JP3381309B2 - Method for producing glass particle deposit - Google Patents

Method for producing glass particle deposit

Info

Publication number
JP3381309B2
JP3381309B2 JP16895993A JP16895993A JP3381309B2 JP 3381309 B2 JP3381309 B2 JP 3381309B2 JP 16895993 A JP16895993 A JP 16895993A JP 16895993 A JP16895993 A JP 16895993A JP 3381309 B2 JP3381309 B2 JP 3381309B2
Authority
JP
Japan
Prior art keywords
glass
gas
raw material
flow rate
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16895993A
Other languages
Japanese (ja)
Other versions
JPH0725625A (en
Inventor
裕一 大賀
俊雄 彈塚
真澄 伊藤
寿美夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15877734&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3381309(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16895993A priority Critical patent/JP3381309B2/en
Publication of JPH0725625A publication Critical patent/JPH0725625A/en
Application granted granted Critical
Publication of JP3381309B2 publication Critical patent/JP3381309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は円柱状あるいは円筒状の
出発材の外周部に気相法によりガラス微粒子堆積体を製
造する方法に関し、本発明により製造される出発材とそ
の外周部に形成されたガラス微粒子堆積体からなる複合
体は特に高純度が要求される光ファイバ用母材製造の際
の中間製品として好適に用いられる。 【0002】 【従来の技術】従来、石英系ガラス管もしくは光フアイ
バ用母材の製造方法として、特開昭48−73522号
公報に示されたようないわゆる「外付法」がある。この
方法は、回転するカーボン、石英系ガラスあるいはアル
ミナなどの耐火性出発材の外周部に、SiCl4 などの
ガラス原料の加水分解反応により生成せしめたSiO2
などの微粒子状ガラスを堆積させていき、所定量堆積さ
せた後堆積を止め、出発材を引き抜き、パイプ状ガラス
集合体を形成し、このパイプ状ガラス集合体を高温雰囲
気電気炉中で焼結透明ガラス化してパイプ状ガラスを得
ている。或いは、同様の方法で出発材として中実の光フ
アイバ用ガラス母材を用い、出発材とその外周部に形成
されたガラス微粒子堆積体の複合体を形成したのち、出
発材を引き抜かず該複合体を高温炉中で加熱処理しガラ
ス微粒子堆積体の部分を焼結することにより出発材であ
る光フアイバ用ガラス母材の外周部にさらに透明ガラス
層を形成する方法がある。また、自らの軸を回転軸とし
て回転している実質的に円柱状或いは円筒状の出発材の
片端近傍から、該出発材の外周部上にガラス微粒子合成
用バーナーの火炎内にガラス原料を供給することにより
発生させたガラス微粒子を堆積させ始め、該バーナーを
出発材の軸と平行に相対的に移動させていくことによ
り、ガラス微粒子堆積体を出発材の外周部に軸方向に形
成し、その後、ガラス微粒子堆積体を高温加熱透明化す
る方法がある(特開昭61−186240号公報)。 【0003】 【発明が解決しようとする課題】上記従来方法において
は、図1に示す如くガラス微粒子合成用バーナ2を1本
ないし複数本用いてガラス微粒子堆積体を合成してい
る。一般にバーナ2の先端から燃料ガスとして例えばH
2 、CH4 等、助燃ガスとしてO2 、空気等が供給さ
れ、火炎3を形成する。この火炎3中にガラス原料とし
てSiCl4 、GeCl4 等が供給され、火炎中での加
水分解反応によりガラス微粒子SiO2 、GeO2 等が
生成される。また、原料収率を向上させるため、粘性係
数、密度の小さなガス、例えばH2 、He 等を原料ガス
と混合して供給している。生成したガラス微粒子は回転
する出発材1の外周部に堆積し、ガラス微粒子堆積体4
が形成される。ガラス微粒子堆積体4を形成し始める初
期の段階(種付け状態という)においては、図2に示す
ようにガラス微粒子堆積体41は小さい。この初期の段
階でのガラス微粒子堆積体の形状が変形してしまうと、
定常状態に移行する段階でスス割れを発生させたり、焼
結透明ガラス化したとき図7に示すように変形部が出発
材から剥離するという問題があり、良好な母材が得られ
なかった。本発明はこうした不良品の発生を防止し、品
質の高いガラス微粒子堆積体またはガラス体を安定に製
造することを目的としてなされたものである。 【0004】 【課題を解決するための手段】上記課題を解決するため
の手段として本発明は、自らの軸を回転軸として回転し
ている実質的に円柱状もしくは円筒状の出発材の片端近
傍から該出発材の外周部上にガラス微粒子合成用バーナ
の火炎内にガラス原料を供給することにより生成させた
ガラス微粒子を堆積させ始め、該バーナを該出発材の軸
と平行に相対的に移動させていくことによりガラス微粒
子堆積体を該出発材の外周部に形成していく方法におい
て、ガラス原料投入開始後定常状態に達するまでの移行
段階においてはガラス原料ガスの流量を漸次増加してゆ
き且つ該ガラス原料ガスの流量変化率を初期では小さく
その後より大きくなるように変化させると同時に原料ガ
スに混合する水素ガスまたはヘリウムガスの流量を漸次
減少させてガラス微粒子の合成を行なうことを特徴とす
る。本明細書において「定常状態」とは、ガラス微粒子
堆積体の成長状態が定常となった状態を意味するのでは
なく、原料投入開始後ガラス微粒子堆積体の成長が定常
となる以前に予め各ガス(可燃性ガス,助燃性ガス,不
活性ガス等の一般ガスおよびガラス原料ガス)の流量が
ガラス微粒子堆積体成長定常時の一定流量にされた状態
を意味する。「種付け状態」とは原料投入開始後堆積初
期において上記定常状態に至るまでの移行段階を意味す
る。「流量変化率」とは、「単位時間当たりの流量変化
量」を意味する。 【0005】 【作用】本発明者らは割れや変形等のない良好なガラス
微粒子堆積体、あるいはその後の焼結工程でも剥離等の
ないガラス微粒子堆積体を得るためには、堆積初期の種
付け段階のガラス微粒子堆積体の形状を良好にする必要
があるとの知見を得た。種付け状態、特に原料投入後6
0分間の種付け初期の原料投入量が必要以上に多くなる
と円柱状または円筒状出発材に付着したガラス微粒子の
堆積面形状が変形してくる。この様子を図3の(b)に
示す。その結果、種付け形状もきれいなテーパ状になら
