JPS62265141A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS62265141A
JPS62265141A JP10679886A JP10679886A JPS62265141A JP S62265141 A JPS62265141 A JP S62265141A JP 10679886 A JP10679886 A JP 10679886A JP 10679886 A JP10679886 A JP 10679886A JP S62265141 A JPS62265141 A JP S62265141A
Authority
JP
Japan
Prior art keywords
glass
burner
base material
granular
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10679886A
Other languages
Japanese (ja)
Other versions
JPH0776108B2 (en
Inventor
Masahiro Takagi
政浩 高城
Hiroshi Yokota
弘 横田
Toshio Danzuka
弾塚 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61106798A priority Critical patent/JPH0776108B2/en
Publication of JPS62265141A publication Critical patent/JPS62265141A/en
Publication of JPH0776108B2 publication Critical patent/JPH0776108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To stably and efficiently produce a porous base material for an optical fiber by maintaining the distance between the end face of a burner and the deposition surface of granular glass in an optimum range in the deposition stage of the granular glass to a starting material. CONSTITUTION:A method for producing the porous glass base material by ejecting a glass raw material from the combustion burner, depositing the granular glass formed by the same on the rotating starting material or arbor and growing the same in the rotation axis direction is executed in the following manner: The burner 1 is gradually moved distant from the granular glass deposition surface 3 along the Z-axis direction 2 of the burner 1 by which the relative distance between the burner 1 and the surface 3 is maintained within the specified range until the normal state is attained. The operations as in the conventional practice may be executed when the stationary state is attained. The attainment of the normal state refers to the initial production stage since the start of the deposition of the granular glass on the starting material or arbor until the outside diameter of the porous glass base material becomes normal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特に高純度が要求される光フアイバ用母材の製
造方法に関し、詳しくは多孔質ガラス母材を効率良く安
定に製造できる方法に係わるものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing a base material for optical fiber, which particularly requires high purity, and more particularly, to a method for efficiently and stably manufacturing a porous glass base material. It is related.

〔従来の技術〕[Conventional technology]

一般に多孔質ガラス母材の製造においては、燃焼バーナ
から燃焼ガス、ガラス原料等を混合噴出し、火炎中にお
いて上記ガラス原料等の化学反応により生じた粒状ガラ
スを、回転する出発材又は心棒の上に堆積させる方法が
用いられる。
Generally, in the production of porous glass base materials, combustion gas, glass raw materials, etc. are mixed and ejected from a combustion burner, and granular glass produced by a chemical reaction of the glass raw materials, etc. in the flame is placed on a rotating starting material or mandrel. A method of depositing the material is used.

この方法において、従来燃焼バーナの位置は、多孔質ガ
ラス母材の定常時(母材の成長が定常となった状態)の
最適製造条件のみに着目して決められていた。すなわち
、原料が十分反応してガラス微粒子になるKは、堆積面
と反応開始点の距離がある程度必要であシ、又逆に離れ
すぎると粒子流が広がってしまうため、堆積効率(原料
収率)が落ちてしまうので、通常、定常状態で一番効率
の良い位fLKバーナ等は固定されている。
In this method, the position of the combustion burner has conventionally been determined by focusing only on the optimal manufacturing conditions when the porous glass base material is steady (the state where the growth of the base material is steady). In other words, for K to fully react with the raw material to form glass fine particles, there needs to be a certain distance between the deposition surface and the reaction starting point, and conversely, if the distance is too far, the particle flow will spread, which will reduce the deposition efficiency (raw material yield). ) will fall, so normally the fLK burner etc. is fixed to the point where it is most efficient in a steady state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、前記の従来法によシ大型母材を製造する場合
には、特に出発材又は心棒の径は通常製造する多孔質ガ
ラス母材の径に比べて非常に小さく、上記出発材又は心
棒に粒状ガラスが堆積し始めてから、多孔質ガラス母材
の成長が定常状態となるまで、すなわちこの初期の製造
段階には、かなりの時間を要する。しかしながら、従来
法では該初期製造段階においても、上記出発材又は心棒
と上記燃焼バーナとの相対位置は、ガラス多孔質母材の
成長の定常状態において最適である位置に固定されたま
まである。
By the way, when producing a large-sized base material by the above-mentioned conventional method, the diameter of the starting material or the mandrel is very small compared to the diameter of the porous glass base material that is usually produced, and the starting material or the mandrel is It takes a considerable amount of time from the time the granular glass begins to be deposited until the growth of the porous glass matrix reaches a steady state, ie, this early manufacturing stage. However, in conventional methods, even during the initial production stage, the relative position of the starting material or mandrel and the combustion burner remains fixed at a position that is optimal in the steady state of growth of the glass porous matrix.

すなわち、該初期製造段階においては、粒状ガラスの堆
積面と該燃焼バーナの相対距離は時々刻々短かくなる。
That is, in the initial manufacturing stage, the relative distance between the granular glass deposition surface and the combustion burner becomes shorter every moment.

そして、定常状態に達するまでの時間がかかったり、或
いは堆積途中で割れが生じるという問題があった。
There are also problems in that it takes a long time to reach a steady state or that cracks occur during deposition.

本発明はこのような問題点を解決して、大型母材製造の
場合であっても、定常状態に至る時間が短縮でき、原料
収率も良く安定して多孔質母材を製造できる方法を意図
するものである。
The present invention solves these problems and provides a method that can shorten the time required to reach a steady state even when manufacturing large-sized base materials, and stably manufacture porous base materials with a high raw material yield. It is intended.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、燃焼バーナと粒状ガラス堆積面との相対距離
が重要であることに気付き、上記の問題点を解決したも
のである。
The present invention solves the above problems by recognizing that the relative distance between the combustion burner and the granular glass deposition surface is important.

すなわち本発明はガラス原料を燃焼バーナーから噴出さ
せて、と九によって生成する粒状ガラスを回転する出発
材又は心棒に堆積させ回転軸方向く成長させて多孔質ガ
ラス母材を製造する方法において、上記粒状ガラスを出
発材又は心棒に堆積し始めてから多孔質ガラス母材の外
径が定常になるまでの製造段階において、バーナー端面
と粒状ガラスの堆積面との距離を最適範囲に保つことを
特徴とする光7アイパー用母材の製造方法である。本発
明においては、該バーナ端面と粒状ガラス堆積面との距
離が、一定の範囲内にお込て遠ざけることが好ましい実
施態様の一つである。
That is, the present invention provides a method for producing a porous glass base material by ejecting glass raw material from a combustion burner, depositing granular glass produced by a rotating starting material or mandrel, and growing it in the direction of the rotation axis. The method is characterized in that the distance between the burner end face and the surface on which the granular glass is deposited is maintained within an optimum range during the manufacturing stage from when the granular glass begins to be deposited on the starting material or the mandrel until the outer diameter of the porous glass base material becomes constant. This is a method for manufacturing a base material for Hikari 7 eyewear. In the present invention, it is one of the preferred embodiments that the distance between the burner end face and the granular glass deposition surface is kept within a certain range.

第1図は本発明を概略説明するための断面図であって、
多孔質ガラス母材の初期製造段階を示す。第1図におh
て、感情バーナ1の2軸方向2に沿って、徐々に該燃焼
バーナ1を粒状ガラス堆積面3より遠ざけることにより
、定常状態に至るまでの間も該燃焼バーナ1と粒状ガラ
ス堆積面3との相対距離を一定の範囲内に保つことがで
きる。定常状態に至れば、従来のごとくに行えばよい。
FIG. 1 is a sectional view for schematically explaining the present invention,
The initial manufacturing stage of the porous glass matrix is shown. In Figure 1 h
By gradually moving the combustion burner 1 away from the granular glass deposition surface 3 along the two axial directions 2 of the emotional burner 1, the combustion burner 1 and the granular glass deposition surface 3 are kept in contact with each other until a steady state is reached. The relative distance between can be kept within a certain range. Once a steady state is reached, the process can be carried out in the conventional manner.

なお、@1図中黒矢印部分は上記相対距離を、白4き矢
印は燃焼バーナ1の移動方向を、4は心棒をあられす。
In addition, the black arrow part in @1 figure indicates the above-mentioned relative distance, the white arrow 4 indicates the moving direction of the combustion burner 1, and 4 indicates the shaft.

本発明において、定常状態に至るまでとは、粒状ガラス
を出発材又は心棒に堆積し始めてから、多孔質ガラス母
材の外径が定常となるまでの初期の製造段階をいう。上
記のように多孔質ガラス母材外径が定常状態に至るまで
の間も、燃焼バーナと粒状ガラス堆積面との相対距離を
一定の範囲内に保つととくより、初期段階においても該
堆積面と原料噴出口との間で十分に粒子が成長し、かつ
粒子流の広がりが少ない最適な位置関係を保つことがで
きる。したがってこの初期段階(非定常時)での収率が
向上するので、ある一定の径に達するまでの時間を短か
くでき、効率的で安定な製造が可能となる。又同時に、
燃焼バーナと粒状ガラス堆積面との相対距離を一定の範
囲内に保っことで、多孔質ガラス母材に様な強さの火炎
が当るようになり、その結果該多孔質母材の嵩密度が一
様に増し、割れが生じなくなり、この点においても効率
良く安定な製造が可能となる。
In the present invention, reaching a steady state refers to the initial manufacturing stage from when the granular glass begins to be deposited on the starting material or mandrel until the outer diameter of the porous glass preform becomes steady. As mentioned above, even while the outer diameter of the porous glass base material reaches a steady state, the relative distance between the combustion burner and the granular glass deposition surface is kept within a certain range, and even in the initial stage, the deposition surface It is possible to maintain an optimal positional relationship between the source and the raw material spout in which the particles grow sufficiently and the spread of the particle flow is small. Therefore, since the yield at this initial stage (unsteady state) is improved, the time required to reach a certain diameter can be shortened, and efficient and stable production becomes possible. At the same time,
By keeping the relative distance between the combustion burner and the surface on which the granular glass is deposited within a certain range, the porous glass base material can be exposed to flames of various strengths, and as a result, the bulk density of the porous glass base material can be reduced. It increases uniformly, and cracks do not occur, making it possible to manufacture efficiently and stably in this respect as well.

〔実施例〕〔Example〕

実施例1 第1図の構成に従い、燃焼バーナー7として同心円状多
重管バーナーを用い、これに水素を毎分30リツトル、
酸素を毎分35リツトル、アルゴンを毎分12リツトル
、ガラス原料として、四塩化硅素を毎分700ミリリツ
トル供給し九。心棒4としては純石英棒を用いた。粒状
゛ガラスは心棒4の上部より順次堆積をはじめその間バ
ーナー1をそのZ軸12方向に5分ととIc、5+mず
つ、後退させた。これにょシバーナ−11の端面と粒状
ガラスの堆積面13との距離を71から9txの範囲に
保つようKした。50分後払孔質ガラス母材の外径がほ
ぼ100mになったところで最終的にバーナー11の位
置を固定し、以後心棒14を毎時70ミリメートルの速
さで引き上げながら、多孔質ガラス母材をその回転軸方
向に成長させた。この方法により、初期の段階において
、多孔質ガラス母材が割れることなく、製造を続けるこ
とができ、又、従来法に比べて原料収率が約10X向上
した。
Example 1 According to the configuration shown in FIG. 1, a concentric multi-tube burner was used as the combustion burner 7, and hydrogen was supplied to it at a rate of 30 liters per minute.
Oxygen was supplied at 35 liters per minute, argon was supplied at 12 liters per minute, and silicon tetrachloride was supplied at 700 ml per minute as a glass raw material9. As the mandrel 4, a pure quartz rod was used. The granular glass was sequentially deposited from the upper part of the mandrel 4, while the burner 1 was moved back in the direction of its Z-axis 12 by 5 minutes and Ic, 5+m. In this case, the distance between the end face of the burner 11 and the granular glass deposition surface 13 was maintained in the range of 71 to 9tx. After 50 minutes, when the outer diameter of the porous glass base material reached approximately 100 m, the position of the burner 11 was finally fixed, and from then on, the porous glass base material was lifted while pulling the mandrel 14 at a speed of 70 mm/hour. It was grown in the direction of its rotation axis. With this method, production could be continued without cracking the porous glass base material in the initial stage, and the raw material yield was improved by about 10 times compared to the conventional method.

比較例1 原料及び燃焼ガスの流景は上記実施例と同一としバーナ
ー11の位置を、上記実施例で最終的に定常な製造を行
々つ走時と同じ位置に固定したま壕で、粒状ガラスの堆
積を開始した。55分後に多孔質ガラス母材の上部に割
れが生じた。
Comparative Example 1 The flow of raw materials and combustion gas was the same as in the above embodiment, and the position of the burner 11 was fixed at the same position as in the above embodiment during regular production. Started depositing glass. After 55 minutes, cracks appeared in the upper part of the porous glass matrix.

同様の方法にて10本の多孔質ガラス母材を製造したと
ころ、そのうち3本が製造初期の段階で、割れが生じた
When ten porous glass preforms were produced in the same manner, three of them cracked in the early stages of production.

上記実施例においては心棒を用いたが、中心棒なしの場
合でも同様の効果がある。
In the above embodiment, a center rod is used, but the same effect can be obtained without a center rod.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は光ファイバー用母材の製
造において、多孔質母材の外径が定常になるまでの製造
の初期の段階において、燃焼バーナーをZ軸方向に徐々
に移動させ、原料噴出口と粒状ガラス堆積面との距離を
堆積に最適の位置関係の範囲内に保つことをてより、初
期の段階にかける多孔質ガラス母材の割れを防市し、か
つ原料収率を向上させる効果がある。したがって本発明
は光ファイバ用多孔賞母材を安定に従来法よシ効率良く
M造することができる優れた方法である。
As explained above, in the production of optical fiber preforms, the present invention gradually moves the combustion burner in the Z-axis direction in the initial stage of production until the outer diameter of the porous preform becomes constant, and By keeping the distance between the spout and the granular glass deposition surface within the range of optimal positional relationship for deposition, cracking of the porous glass base material during the initial stage can be prevented and the raw material yield can be improved. It has the effect of Therefore, the present invention is an excellent method for stably manufacturing a porous preform for optical fibers more efficiently than the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を概略説明する断面図である
FIG. 1 is a sectional view schematically explaining an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)ガラス原料を燃焼バーナーから噴出させて、これ
によつて生成する粒状ガラスを回転する出発材又は心棒
に堆積させ回転軸方向に成長させて多孔質ガラス母材を
製造する方法において、上記粒状ガラスを出発材又は心
棒に堆積し始めてから多孔質ガラス母材の外径が定常に
なるまでの製造段階において、バーナー端面と粒状ガラ
スの堆積面との距離を最適範囲に保つことを特徴とする
光ファイバー用母材の製造方法。
(1) In the method of manufacturing a porous glass base material by ejecting glass raw materials from a combustion burner, depositing the resulting granular glass on a rotating starting material or mandrel and growing it in the direction of the rotation axis, the above-mentioned The method is characterized in that the distance between the burner end face and the surface on which the granular glass is deposited is maintained within an optimum range during the manufacturing stage from when the granular glass begins to be deposited on the starting material or the mandrel until the outer diameter of the porous glass base material becomes constant. A method for producing a base material for optical fiber.
(2)バーナー端面と粒状ガラス堆積面との距離が一定
の範囲内となるようにする特許請求の範囲第(1)項記
載の光ファイバー用母材の製造方法。
(2) The method for manufacturing an optical fiber preform according to claim (1), wherein the distance between the burner end face and the granular glass deposition surface is within a certain range.
JP61106798A 1986-05-12 1986-05-12 Method for manufacturing base material for optical fiber Expired - Fee Related JPH0776108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106798A JPH0776108B2 (en) 1986-05-12 1986-05-12 Method for manufacturing base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106798A JPH0776108B2 (en) 1986-05-12 1986-05-12 Method for manufacturing base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS62265141A true JPS62265141A (en) 1987-11-18
JPH0776108B2 JPH0776108B2 (en) 1995-08-16

Family

ID=14442897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106798A Expired - Fee Related JPH0776108B2 (en) 1986-05-12 1986-05-12 Method for manufacturing base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH0776108B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824090A1 (en) * 1996-08-13 1998-02-18 Sumitomo Electric Industries, Ltd. Process for producing optical fiber preform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593027A (en) * 1982-06-23 1984-01-09 Sumitomo Electric Ind Ltd Manufacture of glass base material for optical fiber
JPS60264336A (en) * 1984-06-11 1985-12-27 Furukawa Electric Co Ltd:The Manufacture of optical glass preform
JPS6136133A (en) * 1984-07-30 1986-02-20 Shin Etsu Chem Co Ltd Manufacture of glass preform for optical fiber
JPS61146726A (en) * 1984-12-18 1986-07-04 Hitachi Cable Ltd Positioning method of burner for production of glass base material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593027A (en) * 1982-06-23 1984-01-09 Sumitomo Electric Ind Ltd Manufacture of glass base material for optical fiber
JPS60264336A (en) * 1984-06-11 1985-12-27 Furukawa Electric Co Ltd:The Manufacture of optical glass preform
JPS6136133A (en) * 1984-07-30 1986-02-20 Shin Etsu Chem Co Ltd Manufacture of glass preform for optical fiber
JPS61146726A (en) * 1984-12-18 1986-07-04 Hitachi Cable Ltd Positioning method of burner for production of glass base material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824090A1 (en) * 1996-08-13 1998-02-18 Sumitomo Electric Industries, Ltd. Process for producing optical fiber preform
US6324871B1 (en) 1996-08-13 2001-12-04 Sumitomo Electric Industries, Ltd. Process for producing optical fiber preform

Also Published As

Publication number Publication date
JPH0776108B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
KR880001607B1 (en) Preparation for making of glass fiber preform
JPS5844619B2 (en) Manufacturing method of optical fiber base material
US7437893B2 (en) Method for producing optical glass
JP3396430B2 (en) Method for manufacturing optical fiber preform and apparatus for manufacturing optical fiber preform
JPS62265141A (en) Production of base material for optical fiber
JPH05319849A (en) Production of silica porous preform
JP2000351634A (en) Production of porous glass preform
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JP3148194B2 (en) Method for producing porous glass base material
JPS63176326A (en) Production of preform for optical fiber
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JPS61178436A (en) Production of base material for optical fiber
JPH0258218B2 (en)
JPS627641A (en) Production of deposited body of fine glass particle
JPS62182132A (en) Production of piled material of glass fine particle
JPS6363498B2 (en)
KR100520642B1 (en) Vapor axial deposition apparatus comprising rod cap
JPS63282137A (en) Production of porous base material for quartz glass
JPH0435428B2 (en)
JPH0583499B2 (en)
JPS6355135A (en) Production of optical fiber preform
JPH0489321A (en) Production of glass-particulate deposit
JPS6210936B2 (en)
JPH0725625A (en) Production of deposited glass soot
JPH02124736A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees