containing gas is SOF 2 , CF 4 or CCl 2 F 2
A method of manufacturing a glass fiber for optical transmission according to claim 3, characterized in that:
JP2062380A 1980-02-22 1980-02-22 Optical transmission glass fiber and its manufacture Granted JPS56120539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2062380A JPS56120539A (en) 1980-02-22 1980-02-22 Optical transmission glass fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2062380A JPS56120539A (en) 1980-02-22 1980-02-22 Optical transmission glass fiber and its manufacture

Publications (2)

Publication Number Publication Date
JPS56120539A JPS56120539A (en) 1981-09-21
JPS6227014B2 true JPS6227014B2 (en) 1987-06-11

Family

ID=12032361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2062380A Granted JPS56120539A (en) 1980-02-22 1980-02-22 Optical transmission glass fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPS56120539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178511U (en) * 1987-05-11 1988-11-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2302066C1 (en) * 2005-09-22 2007-06-27 Научный центр волоконной оптики при Институте общей физики им. А.М. Прохорова Российской академии наук Fiber optic conductor for optical intensification of radiation at wavelengths ranging between 1000 and 1700 nm, methods for its manufacture, and fiber laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178511U (en) * 1987-05-11 1988-11-18

Also Published As

Publication number Publication date
JPS56120539A (en) 1981-09-21

Similar Documents

Publication Publication Date Title
US6374641B1 (en) Method of making an optical fiber by melting particulate glass in a glass cladding tube
US7469559B2 (en) Method for making low loss optical fiber
US4339173A (en) Optical waveguide containing P2 O5 and GeO2
US7181116B2 (en) Fiber optic cable and process for manufacturing
KR890001125B1 (en) Optical fifer
JPS60257408A (en) Optical fiber and its production
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
EP0028155B1 (en) Single mode optical fibre and method of making it
CA1266403A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS6227014B2 (en)
JPH0463365B2 (en)
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
JPH0524093B2 (en)
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JPS6251215B2 (en)
CA1233709A (en) Methods for producing optical fiber preform and optical fiber
JP3174682B2 (en) Method for producing glass preform for optical fiber
AU698054B2 (en) Increasing the retention of GeO2 during production of glass articles
JPH0813689B2 (en) Manufacturing method of optical fiber preform
JPS61281046A (en) Optical fiber
JPH0233657B2 (en) TIO2GANJUHIKARIFUAIBANOSEIZOHOHO
JPS63285128A (en) Production of optical fiber preform
JPS641414B2 (en)
Aggarwal et al. Optical waveguide containing P 2 O 5 and GeO 2
JPS63285137A (en) Quartz based fiber for optical communication and production thereof