JPH0583499B2 - - Google Patents

Info

Publication number
JPH0583499B2
JPH0583499B2 JP60026494A JP2649485A JPH0583499B2 JP H0583499 B2 JPH0583499 B2 JP H0583499B2 JP 60026494 A JP60026494 A JP 60026494A JP 2649485 A JP2649485 A JP 2649485A JP H0583499 B2 JPH0583499 B2 JP H0583499B2
Authority
JP
Japan
Prior art keywords
glass
burner
starting material
layer
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60026494A
Other languages
Japanese (ja)
Other versions
JPS61186240A (en
Inventor
Hiroo Kanamori
Hiroshi Yokota
Gotaro Tanaka
Futoshi Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2649485A priority Critical patent/JPS61186240A/en
Publication of JPS61186240A publication Critical patent/JPS61186240A/en
Publication of JPH0583499B2 publication Critical patent/JPH0583499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/64Angle
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス微粒子の集合体を円柱状出発
材の外周部に形成する方法に関し、特に高純度が
要求される光フアイバ用母材製造の際の中間製品
として好適に用いられる、出発材外周部に堆積せ
しめられたガラス微粒子集合体の形成方法に関す
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for forming an aggregate of glass particles on the outer periphery of a cylindrical starting material, and is particularly applicable to the production of an optical fiber base material that requires high purity. The present invention relates to a method for forming a glass particle aggregate deposited on the outer periphery of a starting material, which is suitably used as an intermediate product in the process.

〔従来の技術〕[Conventional technology]

従来、石英系ガラス管或いは光フアイバ用母材
の製造方法として、特開昭48−73522号公報に示
されたような謂る“外付法”がある。この方法
は、回転するカーボン或いは石英系ガラス、アル
ミナなどの耐火性出発材の外周部に、SiC4など
の原料の加水分解反応により生成せしめたSiO2
などの微粒子状ガラスを堆積させていき、所定量
堆積させたあと堆積をやめ、出発材を引き抜き、
パイプ状ガラス集合体を形成し、このパイプ状ガ
ラス集合体を高温電気炉中で焼結透明ガラス化し
パイプ状ガラスを得ている。或いは、同様の方法
で出発材として中実の光フアイバ用ガラス母材を
用い、出発材とその外周部に形成されたガラス微
粒子堆積体の複合体を形成したのち、出発材を引
き抜かず該複合体を高温炉中で加熱処理しガラス
微粒子堆積体の部分を焼結することにより出発材
である光フアイバ用ガラス母材の外周部にさらに
透明ガラス層を形成するという方法も考えられ
る。
Conventionally, as a method for manufacturing a base material for a quartz-based glass tube or an optical fiber, there is a so-called "external attachment method" as disclosed in Japanese Patent Application Laid-open No. 73522/1983. In this method, SiO 2 produced by the hydrolysis reaction of raw materials such as SiC 4 is placed around the outer periphery of a rotating refractory starting material such as carbon, quartz glass, or alumina.
After depositing a predetermined amount of glass, the deposition is stopped and the starting material is pulled out.
A pipe-shaped glass aggregate is formed, and the pipe-shaped glass aggregate is sintered into transparent glass in a high-temperature electric furnace to obtain pipe-shaped glass. Alternatively, by using a solid glass base material for optical fiber as a starting material in a similar manner, a composite of the starting material and the glass fine particle deposit formed on the outer periphery of the starting material is formed, and then the composite is removed without pulling out the starting material. It is also conceivable to further form a transparent glass layer on the outer periphery of the starting glass base material for optical fiber by heating the body in a high-temperature furnace and sintering the part of the glass particle deposit body.

これらの方法において、ガラス微粒子を出発材
上に堆積させる方法としては、第2図に示すごと
く、ガラス微粒子合成用バーナー2,1を出発材
2,2に対し相対的に出発材軸と平行に幾度も往
復させることにより、出発材上2,2にガラス微
粒子堆積層2,3を幾層も形成していく方法があ
る。
In these methods, the glass particles are deposited on the starting material by placing the glass particle synthesis burners 2, 1 parallel to the starting material axis relative to the starting materials 2, 2, as shown in FIG. There is a method in which many layers of glass fine particle deposits 2 and 3 are formed on the starting materials 2 and 2 by reciprocating them many times.

しかしこの方法では堆積体初期には、ガラス微
粒子が堆積する堆積面積が小さいため、ガラス微
粒子堆積効率が悪いという欠点がある。
However, this method has a drawback in that the glass particle deposition efficiency is low because the deposition area on which the glass particles are deposited is small at the initial stage of the deposit.

また別の方法として第3図に示すごとく出発材
3,1の片端部付近からガラス微粒子を堆積させ
始め、ガラス微粒子合成用バーナー3,2を出発
材3,1に対し相対的に出発材軸と平行に徐々に
移動していくことによりガラス微粒子堆積体3,
4を出発材軸方向に形成していく方法は考えられ
ている。
Another method is to start depositing glass particles from near one end of the starting materials 3, 1, as shown in FIG. By gradually moving parallel to the glass fine particle deposit 3,
A method of forming 4 in the axial direction of the starting material has been considered.

本発明の目的は前記第2の方法において、ガラ
ス微粒子堆積体をより効率的にかつ安定にガラス
微粒子堆積層を形成する手段を提供するところに
ある。
An object of the present invention is to provide a means for more efficiently and stably forming a glass particle deposit layer using a glass particle deposit body in the second method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、ガラス
微粒子合成用バーナーと出発材との相対的な位置
関係、特にガラス微粒子合成用バーナーの中心軸
と出発材の軸のなす角度が重要である点を指摘
し、その最適な角度範囲を提供するものである。
In order to achieve the above object, the present invention is characterized in that the relative positional relationship between the burner for synthesizing glass fine particles and the starting material, particularly the angle formed between the central axis of the burner for synthesizing glass fine particles and the axis of the starting material, is important. It points out and provides its optimal angle range.

すなわち本発明は自らの軸を回転軸として回転
している実質的に円柱状或いは円筒状の出発材の
片端近傍から、該出発材の外周部上に1本のガラ
ス微粒子合成用バーナーを用い、ガラス微粒子合
成用バーナーの火炎内にガラス原料を供給するこ
とにより発生させたガラス微粒子を堆積させ始
め、該バーナーを出発材の軸と平行に相対的に移
動させていくことにより、純シリカのガラス微粒
子の堆積体を出発材の外周部に軸方向に形成して
いく方法に於いて、該バーナーの中心軸と出発材
の軸のなす角度が20〜70°の範囲であることを特
徴とするガラス微粒子堆積体の製造方法である。
That is, the present invention uses one burner for synthesizing glass fine particles on the outer periphery of a substantially cylindrical or cylindrical starting material that is rotating around its own axis from near one end of the starting material, Glass particles generated by supplying glass raw materials into the flame of a burner for glass particle synthesis begin to accumulate, and by moving the burner relatively parallel to the axis of the starting material, pure silica glass is produced. A method of forming a deposit of fine particles in the axial direction on the outer periphery of the starting material, characterized in that the angle between the central axis of the burner and the axis of the starting material is in the range of 20 to 70°. This is a method for manufacturing a glass fine particle deposit.

本発明者等は、以下に述べる実験を行うことに
より本発明に到達した。実験は、第3図に模式的
に示す装置構成において、効率的かつ安定に出発
材3,1外周部に純シリカのガラス微粒子堆積層
3,4を形成しうるバーナー3,2の取付角度を
見い出すために、第1図にθとして表される出発
材3,1に対するバーナー取付角度を変えて、実
際にガラス微粒子堆積層3,4を形成し、その際
の純シリカのガラス微粒子の堆積効率及びガラス
微粒子のカサ密度分布を測定したものである。第
1図においてLと示したものは、バーナー3,2
先端部からバーナー3,2軸方向に測定した出発
材3,1までの距離である。尚ガラス微粒子堆積
層のカサ密度分布は、ガラス微粒子堆積層が安定
に形成されるか否かを示す指標となるものであ
り、一般にカサ密度分布が半径方向に均一に近く
かつ平均的なカサ密度が高い程ガラス微粒子堆積
層が、その堆積途中や堆積後などに割れや変形な
どを起こさず、安定に形成できるものである。実
験においては出発材3,1として溶融石英ガラス
棒(15mmφ)を使用した。またバーナー3,2は
最外層の内径が20mmφの同心円状4重管バーナー
を用い、バーナー3,2には中心層にSiC4
300cc/分、第2層にH2を6.0/分、第3層に
Arを1.5/分、最外層にO2を6.0/分供給し、
第1図にLと示されるバーナー3,2先端と出発
材3,1とのきよりは60mmとした。また出発材
3,1は40rpmで回転させつつ、ガラス微粒子堆
積層の外径が50〜70mmφとなるように20〜50mm/
hrの速度で上昇させ引上げていつた。
The present inventors achieved the present invention by conducting the experiments described below. The experiment was carried out using the apparatus configuration schematically shown in FIG. 3, to determine the mounting angle of the burners 3 and 2 that would enable efficient and stable formation of pure silica glass particle deposit layers 3 and 4 on the outer periphery of the starting materials 3 and 1. In order to find out, the burner installation angle with respect to the starting materials 3 and 1, represented as θ in FIG. and the bulk density distribution of glass particles was measured. What is shown as L in FIG. 1 is the burner 3, 2.
This is the distance from the tip of the burner 3 to the starting materials 3 and 1 measured in the 2-axis direction. The bulk density distribution of the glass fine particle deposit layer is an indicator of whether the glass fine particle deposit layer is stably formed or not.In general, the bulk density distribution is close to uniform in the radial direction and has an average bulk density. The higher the value, the more stable the glass particle deposit layer can be formed without cracking or deforming during or after the deposition. In the experiment, a fused silica glass rod (15 mmφ) was used as the starting material 3,1. In addition, burners 3 and 2 are concentric quadruple pipe burners with an inner diameter of 20 mm in the outermost layer, and burners 3 and 2 have SiC 4 in the center layer.
300cc/min, 6.0/min of H2 in the 2nd layer, 3rd layer
Ar is supplied at 1.5/min, O 2 is supplied at 6.0/min to the outermost layer,
The distance between the tips of the burners 3, 2, indicated as L in FIG. 1, and the starting materials 3, 1 was 60 mm. In addition, while rotating the starting materials 3 and 1 at 40 rpm, the outer diameter of the glass fine particle deposited layer is 20 to 50 mmφ.
It was raised and pulled up at a speed of hr.

このようにして得られたバーナー取付角度θと
ガラス微粒子堆積速度の関係を第4図aに、また
取付角度θを20°,30°,60°,70°とを変えた時の
カサ密度分布の変化を第4図bに示す。第1図a
より効率的にガラス微粒子層を堆積せしめるには
バーナーの取付角度に好適な範囲が存在し、その
範囲は20°〜70°であることがわかる。さらに第4
図bでは30°〜60°の取付角度において比較的カサ
密度分布が半径方向に均一になることがわかる。
したがつて本発明方法におけるバーナーの取付角
度は20°〜70°、好ましくは30°〜60°である。
The relationship between the burner installation angle θ and the glass particle deposition rate obtained in this way is shown in Figure 4a, and the bulk density distribution when the installation angle θ is changed to 20°, 30°, 60°, and 70°. The change in is shown in Fig. 4b. Figure 1a
It can be seen that there is a suitable range for the burner installation angle in order to deposit the glass fine particle layer more efficiently, and that range is 20° to 70°. Furthermore, the fourth
In Fig. b, it can be seen that the bulk density distribution is relatively uniform in the radial direction at the mounting angle of 30° to 60°.
Therefore, the installation angle of the burner in the method of the invention is between 20° and 70°, preferably between 30° and 60°.

〔実施例〕〔Example〕

実施例 1 第5図に示す屈折率分布を有し、コア径6mm
φ、クラツド外径40mmφのVAD法により作成し
たシングルモードフアイバ用透明ガラス母材を
12.5mmφに延伸したものを出発材とし、第1図及
び第3図に示した装置により多孔質ガラス微粒子
層を外径90mmφになるよう形成した。この際バー
ナーの取付角度は50°とした。多孔質ガラス微粒
子形成に際してはバーナーにH26.0/分、O26.0
/分、SiC4300cc/分を供給した。また、出
発材は40rpmで回転させつつ、40mm/hrの速度で
引上ていつた。その後該母材を電気炉中で加熱し
多孔質ガラス層を透明ガラス化した結果、第6図
に示す屈折率分布をもち、Aが2.25mmφ,Bが
15.0mmφ,Cが36mmφのシングルモードフアイバ
用母材を得た。なお透明化の際、多孔質ガラス層
の収縮力により12.5mmφに延伸していた出発材は
軸方向にいくぶん縮み15.0mmφまでに太くなつて
いる。得られた母材を外径125μmに紡糸した結
果、カツトオフ波長1.2μm,1.3μmでの伝送損失
が0.5dB/Kmという良好な特性を有するシングル
モードフアイバを得た。
Example 1 It has the refractive index distribution shown in Fig. 5, and the core diameter is 6 mm.
φ, cladding outer diameter 40mmφ, transparent glass base material for single mode fiber made by VAD method.
Using the material stretched to 12.5 mmφ as a starting material, a porous glass fine particle layer was formed to have an outer diameter of 90 mmφ using the apparatus shown in FIGS. 1 and 3. At this time, the burner installation angle was 50°. When forming porous glass particles, the burner was heated with H 2 6.0/min and O 2 6.0
/min, and 300cc/min of SiC 4 was supplied. Further, the starting material was pulled up at a speed of 40 mm/hr while rotating at 40 rpm. Thereafter, the base material was heated in an electric furnace to turn the porous glass layer into transparent glass. As a result, it had the refractive index distribution shown in Figure 6, with A being 2.25 mmφ and B being
A base material for a single mode fiber with a diameter of 15.0 mm and a diameter of 36 mm was obtained. During the transparentization, the starting material, which had been stretched to 12.5 mmφ due to the shrinkage force of the porous glass layer, shrunk somewhat in the axial direction and became thicker to 15.0 mmφ. As a result of spinning the obtained base material to an outer diameter of 125 μm, a single-mode fiber with good characteristics such as a transmission loss of 0.5 dB/Km at cutoff wavelengths of 1.2 μm and 1.3 μm was obtained.

実施例 2 出発材として、外径20mmφのジルコニア管を用
い、第1図及び第3図に示した装置によりガラス
微粒子層を外径100mmφになるように形成した。
この際バーナー取付角度は35°としバーナーにH2
15/分、O215/分、SiC4600cc/分を供給
した。また出発材は40rpmで回転しつつ、55mm/
hrの速度で引上げていつた。ガラス微粒子層形成
後、出発材を引抜き円筒状のガラス微粒子体を作
製し、該ガラス微粒子体と電気炉を用いSF63mol
%,He97mol%の雰囲気中で1600℃まで加熱し
透明ガラス化した。その結果外径45mmφ、内径10
mmφ,Fを1重量%含有する石英ガラス管を得
た。本ガラス管は純砕石英棒をコア材として挿入
一体化することにより光フアイバ用母材として用
いることができるものである。
Example 2 Using a zirconia tube with an outer diameter of 20 mmφ as a starting material, a glass fine particle layer was formed to have an outer diameter of 100 mmφ using the apparatus shown in FIGS. 1 and 3.
At this time, the burner installation angle should be 35°, and the burner should be mounted at an H 2
15/min, O 2 15/min, and SiC 4 600 cc/min. In addition, the starting material was rotated at 40 rpm and 55 mm/
It was pulled up at a speed of hr. After forming the glass fine particle layer, the starting material was pulled out to produce a cylindrical glass fine particle body, and 3 mol of SF 6 was added using the glass fine particle body and an electric furnace.
%, He was heated to 1600℃ in an atmosphere of 97 mol% He to make it transparent vitrified. As a result, the outer diameter is 45mmφ, and the inner diameter is 10.
A quartz glass tube containing 1% by weight of mmφ,F was obtained. This glass tube can be used as a base material for optical fiber by inserting and integrating a pure crushed quartz rod as a core material.

比較例 実施例1において、バーナー取付角度を75°と
したところ、ガラス微粒子層形成時に外周部に亀
裂が生じ所望のガラス微粒子体は得られなかつ
た。またバーナー取付角度を70°とした場合もガ
ラス微粒子層形成後冷却中にクラツクが生じ使用
することができなかつた。
Comparative Example In Example 1, when the burner installation angle was set to 75°, cracks occurred at the outer periphery during formation of the glass fine particle layer, and the desired glass fine particle body could not be obtained. Further, even when the burner installation angle was set to 70°, a crack occurred during cooling after forming the glass fine particle layer, making it impossible to use.

〔発明の効果〕〔Effect of the invention〕

以上の説明及び実施例の結果から明らかなよう
に、本発明はガラス微粒子堆積体をより効率的か
つ安定に製造できる方法である。
As is clear from the above description and the results of the Examples, the present invention is a method that can produce glass fine particle deposits more efficiently and stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明する図であつて、出発材
に対するバーナーの取付角度(θ)を示す図、第
2図は従来法の説明図、第3図は従来法及び本発
明に用いる装置の説明図、第4図aはバーナー取
付角度(θ)とガラス微粒子の堆積速度(g/
分)の関係を示すグラフであり、第4図bはバー
ナー取付角度(θ)を変えた場合の半径方向にお
けるカサ密度分布の関係を示すグラフである。第
5図は本発明の実施例1にて用いた出発材作製用
のシングルモードフアイバ用透明ガラス母材の屈
折率分布を示す図、第6図は上記実施例1から得
たシングルモードフアイバ用母材の屈折率分布を
示す図である。
Fig. 1 is a diagram for explaining the present invention, showing the mounting angle (θ) of the burner with respect to the starting material, Fig. 2 is a diagram for explaining the conventional method, and Fig. 3 is a diagram for explaining the conventional method and the apparatus used in the present invention. Figure 4a is an explanatory diagram showing the relationship between the burner installation angle (θ) and the deposition rate of glass particles (g/
FIG. 4B is a graph showing the relationship between the bulk density distribution in the radial direction when the burner mounting angle (θ) is changed. Figure 5 is a diagram showing the refractive index distribution of the transparent glass base material for single mode fiber used in Example 1 of the present invention for producing the starting material, and Figure 6 is for the single mode fiber obtained from Example 1 above. FIG. 3 is a diagram showing a refractive index distribution of a base material.

Claims (1)

【特許請求の範囲】[Claims] 1 自らの軸を回転軸として回転している実質的
に円柱状或いは円筒状の出発材の片端近傍から、
該出発材の外周部上に1本のガラス微粒子合成用
バーナーを用い、該ガラス微粒子合成用バーナー
の火炎内にガラス原料を供給することにより発生
させたガラス微粒子を堆積させ始め、該バーナー
を出発材の軸と平行に相対的に移動させていくこ
とにより、純シリカのガラス微粒子の堆積体を出
発材の外周部に軸方向に形成していく方法に於い
て、該バーナーの中心軸と出発材の軸のなす角度
が20〜70°の範囲であることを特徴とするガラス
微粒子堆積体の製造方法。
1 From near one end of a substantially cylindrical or cylindrical starting material that is rotating around its own axis,
Using one burner for synthesizing glass particles on the outer periphery of the starting material, the glass particles generated by supplying the glass raw material into the flame of the burner for synthesizing glass particles begin to be deposited, and then the burner is started. In this method, a deposit of pure silica glass particles is formed in the axial direction on the outer periphery of the starting material by moving the material relatively parallel to the axis of the burner. 1. A method for producing a glass particle deposit, characterized in that the angle formed by the axis of the material is in the range of 20 to 70°.
JP2649485A 1985-02-15 1985-02-15 Production of piled material of glass fine particles Granted JPS61186240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2649485A JPS61186240A (en) 1985-02-15 1985-02-15 Production of piled material of glass fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2649485A JPS61186240A (en) 1985-02-15 1985-02-15 Production of piled material of glass fine particles

Publications (2)

Publication Number Publication Date
JPS61186240A JPS61186240A (en) 1986-08-19
JPH0583499B2 true JPH0583499B2 (en) 1993-11-26

Family

ID=12195047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2649485A Granted JPS61186240A (en) 1985-02-15 1985-02-15 Production of piled material of glass fine particles

Country Status (1)

Country Link
JP (1) JPS61186240A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2125508C (en) * 1993-06-16 2004-06-08 Shinji Ishikawa Process for producing glass preform for optical fiber
JP6581637B2 (en) * 2017-10-13 2019-09-25 信越化学工業株式会社 Porous glass base material manufacturing apparatus and manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547237A (en) * 1978-09-29 1980-04-03 Fujitsu Ltd Production of glass base material for optical fiber
JPS55116638A (en) * 1979-02-22 1980-09-08 Corning Glass Works Manufacture of optical fiber material
JPS56160335A (en) * 1980-05-08 1981-12-10 Nec Corp Manufacture of base material for optical fiber
JPS5795838A (en) * 1980-12-03 1982-06-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of oxide powder rod for optical fiber
JPS57170832A (en) * 1981-04-13 1982-10-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS57191243A (en) * 1981-05-22 1982-11-25 Fujitsu Ltd Manufacturing of optical fiber preform
JPS58204833A (en) * 1982-05-25 1983-11-29 Showa Electric Wire & Cable Co Ltd Manufacture of optical fiber preform
JPS59128227A (en) * 1983-01-12 1984-07-24 Hitachi Cable Ltd Manufacture of base material for optical fibre
JPS6060935A (en) * 1983-09-09 1985-04-08 Furukawa Electric Co Ltd:The Manufacture of base material for optical fiber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547237A (en) * 1978-09-29 1980-04-03 Fujitsu Ltd Production of glass base material for optical fiber
JPS55116638A (en) * 1979-02-22 1980-09-08 Corning Glass Works Manufacture of optical fiber material
JPS56160335A (en) * 1980-05-08 1981-12-10 Nec Corp Manufacture of base material for optical fiber
JPS5795838A (en) * 1980-12-03 1982-06-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of oxide powder rod for optical fiber
JPS57170832A (en) * 1981-04-13 1982-10-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS57191243A (en) * 1981-05-22 1982-11-25 Fujitsu Ltd Manufacturing of optical fiber preform
JPS58204833A (en) * 1982-05-25 1983-11-29 Showa Electric Wire & Cable Co Ltd Manufacture of optical fiber preform
JPS59128227A (en) * 1983-01-12 1984-07-24 Hitachi Cable Ltd Manufacture of base material for optical fibre
JPS6060935A (en) * 1983-09-09 1985-04-08 Furukawa Electric Co Ltd:The Manufacture of base material for optical fiber

Also Published As

Publication number Publication date
JPS61186240A (en) 1986-08-19

Similar Documents

Publication Publication Date Title
US5674306A (en) Method and apparatus for drawing glass preform for optical fiber
US3933453A (en) Flame hydrolysis mandrel and method of using
US5674305A (en) Method for flame abrasion of glass preform
AU649553B2 (en) Method of flame abrasion of glass preform
JP2003171137A (en) Method for manufacturing optical fiber preform
WO2011136324A1 (en) Manufacturing method for glass base material
JPH0583499B2 (en)
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JPH0463018B2 (en)
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
JPH02204340A (en) Production of optical fiber base material
JPH0426523A (en) Production of optical fiber
JPS6356178B2 (en)
JP2011230986A (en) Manufacturing method for glass preform
JPH0769665A (en) Optical fiber preform, optical fiber and production thereof
JP5778895B2 (en) Glass base material manufacturing method
JP3524209B2 (en) Method for producing glass preform for optical fiber
JPS61101429A (en) Production of glass tube
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPH0327493B2 (en)
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JP3064276B1 (en) Apparatus for producing porous preform for optical fiber and glass rod for optical fiber
JP2011230985A (en) Manufacturing method for glass preform
JPH0986948A (en) Production of porous glass base material for optical fiber
JPS6138137B2 (en)