ず、図6の(b)に示すように変形を残したガラス微粒
子堆積体が形成されて、この変形が大きくなると、種付
け状態から定常状態に火炎が移行する段階でスス割れ
(堆積面表面が剥離してくる)を生じる。また、たとえ
ガラス微粒子堆積体の段階では割れずに製品が得られた
としても、図7に示すように焼結中に該出発材とガラス
微粒子とが剥離し、良好なガラス体は得られない。本発
明者らは研究を重ねた結果、良好なガラス微粒子堆積体
を得るには、種付け初期の段階での原料投入量を必要最
小限に止めることによって、堆積面形状を良好な状態に
保ち、かつ堆積面が充分成長してきたならば、収率を向
上させ、すみやかに定常状態に移行させるよう種付時の
流量条件を調整することが肝要であることを見いだし
た。 【0006】以下、具体的な種付け状態の流量条件を説
明する。本発明の第1の方法は(i)ガラス原料の流量変
化率を変えて行なう。即ち、図4に示すように種付け初
期は原料が付着する面積が小さく、ガラス微粒子の堆積
が僅かに進行するだけなので、原料流量を抑え、徐々に
増加させる。その後、堆積面が大きくなってきたら、具
体的には時間にして原料投入後30〜60分間経過後、
原料増加率を増し、徐々に原料収率も向上させる。 【0007】本発明の第2の方法は(ii)ガラス原料と混
合するH2 ガス、ヘリウムガスの流量を変化させて、堆
積面形状を制御する。この方法は原料収率は原料ガスが
堆積面に到達するまでの反応時間に依存することを利用
する。即ち種付け初期では定常状態での堆積面位置に対
してバーナ先端/堆積面間距離が長くなる。従って、ガ
ス流速を速くして反応時間を短くするか、逆に流速を遅
くして原料ガスを拡散させれば、堆積面に付着するガラ
ス量を制御することが可能であり、種付け状態で原料ガ
スに混合するH2 ガスまたはHe ガスの流量を変化させ
る。上記i),ii) いずれかの方法により種付け状態で良
好な堆積面形状を作ることによって、種付け部の変形,
スス割れを防止することができる。 【0008】 【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるところはない。 〔実施例1〕水素ポートと酸素ポートの組合せを3組持
つ同心円状3重火炎バーナを用いて本発明に従いガラス
微粒子堆積体を製造した。第1ポート(中心ポート)に
はガラス原料であるSiCl4 とH2 ガスを混合して供
給した。また、第2,6,10ポートにはH2 ガス、第
4,8,12ポートにはO2 ガス、第3,5,7,9,
11ポートにはAr ガスを各々供給した。SiCl4
料ガスの設定は図4の時間(横軸、分)とSiCl4
量(縦軸、リットル/分)のグラフに示す流量変化とな
るようにした。すなわち、原料投入開始時には3SLM
(リットル/分)供給し、その後60分間かけて6SLM
まで0.05SLM /分の割合(流量変化率)で増量し、
その後更に60分間かけて定常流量である15SLM まで
0.15SLM /分の流量変化率で増量した。また更にS
iCl4 ガスに混合して第1ポートに供給するH2 ガス
の流量は原料投入開始時の15SLM から10分間かけて
14SLM に減量し、その後30分間かけて10SLM まで
減量した。この様子を図5に示す。図5において横軸は
時間(分)、縦軸はH2 ガス流量(リットル/分)を示
す。また、第2,6,10ポートに供給するH2 ガスは
各々4→9SLM (第2ポート)、60→70SLM (第6
ポート)、120→200SLM (第10ポート)のよう
に90ないし120分間かけて単調に増加させた。O2
ガスは第4ポートに40SLM 、第8ポートに70SLM 、
第12ポートに140SLM 、Ar ガスは第3ポートに3
SLM 、第5,7ポートに6SLM 、第9,11ポートに1
2SLM を原料導入開始時から一定流量で供給した。上記
条件でガラス微粒子を円柱状出発ロッド外周に堆積させ
たところ、60分後の堆積面形状は図3(a)に示すよ
うに上部変形のない良好な形状のものが得られた。更に
定常状態に移行し、外径250mmφ、長さ800mm
のガラス微粒子堆積体を得た。〔図6(a)参照〕、該
母材を焼結炉にて透明化させたところ剥離のない良好な
ガラス母材を得ることができた。 【0009】〔比較例1〕実施例1と同様の構成におい
て、ガラス原料の増量パターンを図4に破線で示すよう
に、原料投入開始時の3SLM から定常流量である15SL
M まで120分間かけて単調増加させて、ガラス微粒子
を堆積させたところ、スタート後60分の堆積面形状
は、図3(b)に示すように上部で変形をきたした。そ
の後続けてガラス微粒子の合成を行ったところ、図6
(b)に示すように出発ガラスロッドと堆積体の複合体
を得た。外径250mmφ、長さ800mm。該母材を
焼結炉にて透明化したところ、変形部の上部の部分で出
発材と焼結部が剥離した。この状態を図7に示す。 【0010】〔比較例2〕比較例1と同じ構成にて、ガ
ラス原料の投入開始時から定常流量になるまで単調増加
させる際の時間を120分間から90分間に短縮してガ
ラス微粒子の合成を行ったところ、スタート後60分間
での変形は更に大きくなり、定常状態に移行する段階に
おいて、堆積面表面のガラス微粒子が剥離した。即ち、
スス割れした。 【0011】〔比較例3〕実施例1と同様の構成におい
て、ガラス原料ポートに添加するH2 流量を図5に示し
たように14SLM で一定とした。その結果、種付け初期
の30分間で1ポート流速は5.3m/sから6.7m
/sに速くなり、種付け初期の原料収率が上がる。この
原料収率が上がった分だけ、種付け時の変形も大きくな
り、ガラス微粒子複合体は合成できたものの透明ガラス
化工程にて変形部の上部の出発材と焼結部が剥離した
〔図7参照〕。 【0012】〔実施例2〕実施例1と同一の同心円状3
重火炎バーナを用い、第1ポート(中心ポート)には、
ガラス原料であるSiCl4 とHeガスを混合して供給
した。また、第2,6,10ポートにはH2 ガス、第
4,8,12ポートにはO2 ガス、第3,5,7,9,
11ポートにはAr ガスを各々供給した。SiCl4
料ガスの設定は実施例1と同様とした。また、Heガス
流量は原料投入開始時の15SLM から20分間かけて1
0SLM まで単調に減少させた。また、第2,6,10ポ
ートに供給するH2 ガスは各々20SLM →13SLM (第
2ポート)、70SLM →85SLM (第6ポート)、12
0SLM →200SLM (第10ポート)のように90分間
から120分間かけて単調に増加させた。O2ガス、Ar
ガスの流量設定は実施例1と同様とした。上記条件で
ガラス微粒子を円柱状出発ロッド外周に堆積させたとこ
ろ、60分後の堆積面形状は図3(a)に示すように上
部変形のない良好な形状のものが得られた。更に定常状
態に移行し、外径250mmφ、長さ800mmφのガ
ラス微粒子堆積体を得た。該母材を焼結炉にて透明化さ
せたところ、剥離のない良好なガラス母材が得られた。 【0013】 【発明の効果】以上説明したように、本発明によるガラ
ス微粒子堆積体製造初期における堆積面の変形を抑える
ことが可能となり、かつその後のガラス微粒子の堆積、
成長も効率的に行なうことができる。従って、大型母材
製造時にも割れや剥離を生じさせることなく高品質なガ
ラス体を安定に製造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glass fine particle deposit on the outer periphery of a cylindrical or cylindrical starting material by a gas phase method. The composite comprising the starting material and the glass fine particle deposit formed on the outer peripheral portion thereof is suitably used as an intermediate product in the production of a base material for an optical fiber that requires particularly high purity. 2. Description of the Related Art Conventionally, as a method for producing a quartz glass tube or a base material for an optical fiber, there is a so-called "external method" as disclosed in JP-A-48-73522. According to this method, SiO 2 formed by a hydrolysis reaction of a glass material such as SiCl 4 on the outer periphery of a refractory starting material such as rotating carbon, quartz glass or alumina.
After a predetermined amount of glass is deposited, the deposition is stopped after a predetermined amount is deposited, the starting material is pulled out, a pipe-shaped glass aggregate is formed, and this pipe-shaped glass aggregate is sintered in a high-temperature atmosphere electric furnace. It is made into transparent glass to obtain pipe-shaped glass. Alternatively, a composite of a starting material and a glass fine particle deposit formed on the outer peripheral portion thereof is formed by using a solid glass base material for optical fiber as a starting material in the same manner, and then the starting material is not pulled out. There is a method in which a transparent glass layer is further formed on an outer peripheral portion of a glass base material for an optical fiber, which is a starting material, by subjecting the body to a heat treatment in a high-temperature furnace and sintering the portion of the glass fine particle deposit. In addition, from the vicinity of one end of a substantially cylindrical or cylindrical starting material rotating around its own axis as a rotation axis, glass material is supplied into the flame of a burner for synthesizing glass fine particles onto the outer peripheral portion of the starting material. By starting to deposit the glass fine particles generated by doing, by moving the burner relatively parallel to the axis of the starting material, to form a glass fine particle deposit on the outer peripheral portion of the starting material in the axial direction, After that, there is a method of heating and clearing the glass particle deposit at a high temperature (Japanese Patent Application Laid-Open No. 61-186240). In the above-mentioned conventional method, as shown in FIG. 1, one or more burners 2 for synthesizing glass fine particles are used to synthesize a glass fine particle deposit. Generally, for example, H
O 2 , air and the like are supplied as auxiliary combustion gases such as 2 and CH 4 to form a flame 3. SiCl 4 , GeCl 4, and the like are supplied as glass raw materials into the flame 3, and glass particles SiO 2 , GeO 2, and the like are generated by a hydrolysis reaction in the flame. Further, in order to improve the raw material yield, a gas having a small viscosity coefficient and a low density, for example, H 2 , He or the like is mixed with the raw material gas and supplied. The generated glass fine particles are deposited on the outer peripheral portion of the rotating starting material 1 and the glass fine particle deposit 4
Is formed. In an initial stage (referred to as a seeding state) in which the formation of the glass particle deposit 4 is started, the glass particle deposit 41 is small as shown in FIG. If the shape of the glass particle deposit at this early stage is deformed,
There was a problem that soot cracks were generated at the stage of transition to the steady state, and when the glass was sintered and transparent vitrified, the deformed portion was separated from the starting material as shown in FIG. 7, and a good base material could not be obtained. An object of the present invention is to prevent such defective products from occurring and stably produce a high-quality glass particle deposit or glass body. [0004] As a means for solving the above-mentioned problems, the present invention is directed to a substantially columnar or cylindrical starting material near one end which is rotated about its own axis as a rotation axis. Starts depositing the glass particles generated by supplying the glass raw material into the flame of the glass particle synthesis burner on the outer peripheral portion of the starting material, and moves the burner relatively in parallel with the axis of the starting material. In the method of forming the glass fine particle deposit on the outer peripheral portion of the starting material by causing the glass raw material gas to flow, the flow rate of the glass raw material gas is gradually increased in a transition stage from the start of the introduction of the glass raw material to a steady state. In addition, the rate of change of the flow rate of the glass raw material gas is changed so as to be smaller in the initial stage and then larger, and at the same time, the flow rate of the hydrogen gas or the helium gas mixed with the raw material gas is gradually reduced. And synthesizing the glass fine particles. In the present specification, the "steady state" does not mean a state in which the growth state of the glass fine particle deposit is in a steady state. This means a state in which the flow rates of (a general gas such as a combustible gas, an auxiliary gas, and an inert gas and a glass raw material gas) are set to a constant flow rate during steady growth of the glass fine particle deposit. The “seed state” means a transition stage from the start of the input of raw materials to the above-mentioned steady state in the initial stage of deposition. “Flow rate change rate” means “flow rate change amount per unit time”. In order to obtain a good glass particle deposit without cracking or deformation, or a glass fine particle deposit without peeling even in the subsequent sintering process, the inventors of the present invention set a seeding stage in the initial stage of deposition. It was found that it was necessary to improve the shape of the glass fine particle deposit. Seeding condition, especially after input of raw material 6
If the raw material input amount in the initial stage of seeding for 0 minute is more than necessary, the shape of the deposition surface of the glass fine particles attached to the columnar or cylindrical starting material is deformed. This is shown in FIG. As a result, the seeding shape does not become a clean tapered shape, and a glass fine particle deposit with deformation left is formed as shown in FIG. 6B, and when this deformation increases, the flame changes from the seeding state to a steady state. At the transition stage, soot cracks (separation of the surface of the deposition surface) occur. Further, even if a product is obtained without cracking at the stage of depositing the glass fine particles, the starting material and the glass fine particles are separated during sintering as shown in FIG. 7, and a good glass body cannot be obtained. . As a result of repeated studies, the present inventors have found that in order to obtain a good glass particle deposit, the deposition surface shape is maintained in a good state by minimizing the amount of raw material input at the initial stage of seeding, And, when the sedimentation surface has grown sufficiently, it has been found that it is important to improve the yield and adjust the flow rate condition at the time of seeding so as to promptly shift to the steady state. The specific flow conditions in the seeded state will be described below. The first method of the present invention is performed by changing the flow rate of the glass raw material (i). That is, as shown in FIG. 4, in the initial stage of seeding, the area to which the raw material adheres is small, and the deposition of the glass fine particles proceeds only slightly. Therefore, the flow rate of the raw material is suppressed and gradually increased. After that, when the deposition surface becomes larger, specifically, after a lapse of 30 to 60 minutes after charging the raw material,
Increase the rate of increase in raw materials and gradually improve the yield of raw materials. In the second method of the present invention, (ii) the shape of the deposition surface is controlled by changing the flow rates of H 2 gas and helium gas mixed with the glass raw material. This method utilizes the fact that the raw material yield depends on the reaction time until the raw material gas reaches the deposition surface. That is, at the initial stage of seeding, the distance between the tip of the burner and the deposition surface becomes longer than the deposition surface position in the steady state. Therefore, if the gas flow rate is increased to shorten the reaction time, or conversely, the flow rate is decreased to diffuse the source gas, the amount of glass adhering to the deposition surface can be controlled, and the source material can be controlled in a seeded state. The flow rate of H 2 gas or He gas mixed with the gas is changed. By forming a good sedimentary surface shape in the seeded state by either of the above methods i) and ii), deformation of the seeded part,
Soot cracking can be prevented. Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. Example 1 A glass particle deposit was manufactured according to the present invention using a concentric triple flame burner having three sets of combinations of a hydrogen port and an oxygen port. The first port (center port) was mixed and supplied with SiCl 4 as a glass raw material and H 2 gas. In addition, H 2 gas is in ports 2 , 6, and 10, O 2 gas is in ports 4, 8, and 12, and ports 3, 5, 7, 9,
Ar gas was supplied to each of the 11 ports. The SiCl 4 source gas was set so that the flow rate changes as shown in the graph of time (horizontal axis, minute) and flow rate of SiCl 4 (vertical axis, liter / minute) in FIG. In other words, at the time of starting material input, 3SLM
(Liter / min), then 6 SLM over 60 minutes
Up to 0.05 SLM / min (flow rate change rate)
Thereafter, the flow rate was increased over a further 60 minutes to a steady flow rate of 15 SLM at a flow rate change rate of 0.15 SLM / min. And also S
The flow rate of the H 2 gas mixed with the iCl 4 gas and supplied to the first port was reduced from 15 SLM at the start of the raw material introduction to 14 SLM in 10 minutes, and then reduced to 10 SLM in 30 minutes. This is shown in FIG. In FIG. 5, the horizontal axis represents time (minutes), and the vertical axis represents H 2 gas flow rate (liter / minute). The H 2 gas supplied to the second, second, sixth and tenth ports is 4 → 9 SLM (second port) and 60 → 70 SLM (sixth port).
(Port 10), 120 → 200 SLM (10th port) and monotonically increased over 90 to 120 minutes. O 2
Gas is 40SLM in the 4th port, 70SLM in the 8th port,
140SLM in port 12 and Ar gas 3 in port 3
SLM, 6 SLM on ports 5 and 7, 1 on ports 9 and 11
2 SLM was supplied at a constant flow rate from the start of raw material introduction. When the glass fine particles were deposited on the outer periphery of the cylindrical starting rod under the above conditions, the deposited surface shape after 60 minutes had a good shape without upper deformation as shown in FIG. 3A. Furthermore, it shifts to the steady state, outer diameter 250mmφ, length 800mm
Was obtained. [See FIG. 6 (a)] When the base material was made transparent in a sintering furnace, a good glass base material without peeling was obtained. Comparative Example 1 In the same configuration as in Example 1, the increasing pattern of the glass raw material is shown by a broken line in FIG.
When the glass fine particles were deposited by monotonically increasing to M over 120 minutes, the deposited surface shape was deformed at the upper portion 60 minutes after the start, as shown in FIG. 3 (b). After that, the synthesis of glass particles was performed.
As shown in (b), a composite of the starting glass rod and the deposit was obtained. Outer diameter 250mmφ, length 800mm. When the base material was made transparent in a sintering furnace, the starting material and the sintered part were separated at the upper part of the deformed part. This state is shown in FIG. [Comparative Example 2] With the same structure as Comparative Example 1, the time for monotonously increasing the flow from the start of charging the glass material to the steady flow rate was reduced from 120 minutes to 90 minutes to synthesize glass fine particles. As a result, the deformation within 60 minutes after the start was further increased, and the glass particles on the surface of the deposition surface were separated at the stage of transition to the steady state. That is,
Soot cracked. Comparative Example 3 In the same configuration as in Example 1, the flow rate of H 2 added to the glass raw material port was kept constant at 14 SLM as shown in FIG. As a result, the one-port flow velocity was increased from 5.3 m / s to 6.7 m in the first 30 minutes after sowing.
/ S, and the raw material yield in the early stage of seeding increases. Due to the increase in the yield of the raw material, the deformation at the time of seeding became large, and although the glass particulate composite was synthesized, the starting material and the sintered part at the upper part of the deformed part were separated in the transparent vitrification process [FIG. reference〕. [Embodiment 2] The same concentric circles 3 as in Embodiment 1
Using a heavy flame burner, the first port (center port)
A glass raw material, SiCl 4, and He gas were mixed and supplied. In addition, H 2 gas is in ports 2 , 6, and 10, O 2 gas is in ports 4, 8, and 12, and ports 3, 5, 7, 9,
Ar gas was supplied to each of the 11 ports. The setting of the SiCl 4 source gas was the same as in Example 1. In addition, the He gas flow rate is changed from 15 SLM at the time of starting material input to 20 minutes.
Monotonically reduced to 0 SLM. The H 2 gas supplied to the second, sixth, and tenth ports is 20 SLM → 13 SLM (second port), 70 SLM → 85 SLM (sixth port), and 12 SLM, respectively.
It increased monotonically from 90 minutes to 120 minutes like 0SLM → 200SLM (10th port). O 2 gas, Ar
The gas flow rate was set as in Example 1. When the glass fine particles were deposited on the outer periphery of the cylindrical starting rod under the above conditions, the deposited surface shape after 60 minutes had a good shape without upper deformation as shown in FIG. 3A. The state was further shifted to a steady state, and a glass particle deposit having an outer diameter of 250 mmφ and a length of 800 mmφ was obtained. When the base material was made transparent in a sintering furnace, a good glass base material without peeling was obtained. As described above, it is possible to suppress the deformation of the deposition surface in the initial stage of manufacturing the glass fine particle deposit according to the present invention, and to deposit the glass fine particles thereafter.
Growth can also be performed efficiently. Therefore, a high-quality glass body can be stably manufactured without causing cracking or peeling even when a large-sized base material is manufactured.

【図面の簡単な説明】 【図1】は本発明及び従来法の構成を概略説明する図で
ある。 【図2】はガラス微粒子堆積体製造における種付け初期
のガラス微粒子堆積状態を説明する概略図である。 【図3】は種付け初期の堆積面形状を説明する図であ
る。 【図4】はガラス原料の流量変化パターンを説明する図
である。 【図5】はH2 ガスの流量変化パターンを説明する図で
ある。 【図6】は出発材とガラス微粒子の複合体形状を説明す
る図である。 【図7】は透明ガラス化後のガラス体形状を説明する図
である。 【符号の説明】 1 出発材 2 バーナ 3 火炎 4 ガラス微粒子堆積体 41 種付け初期のガラス微粒子堆積体 5 透明ガラス体
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically illustrating configurations of the present invention and a conventional method. FIG. 2 is a schematic diagram illustrating a state of depositing glass fine particles at the initial stage of seeding in manufacturing a glass fine particle deposit. FIG. 3 is a diagram for explaining the shape of a deposition surface at the initial stage of seeding. FIG. 4 is a diagram illustrating a flow rate change pattern of a glass raw material. FIG. 5 is a diagram for explaining a flow rate change pattern of H 2 gas. FIG. 6 is a diagram illustrating a composite shape of a starting material and glass fine particles. FIG. 7 is a diagram for explaining a glass body shape after vitrification. [Description of Signs] 1 Starting material 2 Burner 3 Flame 4 Glass fine particle deposit 41 Glass fine particle deposit at initial seeding 5 Transparent glass

フロントページの続き (72)発明者 星野 寿美夫 神奈川県横浜市栄区田谷町1番地 住友 電気工業株式会社横浜製作所内 (56)参考文献 特開 昭62−182132(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03B 8/04 G03B 20/00 G03B 37/00 - 37/16 Continuation of the front page (72) Inventor Sumio Hoshino 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (56) References JP-A-62-182132 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) G03B 8/04 G03B 20/00 G03B 37/00-37/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】 自らの軸を回転軸として回転している実
質的に円柱状もしくは円筒状の出発材の片端近傍から該
出発材の外周部上にガラス微粒子合成用バーナの火炎内
にガラス原料を供給することにより生成させたガラス微
粒子を堆積させ始め、該バーナを該出発材の軸と平行に
相対的に移動させていくことによりガラス微粒子堆積体
を該出発材の外周部に形成していく方法において、ガラ
ス原料投入開始後定常状態に達するまでの移行段階にお
いてはガラス原料ガスの流量を漸次増加してゆき且つ該
ガラス原料ガスの流量変化率を初期では小さくその後よ
り大きくなるように変化させると同時に原料ガスに混合
する水素ガスまたはヘリウムガスの流量を漸次減少させ
てガラス微粒子の合成を行なうことを特徴とするガラス
微粒子堆積体の製造方法。
(57) [Claims 1] From the vicinity of one end of a substantially cylindrical or cylindrical starting material rotating around its own axis as a rotation axis, glass fine particles are formed on the outer peripheral portion of the starting material. The glass fine particles generated by supplying the glass raw material into the flame of the synthesis burner are started to be deposited, and the burner is relatively moved in parallel with the axis of the starting material to thereby form the glass fine particle deposit. In the method of forming on the outer peripheral portion of the starting material, the flow rate of the glass raw material gas is gradually increased in a transition stage from the start of the introduction of the glass raw material until the steady state is reached, and the flow rate change rate of the glass raw material gas is initially set. In this method, glass particles are synthesized by changing the flow rate of hydrogen gas or helium gas mixed with the raw material gas gradually while changing the flow rate to be smaller and then larger. Manufacturing method of the scan particles deposit.
JP16895993A 1993-07-08 1993-07-08 Method for producing glass particle deposit Expired - Fee Related JP3381309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16895993A JP3381309B2 (en) 1993-07-08 1993-07-08 Method for producing glass particle deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16895993A JP3381309B2 (en) 1993-07-08 1993-07-08 Method for producing glass particle deposit

Publications (2)

Publication Number Publication Date
JPH0725625A JPH0725625A (en) 1995-01-27
JP3381309B2 true JP3381309B2 (en) 2003-02-24

Family

ID=15877734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16895993A Expired - Fee Related JP3381309B2 (en) 1993-07-08 1993-07-08 Method for producing glass particle deposit

Country Status (1)

Country Link
JP (1) JP3381309B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446421B2 (en) * 2016-10-25 2018-12-26 株式会社フジクラ Optical fiber preform manufacturing method

Also Published As

Publication number Publication date
JPH0725625A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
KR880001607B1 (en) Preparation for making of glass fiber preform
US7437893B2 (en) Method for producing optical glass
JP3381309B2 (en) Method for producing glass particle deposit
JP2006206356A (en) Quartz glass preform for optical fiber and its manufacturing method
JP4742429B2 (en) Method for producing glass particulate deposit
JP3221059B2 (en) Method for producing glass particle deposit
JPH1081537A (en) Production of porous optical fiber preform
JPH0733469A (en) Production of preform for optical fiber
JPH05319849A (en) Production of silica porous preform
JP3003173B2 (en) Method for producing glass particle deposit
JPS62162646A (en) Production of glass fine particle deposit
JP3654232B2 (en) Optical fiber preform manufacturing method
JPH0761877B2 (en) Method for manufacturing glass particulate deposit
JPH1121143A (en) Production of preform for optical fiber
JP2603472B2 (en) Manufacturing method of porous quartz glass base material
JP2770103B2 (en) Manufacturing method of optical fiber preform
JPH0563417B2 (en)
JPS593027A (en) Manufacture of glass base material for optical fiber
JPS63123828A (en) Production of porous preform for optical fiber
JPS62182131A (en) Production of piled material of glass fine particle
JP2004026610A (en) Method for manufacturing porous preform for optical fiber
JP2003267744A (en) Method for producing optical fiber glass preform
JP3818567B2 (en) Method for producing synthetic quartz glass ingot
JPH02133331A (en) Production of fine glass particle-deposited body
JPH0776108B2 (en) Method for manufacturing base material for optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees